首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quickly spread worldwide following its emergence in Wuhan, China, and hit pandemic levels. Its tremendous incidence favoured the emergence of viral variants. The current genome diversity of SARS-CoV-2 has a clear impact on epidemiology and clinical practice, especially regarding transmission rates and the effectiveness of vaccines. In this study, we evaluated the replication of different SARS-CoV-2 isolates representing different virus genotypes which have been isolated throughout the pandemic. We used three distinct cell lines, including Vero E6 cells originating from monkeys; Caco-2 cells, an intestinal epithelium cell line originating from humans; and Calu-3 cells, a pulmonary epithelium cell line also originating from humans. We used RT-qPCR to replicate different SARS-CoV-2 genotypes by quantifying the virus released in the culture supernatant of infected cells. We found that the different viral isolates replicate similarly in Caco-2 cells, but show very different replicative capacities in Calu-3 cells. This was especially highlighted for the lineages B.1.1.7, B.1.351 and P.1, which are considered to be variants of concern. These results underscore the importance of the evaluation and characterisation of each SARS-CoV-2 isolate in order to establish the replication patterns before performing tests, and of the consideration of the ideal SARS-CoV-2 genotype–cell type pair for each assay.  相似文献   

2.
3.
4.
《Viruses》2020,12(12)
Severe Acute Respiratory Syndrome Coronavirus 2 is the third highly pathogenic human coronavirus in history. Since the emergence in Hubei province, China, during late 2019, the situation evolved to pandemic level. Following China, Europe was the second epicenter of the pandemic. To better comprehend the detailed founder mechanisms of the epidemic evolution in Central-Eastern Europe, particularly in Hungary, we determined the full-length SARS-CoV-2 genomes from 32 clinical samples collected from laboratory confirmed COVID-19 patients over the first month of disease in Hungary. We applied a haplotype network analysis on all available complete genomic sequences of SARS-CoV-2 from GISAID database as of 21 April 2020. We performed additional phylogenetic and phylogeographic analyses to achieve the recognition of multiple and parallel introductory events into our region. Here, we present a publicly available network imaging of the worldwide haplotype relations of SARS-CoV-2 sequences and conclude the founder mechanisms of the outbreak in Central-Eastern Europe.  相似文献   

5.
The novel coronavirus disease 2019 is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was declared a global pandemic with more than 500 million reported cases and more than 6 million deaths worldwide to date. Although it has transitioned into the endemic phase in many countries, the mortality rate and overall prognosis of the disease are still abysmal and need further improvement. There has been evidence that shows the significance of SARS-CoV-2-related liver injury. Here, we review the literature on the various spectrum of SARS-CoV-2 infection-induced liver injury and the possible mechanisms of damage to the hepatobiliary system. This review aimed to illustrate the latest understanding regarding SARS-CoV-2-induced liver injury including the high-risk populations, the characteristic clinical manifestations, the possible pathogenic mechanism, the pathological changes, the current suggestions for clinical treatment for various spectrum of populations, and the prognosis of the condition. In conclusion, SARS-CoV-2 patients with a liver injury warrant close monitoring as it is associated with the more severe and poorer outcome of the infection.  相似文献   

6.
Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.  相似文献   

7.
Monitoring acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity and emerging mutations in this ongoing pandemic is crucial for understanding its evolution and assuring the performance of diagnostic tests, vaccines, and therapies against coronavirus disease (COVID-19). This study reports on the amino acid (aa) conservation degree and the global and regional temporal evolution by epidemiological week for each residue of the following four structural SARS-CoV-2 proteins: spike, envelope, membrane, and nucleocapsid. All, 105,276 worldwide SARS-CoV-2 complete and partial sequences from 117 countries available in the Global Initiative on Sharing All Influenza Data (GISAID) from 29 December 2019 to 12 September 2020 were downloaded and processed using an in-house bioinformatics tool. Despite the extremely high conservation of SARS-CoV-2 structural proteins (>99%), all presented aa changes, i.e., 142 aa changes in 65 of the 75 envelope aa, 291 aa changes in 165 of the 222 membrane aa, 890 aa changes in 359 of the 419 nucleocapsid aa, and 2671 changes in 1132 of the 1273 spike aa. Mutations evolution differed across geographic regions and epidemiological weeks (epiweeks). The most prevalent aa changes were D614G (81.5%) in the spike protein, followed by the R203K and G204R combination (37%) in the nucleocapsid protein. The presented data provide insight into the genetic variability of SARS-CoV-2 structural proteins during the pandemic and highlights local and worldwide emerging aa changes of interest for further SARS-CoV-2 structural and functional analysis.  相似文献   

8.
Abstract

Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spread worldwide triggering a pandemic during the year 2020. The proportion of persons infected with SARS-CoV-2 whose infection remained subclinical is not known. However, such information is important to determine whether the control measures currently employed are sufficient to halt the spread of the virus. Current study has examined the seroprevalence of anti–SARS-CoV-2 antibodies in a population of 92 healthcare professionals working with patients with inflammatory bowel disease (IBD). The enzyme-linked immunosorbent assay (ELISA) test system for SARS-CoV-2 IgG from EUROIMMUN Medizinische Labordiagnostika AG (Germany) was used. Very low herd antibody-mediated immunity was proven, less than 2%, although we have been faced with the COVID-19 pandemic for several months. Anti-SARS-CoV-2 IgG antibody testing is currently unable to provide sufficient information about our anti-infectious immunity.  相似文献   

9.
Background and aimsNew data has emerged regarding higher risk of coronavirus disease 2019 (COVID-19), and its severity and complications in patients with type 2 diabetes mellitus (T2DM). However, there is a dearth of evidence regarding type 1 diabetes mellitus (T1DM). This article explores the possibility of COVID 19 induced diabetes and highlights a potential bidirectional link between COVID 19 and T1DM.MethodsA literature search was performed with Medline (PubMed), Scopus, and Google Scholar electronic databases till October 2020, using relevant keywords (COVID-19 induced diabetes; COVID-19 and type 1 diabetes; COVID-19 induced DKA; new-onset diabetes after SARS-CoV-2 infection) to extract relevant studies describing relationship between COVID-19 and T1DM.ResultsPast lessons and new data teach us that severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) can enter islet cells via angiotensin converting enzyme-2 (ACE-2) receptors and cause reversible β-cell damage and transient hyperglycemia. There have been postulations regarding the potential new-onset T1DM triggered by COVID-19. This article reviews the available evidence regarding the impact and interlink between COVID-19 and Τ1DM. We also explore the mechanisms behind the viral etiology of Τ1DM.ConclusionsSARS-CoV-2 can trigger severe diabetic ketoacidosis at presentation in individuals with new-onset diabetes. However, at present, there is no hard evidence that SARS-CoV-2 induces T1DM on it’s own accord. Long term follow-up of children and adults presenting with new-onset diabetes during this pandemic is required to fully understand the type of diabetes induced by COVID-19.  相似文献   

10.
11.
Bartonella species are being recognized as important bacterial human and canine pathogens, and are associated with multiple arthropod vectors. Bartonella DNA extracted from blood samples was obtained from domestic dogs in Algiers, Algeria. Polymerase chain reaction (PCR) and DNA sequence analyses of the ftsZ gene and the 16S-23S intergenic spacer region (ITS) were performed. Three Bartonella species: Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonells elizabethae were detected infecting Algerian dogs. To our knowledge, this study is the first report of detection by PCR amplification of Bartonella in dogs in North Africa.  相似文献   

12.
The COVID-19 pandemic has currently created an unprecedented threat to human society and global health. A rapid mass vaccination to create herd immunity against SARS-CoV-2 is a crucial measure to ease the spread of this disease. Here, we investigated the immunogenicity of a SARS-CoV-2 subunit vaccine candidate, a SARS-CoV-2 spike glycoprotein encapsulated in N,N,N-trimethyl chitosan particles or S-TMC NPs. Upon intraperitoneal immunization, S-TMC NP-immunized mice elicited a stronger systemic antibody response, with neutralizing capacity against SARS-CoV-2, than mice receiving the soluble form of S-glycoprotein. S-TMC NPs were able to stimulate the circulating IgG and IgA as found in SARS-CoV-2-infected patients. In addition, spike-specific T cell responses were drastically activated in S-TMC NP-immunized mice. Surprisingly, administration of S-TMC NPs via the intraperitoneal route also stimulated SARS-CoV-2-specific immune responses in the respiratory tract, which were demonstrated by the presence of high levels of SARS-CoV-2-specific IgG and IgA in the lung homogenates and bronchoalveolar lavages of the immunized mice. We found that peritoneal immunization with spike nanospheres stimulates both systemic and respiratory mucosal immunity.  相似文献   

13.
The pandemic of COVID-19 caused by SARS-CoV-2 infection continues to spread around the world. Vaccines that elicit protective immunity have reduced infection and mortality, however new viral variants are arising that may evade vaccine-induced immunity or cause disease in individuals who are unable to develop robust vaccine-induced responses. Investigating the role of viral variants in causing severe disease, evading vaccine-elicited immunity, and infecting vulnerable individuals is important for developing strategies to control the pandemic. Here, we report fourteen breakthrough infections of SARS-CoV-2 in vaccinated individuals with symptoms ranging from asymptomatic/mild (6/14) to severe disease (8/14). High viral loads with a median Ct value of 19.6 were detected in the nasopharyngeal specimens from subjects regardless of disease severity. Sequence analysis revealed four distinct virus lineages, including alpha and gamma variants of concern. Immunosuppressed individuals were more likely to be hospitalized after infection (p = 0.047), however no specific variant was associated with severe disease. Our results highlight the high viral load that can occur in asymptomatic breakthrough infections and the vulnerability of immunosuppressed individuals to post-vaccination infections by diverse variants of SARS-CoV-2.  相似文献   

14.
Cape Town was the first city in South Africa to experience the full impact of the coronavirus disease 2019 (COVID-19) pandemic. We acquired samples from all suspected cases and their contacts during the first month of the pandemic from Tygerberg Hospital. Nanopore sequencing generated SARS-CoV-2 whole genomes. Phylogenetic inference with maximum likelihood and Bayesian methods were used to determine lineages that seeded the local epidemic. Three patients were known to have travelled internationally and an outbreak was detected in a nearby supermarket. Sequencing of 50 samples produced 46 high-quality genomes. The sequences were classified as lineages: B, B.1, B.1.1.1, B.1.1.161, B.1.1.29, B.1.8, B.39, and B.40. All the sequences from persons under investigation (PUIs) in the supermarket outbreak (lineage B.1.8) fall within a clade from the Netherlands with good support (p > 0.9). In addition, a new mutation, 5209A>G, emerged within the Cape Town cluster. The molecular clock analysis suggests that this occurred around 13 March 2020 (95% confidence interval: 9–17 March). The phylogenetic reconstruction suggests at least nine early introductions of SARS-CoV-2 into Cape Town and an early localized transmission in a shopping environment. Genomic surveillance was successfully used to investigate and track the spread of early introductions of SARS-CoV-2 in Cape Town.  相似文献   

15.
SARS-CoV-2, the causative agent of COVID-19, emerged in late 2019. The highly contagious B.1.617.2 (Delta) variant of concern (VOC) was first identified in October 2020 in India and subsequently disseminated worldwide, later becoming the dominant lineage in the US. Understanding the local transmission dynamics of early SARS-CoV-2 introductions may inform actionable mitigation efforts during subsequent pandemic waves. Yet, despite considerable genomic analysis of SARS-CoV-2 in the US, several gaps remain. Here, we explore the early emergence of the Delta variant in Florida, US using phylogenetic analysis of representative Florida and globally sampled genomes. We find multiple independent introductions into Florida primarily from North America and Europe, with a minority originating from Asia. These introductions led to three distinct clades that demonstrated varying relative rates of transmission and possessed five distinct substitutions that were 3–21 times more prevalent in the Florida sample as compared to the global sample. Our results underscore the benefits of routine viral genomic surveillance to monitor epidemic spread and support the need for more comprehensive genomic epidemiology studies of emerging variants. In addition, we provide a model of epidemic spread of newly emerging VOCs that can inform future public health responses.  相似文献   

16.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been impacting healthcare in various ways worldwide and cancer patients are greatly affected by the coronavirus disease 2019 (COVID-19) pandemic. The reorganization of the health facilities in order to supply the high demand resulting from the aforementioned infection as well as the social isolation measures led to impairments for the diagnosis and follow-up of patients with gastrointestinal cancers, which has had an impact on the prognosis of the oncologic patients. In that context, health authorities and organizations have elaborated new guidelines with specific recommendations for the management of individuals with gastrointestinal neoplasms during the pandemic. Of note, oncologic populations seem to be more susceptible to unfavorable outcomes when exposed to SARS-CoV-2 infection and some interactions involving virus, tumor, host immune system and anticancer therapies are probably related to the poorer prognosis observed in those COVID-19 patients. Moreover, vaccination stands out as the main prevention method against severe SARS-CoV-2 infection and some particularities have been observed regarding the seroconversion of vaccinated oncologic patients including those with gastrointestinal malignancies. In this minireview, we gather updated information regarding the influence of the pandemic in the diagnosis of gastrointestinal neoplasms, new recommendations for the management of gastrointestinal cancer patients, the occurrence of SARS-CoV-2 infection in those individuals and the scenario of the vaccination against the virus in that population.  相似文献   

17.
It has now been over a year since SARS-CoV-2 first emerged in China, in December 2019, and it has spread rapidly around the world. Some variants are currently considered of great concern. We aimed to analyze the numbers of SARS-CoV-2 genome sequences obtained in different countries worldwide until January 2021. On 28 January 2021, we downloaded the deposited genome sequence origin from the GISAID database, and from the “Our world in data” website we downloaded numbers of SARS-CoV-2-diagnosed cases, numbers of SARS-CoV-2-associated deaths, population size, life expectancy, gross domestic product (GDP) per capita, and human development index per country. Files were merged and data were analyzed using Microsoft Excel software. A total of 450,968 SARS-CoV-2 genomes originating from 135 countries on the 5 continents were available. When considering the 19 countries for which the number of genomes per 100 deaths was >100, six were in Europe, while eight were in Asia, three were in Oceania and two were in Africa. Six (30%) of these countries are beyond rank 75, regarding the human development index and four (20%) are beyond rank 80 regarding GDP per capita. Moreover, the comparisons of the number of genomes sequenced per 100 deaths to the human development index by country show that some Western European countries have released similar or lower numbers of genomes than many African or Asian countries with a lower human development index. Previous data highlight great discrepancies between the numbers of available SARS-CoV-2 genomes per 100 cases and deaths and the ranking of countries regarding wealth and development.  相似文献   

18.
BackgroundEssential hypertension is an important risk factor for the development of cardiovascular disease. Important candidate genes such as NOS3 gene have been widely studied and reported to be associated with essential hypertension (HTN) in human populations.AimWe aim in this study to analyze the relationship between NOS3 -786T/C, a common genetic variant and HTN in a sample of the Algerian population of the Oran city.MethodsA case-control study has been performed in 154 subjects including 77 hypertensives and 77 normotensives. The recruitment of these subjects was done in local Health Centers of the city of Oran, West Algeria. HTN was defined as elevated systolic blood pressure SBD140 mmHg and or sustained diastolic blood pressure DBP≥90 mmHg, measured using an Omron® Automatic BP Monitor - M-3W machine. Consents were obtained from all participants. Polymerase chain reaction (PCR) combined with restrictive fragment length polymorphism (RFLP) was used to genotype the NOS -786T/C variant.ResultsThe distribution of the allelic frequencies did not differ between cases and controls (OR = 1.48; 95%CI [0.94–2.32], P = 0.09). However, after adjustment with the age, sex, and body mass index, we observed significant association between NOS -786C allele and HTN status (OR = 2.08; 95%CI [1.18–3.66], P = 0.01).ConclusionOur results indicate that the C allele of the NOS3 gene is associated with increased risk of essential hypertension in this sample of the Algerian population of the Oran city. Further validation in larger samples is needed to confirm this finding.  相似文献   

19.
Beside the changes in the gut microbiota in context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the increased use of high-risk broad-spectrum antibiotics during the actual pandemic raises concerns about a possible increase of Clostridioides difficile infections (CDIs).We retrospectively analyzed 80 consecutive patients, with SARS-CoV-2 pneumonia and CDI.The mean length of hospitalization was 19.63 days. The mean time of the onset of the digestive symptoms related to CDI was 5.16 days. Patients with an onset of the digestive symptoms from hospital admission have a significantly lower median length in hospital stay. The recovered patients present a statistically significant decreased median age. coronavirus disease 2019 (COVID-19) cured patients present CDI symptoms much earlier than the deceased patients, when comparing the median days before the occurrence of any digestive symptoms regarding CDI. Among the patients that prior to their hospitalization for COVID-19 were exposed to antibiotics, 54.7% presented CDI digestive symptoms during their hospitalization and 65.6% had a severe or critical COVID-19 form.Although the incidence of CDI in the pandemic is lower compared to the period before the pandemic, the severity of cases and the death rate increased. In the actual setting clinicians need to be aware of possible CDI and SARS-CoV-2 co-infection.  相似文献   

20.
Background: Cardiovascular injury with SARS-CoV-2 infection is well known. Several studies have outlined baseline characteristics in patients presenting with STEMI and SARS-CoV-2. Paucity in data exists in selective coronary involvement in patients with STEMI and SARS-CoV-2 during the COVID-19 pandemic. Methods: A systematic search and meta-analysis of studies meeting the inclusion and exclusion criteria obtained from MEDLINE, Scopus, and Cochrane databases was performed utilizing PRISMA criteria. The main outcome was likelihood of coronary artery involvement among patients with STEMI and SARS-CoV-2 versus without SARS-CoV-2. The primary adverse outcome measured was in-hospital mortality.Results: The final analysis included 5 observational studies with a total of 2,266 patients. There was no statistical significance in LM (OR 1.40; 95% CI: 0.68, 2.90), LAD (OR 1.09; 95% CI 0.83, 1.43), LCX (OR 1.17; 95% CI: 0.75, 1.85), or RCA (OR 0.59; 95% CI: 0.30, 1.17) disease among the 2 groups. LAD disease was the most prevalent coronary involvement among patients with STEMI and SARS-CoV-2 (49.6%). Higher in-hospital mortality was observed in the STEMI and SARS-CoV-2 group (OR 5.24; 95% CI: 3.63, 7.56). Conclusions: Our analysis demonstrated no statistical significance in selective coronary involvement in patients with STEMI and SARS-CoV-2 during the COVID-19 pandemic. The higher mortality among patients with SARS-CoV-2 and STEMI has been noted in prior studies with concerns being late presentation due to fear of infection, delayed care time, and poor resource allocation. Focus should be placed on identifying and managing comorbidities to reduce mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号