首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recent studies have attempted to formulate printable cementitious materials to meet the printing requirements, but these materials are designed to work with specific printing equipment and printing configurations. This paper aims to systematically develop and perform characterization of a commercially available ultra-high-performance concrete-class material (UHPC) modified to be printable. Four percentages of superplasticizer were used (100%, 94%, 88%, 82%) to adjust the UHPC mixture for 3D-printing requirements. A superplasticizer amount of 88% was considered adequate to meet the requirements. Several fresh and hardened properties of UHPC were measured experimentally: shape-retention ability and green strength were investigated in fresh state, and compressive and flexural strength were evaluated in three loading directions to evaluate the anisotropic effects. Furthermore, the strength of the interlayer bond was investigated. The UHPC developed in this study met the criteria for extrudability, buildability, and shape retention to ensure printability. In comparison with mold-cast UHPC, printed UHPC exhibited superior flexural performance (15–18%), but reduced compressive strength (32–56%). Finally, the results demonstrated that a commercially available UHPC-class material can be used for 3DCP, which possesses all necessary properties, both fresh and hardened.  相似文献   

2.
Nowadays, one very dynamic development of 3D printing technology is required in the construction industry. However, the full implementation of this technology requires the optimization of the entire process, starting from the design of printing ideas, and ending with the development and implementation of new materials. The article presents, for the first time, the development of hybrid materials based on a geopolymer or ordinary Portland cement matrix that can be used for various 3D concrete-printing methods. Raw materials used in the research were defined by particle size distribution, specific surface area, morphology by scanning electron microscopy, X-ray diffraction, thermal analysis, radioactivity tests, X-ray fluorescence, Fourier transform infrared spectroscopy and leaching. The geopolymers, concrete, and hybrid samples were described according to compressive strength, flexural strength, and abrasion resistance. The study also evaluates the influence of the liquid-to-solid ratio on the properties of geopolymers, based on fly ash (FA) and metakaolin (MK). Printing tests of the analyzed mixtures were also carried out and their suitability for various applications related to 3D printing technology was assessed. Geopolymers and hybrids based on a geopolymer matrix with the addition of 5% cement resulted in the final materials behaving similarly to a non-Newtonian fluid. Without additional treatments, this type of material can be successfully used to fill the molds. The hybrid materials based on cement with a 5% addition of geopolymer, based on both FA and MK, enabled precise detail printing.  相似文献   

3.
Metakaolin was used as a raw material for the preparation of geopolymers, where two types of alkali activators (Na2SiO3 + NaOH and Na2SiO3 + NaOH) were used to prepare metakaolin geopolymers at room temperature. The mechanical properties and microstructures of the metakaolin geopolymers were analyzed. A three-factor, four-level orthogonal test was designed to investigate the mechanical properties of the metakaolin geopolymer with different ratios. The compressive and flexural strength of different specimens were tested for 7 and 28 days. Both the Na-based and K-based geopolymers exhibited excellent mechanical properties, but the K-based geopolymer had better mechanical properties. The optimal compressive strength and flexural strength of the K-based geopolymer were 73.93 MPa and 9.37 MPa, respectively. The 28-day optimal compressive strength of the Na-based polymer was 65.79 MPa, and the flexural strength was 8.71 MPa. SEM, XRD, and FTIR analyses showed that the mechanical properties of the geopolymers could be greatly improved by using a higher alkaline solution concentration, proper Na2SiO3/MOH mass ratio, and proper mass ratio of alkali exciter to metakaolin. Amorphous silicoaluminate was more favorable for the dissolution of silicon–alumina raw materials, promoted the formation of an amorphous silicoaluminate gel, and caused the internal structure of the geopolymer to be more compact.  相似文献   

4.
In recent years, 3D concrete printing technology has been developing dynamically. Intensive research is still being carried out on the composition of the materials dedicated to innovative 3D printing solutions. Here, for the first time, concrete-geopolymer hybrids produced with 3D printing technology and dedicated environmentally friendly building construction are presented. The concrete-geopolymer hybrids consisting of 95% concrete and 5% geopolymer based on fly ash or metakaolin were compared to standard concrete. Moreover, 3D printed samples were compared with the samples of the same composition but prepared by the conventional method of casting into molds. The phase composition, water leachability, compressive, and flexural strength in the parallel and perpendicular directions to the printing direction, and fire resistance followed by compressive strength were evaluated. Concrete-geopolymer hybrids were shown to contain a lower content of hazardous compounds in leaches than concrete samples. The concentration of toxic metals did not exceed the limit values indicated in the Council Decision 2003/33/EC; therefore, the materials were classified as environmentally neutral. The different forms of Si/Al in fly ash and metakaolin resulted in the various potentials for geopolymerization processes, and finally influenced the densification of the hybrids and the potential for immobilization of toxic elements. Although the compressive strength of concrete was approximately 40% higher for cast samples than for 3D printed ones, for the hybrids, the trend was the opposite. The addition of fly ash to concrete resulted in a 20% higher compressive strength compared to an analogous hybrid containing the addition of metakaolin. The compressive strength was 7–10% higher provided the samples were tested in the parallel direction to the Z-axis of the printout. The sample compressive strength of 24–43 MPa decreased to 8–19 MPa after the fire resistance tests as a result of moisture evaporation, weight loss, thermal deformation, and crack development. Importantly, the residual compressive strength of the hybrid samples was 1.5- to 2- fold higher than the concrete samples. Therefore, it can be concluded that the addition of geopolymer to the concrete improved the fire resistance of the samples.  相似文献   

5.
Geopolymer (GP) has been applied as an environmentally-friendly construction material in recent years. Many pozzolanic wastes, such as fly ash (FA) and bottom ash, are commonly used as source materials for synthesizing geopolymer. Nonetheless, many non-pozzolanic wastes are often applied in the field of civil engineering, including waste iron powder (WIP). WIPs are massively produced as by-products from iron and steel industries, and the production rate increases every year. As an iron-based material, WIP has properties of heat induction and restoration, which can enhance the heat curing process of GP. Therefore, this study aimed to utilize WIP in high-calcium FA geopolymer to develop a new type of geopolymer and examine its properties compared to the conventional geopolymer. Scanning electron microscopy and X-ray diffraction were performed on the geopolymers. Mechanical properties, including compressive strength and flexural strength, were also determined. In addition, setting time and temperature monitoring during the heat curing process were carried out. The results indicated that the addition of WIP in FA geopolymer decreased the compressive strength, owing to the formation of tetrahydroxoferrate (II) sodium or Na2[Fe(OH)4]. However, a significant increase in the flexural strength of GP with WIP addition was detected. A flexural strength of 8.5 MPa was achieved by a 28-day sample with 20% of WIP addition, nearly three times higher than that of control.  相似文献   

6.
This study proposes test methods for assessing the printability of concrete materials for Additive Manufacturing. The printability of concrete is divided into three main aspects: flowability, setting time, and buildability. These properties are considered to monitor the critical quality of 3DCP and to ensure a successful print. Flowability is evaluated through a rheometer test, where the evolution of shear yield strength is monitored at a constant rate (rpm), similar to the printer setup. Flowability limits were set based on the user-defined maximum thickness of a printed layer and the onset of gaps/cracks during printing. Setting time is evaluated through an ultrasonic wave pulse velocity test (UPV), where the first inflection point of the evolution of the UPV graph corresponds to the setting time of the concrete specimen. The results from this continuous non-destructive test were found to correlate with the results from the discrete destructive ASTM C-191 test for measuring setting time with a maximum difference of 5% between both sets of values. Lastly, buildability was evaluated through the measurement of the early-age compressive strength of concrete, and a correlation with the UPV results obtained a predictive model that can be used in real-time to non-destructively assess the material buildability. This predictive model had a maximum percentage difference of 13% with the measured values. The outcome of this study is a set of tests to evaluate the properties of 3D printable concrete (3DP) material and provide a basis for a framework to benchmark and design materials for additive manufacturing.  相似文献   

7.
The shape retention ability of materials deposited layer by layer is called buildability, which is an indispensable performance parameter for successful 3D printable cementitious materials (3DPC). This study investigated the synergistic effect of nano-clay (NC) and thixotropic superplasticizer (TP) on the buildability of 3DPC. The rheological parameters and static yield stress are characterized by the rheology testing, the green strength is measured by a self-made pressure tester, and the fluidity is tested by flow table. Results indicate that NC significantly increases the growth rate of static yield stress and green strength and TP can improve the initial rheological parameters and fluidity, which ensures the initial stiffness and workability of printed materials. The mixture with 7‰ (by mass of cementitious materials) NC and 3‰ TP obtains excellent extrudability and buildability, due to the synergistic effect of NC and TP. Based on the rheology testing and specific printing experiments, a printable window with 1.0 Pa/s~2.0 Pa/s of the rate of static yield stress evolution over time (RST) or 170 mm~200 mm of fluidity is established. This work provides theorical support for the control and evaluation of rheological properties in 3DPC.  相似文献   

8.
Research and technological advancements in 3D concrete printing (3DCP) have led to the idea of applying it to offshore construction. The effect of gravity is reduced underwater, which can have a positive effect on 3DCP. For basic verification of this idea, this study printed and additively manufactured specimens with the same mortar mixture in air and underwater and evaluated properties in the fresh state and the hardened state. The mechanical properties were evaluated using the specimens produced by direct casting to the mold and specimens produced by extracting from the additive part through coring and cutting. The results of the experiment show that underwater 3D printing required a greater amount of printing output than in-air 3D printing for a good print quality, and buildability was improved underwater compared to that in air. In the case of the specimen layered underwater, the density and compressive strength decreased compared to the specimen layered in air. Because there are almost no effects of moisture evaporation and bleeding in water, the interlayer bond strength of the specimen printed underwater was somewhat larger than that printed in air, while there was no effect of the deposition time interval underwater.  相似文献   

9.
The effect of air-entraining admixture (AEA) on the fresh and rheological behavior of mortars designed to be used in 3D printers was investigated. Blast furnace slag, calcined kaolin clay, polypropylene fiber, and various chemical additives were used in the mortar mixtures produced with Super White Cement (CEM I 52.5 R) and quartz sand. In addition to unit weight, air content, and compressive strength tests, in order to determine the stability of 3D printable mortar elements created by extruding layer by layer without any deformation, extrudability, buildability, and open time tests were applied. Fresh and rheological properties of 3D printable mortars were also determined. It was concluded that the addition of AEA to the mortars decreased the unit weight, viscosity, yield, and compressive strength, but increased the air content, spread diameter, initial setting time, and thixotropy of 3D printable mortar. It is recommended to develop a unique chemical admixture for 3D printable mortars, considering the active ingredients of the chemical additives that affect fresh and rheological performance of mortar such as superplasticizer, viscosity modifying, and cement hydration control.  相似文献   

10.
Similar to conventional cast concrete, printable materials require reinforcement to counteract their low tensile strength. However, as traditional reinforcement strategies are not commonly used in 3D print applications, fiber reinforcement can serve as an alternative. This study aims to assess the influence of different polypropylene fiber lengths (3 and 6 mm, denoted as M3 and M6, respectively) and dosages (0.1 and 0.3% volume fraction) on the workability, pore structure, mechanical and shrinkage behavior of 3D printable cementitious materials. Fresh state observations revealed that the addition of a higher fiber volume decreased the workability of the material, irrespective of the fiber length as a result of the lower water film thickness (WFT). In hardened state, a marginal increase in total porosity could be observed when adding fibers to the mix composition. In addition, the flexural strength was found to increase with the addition of fibers, while no significant difference was observed in compressive strength. The increase in flexural strength was more pronounced in the case of longer-sized M6 fibers. Finally, the total drying shrinkage behavior was evaluated using mold-cast prisms. The addition of M6 fibers showed no beneficial effect in reducing total free shrinkage, while a reduction in total free shrinkage was observed when using M3 fibers.  相似文献   

11.
Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0–3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0–0.1) fire propagation index.  相似文献   

12.
Concrete 3D printing is a novel construction method that can bring new horizons to the construction industry. However, there are still many challenges that limit its capabilities. Despite the huge research efforts, to date, there are still no standardized acceptance criteria and guidelines for the evaluation of printing concrete. Therefore, the main objective of this research was to develop 3D printing mixes with different aggregate-to-binder (a/b) ratios (1.2, 1.5, and 1.8) and evaluate it in terms of its fresh printing properties, which include the workability, extrudability, setting time, open time, and buildability. The compressive strengths of cast and printed specimens were also tested to determine the effect of the layering process. The workability was evaluated using commonly used devices in the construction industry (slump and flow table test) and was monitored over time along with the penetration test to indicate the structuration rate of concrete. From the experimental results and observations, the flow test resulted in the best indication of the structuration rate (thixotropy) of concrete, followed by the penetration and slump tests. The a/b ratio affected all the investigated properties of the printing concrete. Higher a/b ratios resulted in increased structuration rate, buildability, and compressive strength of cast specimens. However, for printed specimens, the compressive strength decreased with the increase in a/b ratio due to increased thixotropy. Therefore, from the results of the present investigation, it can be concluded that high a/b ratios (>1.5) are not desirable for printing concrete.  相似文献   

13.
This study aimed to determine the effects of design parameters, including the liquid/solid ratio (L/S), Na2SiO3/NaOH weight ratio, and curing temperature, on class F fly ash-based geopolymer composites. For this purpose, two disparate sources of fly ash were supplied from Çatalağzı (FA) and İsken Sugözü (FB) Thermal Power Plants in Turkey. Two different L/S ratios of 0.2 and 0.4 were used. The Na2SiO3/NaOH ratios in the alkaline solutions were 1, 1.5, 2, 2.5, and 3 by weight for each type of geopolymer mixture. Then, 40 different mixes were cured at two specific temperatures (70 °C and 100 °C) for 24 h and then preserved at room temperature until testing. Thereafter, the physical water absorption properties, apparent porosity, and bulk density were examined at 28 days on the hardened mortars. Additionally, compressive and flexural tests were applied to the geopolymers at 7, 28, and 90 days. It was found that the highest compressive strength was 60.1 MPa for the geopolymer manufactured with an L/S of 0.2 and Na2SiO3/NaOH ratio of 2. Moreover, the best thermal curing temperature for obtaining optimal strength characteristics was 100 °C for the FB.  相似文献   

14.
Three-dimensional concrete printing (3DCP) is an innovative technology that can lead to breakthrough modifications of production processes in the construction industry. The paper presents for the first time the possibility of 3D printing concrete–geopolymer hybrids reinforced with aramid roving. Reference concrete samples and concrete–geopolymer hybrids composed of 95% concrete and 5% geopolymer based on fly ash or metakaolin were produced. The properties of the samples without reinforcement and samples with 0.5% (wt.) aramid roving were compared. The frost resistance tests, UV radiation resistance, and thermal conductivity were evaluated for samples that were 3D-printed or produced by the conventional casting method. Compressive strength tests were carried out for each sample exposed to freeze–thaw cycles and UV radiation. It was observed that after the frost resistance test, the samples produced by the 3D printing technology had a minor decrease in strength properties compared to the samples made by casting. Moreover, the thermal conductivity coefficient was higher for concrete–geopolymer hybrids than concrete reinforced with aramid roving.  相似文献   

15.
3D printing (3DP) of cementitious materials shows several advantages compared to conventional construction methods, but it requires specific fresh-state properties. Nanomaterials have been used in cement-based materials to achieve specific fresh and hardened properties, being potential candidates for 3DP applications. However, there are no reports on using TiO2 nanoparticles (nano-TiO2) in 3DP cementitious composites. Thus, the current work aims to assess the effect of nano-TiO2 on the fresh performance of 3DP cementitious materials. For this purpose, nano-TiO2 was incorporated in pastes and mortars from 0 to 1.5 wt.%. Time-resolved hydration (in situ XRD) and rheological and printing-related properties (buildability and printability) were evaluated. Results showed that nano-TiO2 particles enhanced the cement hydration kinetics, leading to further ettringite formation up to 140 min compared to plain cement paste. Rheological measurements showed that the nano-TiO2 incorporation progressively increased the static and dynamic stress, viscosity, and structuration rate of pastes. Furthermore, nano-TiO2 improved the buildability of the composites, progressively increasing the maximum number of successive layers printed before failure from 11 (0 wt.% TiO2) to 64 (1.5 wt.% TiO2). By contrast, the nano-TiO2 addition reduced the printability (i.e., the printable period during which the sample was able to be molded by the 3D-printing process) from 140 min (0% TiO2) to 90 min (1.5% TiO2). Thus, incorporating “high” nano-TiO2 contents (e.g., >1 wt.%) was beneficial for buildability but would require a quicker 3DP process. The adoption of nano-TiO2 contents of around 0.75–1.00% may be an interesting choice since it reduced the printability of paste by 30 min compared with the control mix but allowed for printing 24 layers (118% higher than plain mortar).  相似文献   

16.
The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.  相似文献   

17.
Over the past decade, 3D printing in the construction industry has received worldwide attention and developed rapidly. The research and development of cement and concrete products has also become quite well-established over the years, while other sustainable materials receive considerably lower attention in comparison. This study aims to investigate the influence of the two most commonly used sustainable cementitious materials i.e., silica fume and limestone powder, on printability, thermal and mechanical properties of fly ash–Portland cement blends. Ternary blends containing Portland cement, fly ash and silica fume or limestone powder are prepared, whereas phase change material (PCM) is introduced to improve the thermal behavior. Based on the rheological properties and concurrent 3D concrete printing, improved buildability of the modified mixtures is linked to their static yield stress. Anisotropic mechanical properties are observed for 3D printed specimens, while cast specimens exhibit a maximum 41% higher compressive strength due to better material compaction. It is clear from the results that addition of silica fume and limestone powder ranged from 5% to 10%, reducing the anisotropic mechanical properties (maximum 71% and 68% reduction in anisotropic factor, respectively) in the printed specimens. The PCM addition ranged from 5% to 10% and improved thermal performance of the mixtures, as measured by a decrease in thermal conductivity (9% and 13%) and an increase in volumetric heat capacity (9% and 10%), respectively. However, the PCM-containing mixtures show around 29% reduction in compressive strength, compared to the control specimen, which necessitates new material design considering matrix strengthening methods.  相似文献   

18.
Geopolymers have been considered a sustainable alternative to ordinary Portland cement (CEM I) for its lower embodied carbon and ability to make use of industrial by-products. Additionally, its excellent engineering properties of high strength, low permeability, good chemical resistance, and excellent fire resistance also strike a chord in the minds of researchers. The goal of this study is to clarify the effect of calcium sources on the mechanical properties and microstructures of the geopolymers. CEM I was chosen as the sole calcium source, while metakaolin was used as the source material. Five distinct geopolymers were prepared, having various ratio of CEM I: 0%, 5%, 10%, 20%, and 30%. The alkali-activator was a mixture of 12 M sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), utilizing compressive strength and flexural strength to evaluate the changes of the geopolymers’ mechanical properties. SEM, XRD, and FTIR were used to examine microscopic features, evaluate internal morphology, and analyze changes in components of the geopolymers containing different amounts of CEM I. The experimental results indicated that the optimal incorporation of CEM I was 5%. Under this dosage, the compressive strength and flexural strength of the geopolymers can reach 71.1 MPa and 6.75 MPa, respectively. With the incorporation of CEM I, the heat released by cement hydration can accelerate the geopolymerization reaction between silica-alumina materials and alkaline solutions. Additionally, the coexistence of N-A-S-H gel from components of an aluminosilicate mix and C-S-H gel from the CEM I promoted a more densified microstructure of the geopolymers and improved the geopolymer’s strength. However, as the amount of CEM I in the mixture increased, the geopolymer matrix was unable to provide enough water for the CEM I to hydrate, which prevented excessive CEM I from forming hydration products, weakening the workability of the matrix and eventually hindering the development of geopolymer strength.  相似文献   

19.
The development of geopolymers is in line with the requirements of sustainable development. Creating a new type of material from various industrial and bio-based wastes and by-products can lead to reduced energy consumption, reduced waste generation, reduced global CO2 emissions, as well as reduced resource extraction of natural resources. In this study, geopolymer composites based on class F fly ash with the addition of fine quartz sand and ground walnut shells used as a substitute for sand were examined. The study focused on investigating the effects of different weight percentages of ground walnut shells and quartz sand on the density and strength properties, including compressive and flexural strength, thermal conductivity, efflorescence formation, and water absorption of the fly ash-based geopolymer composites. The microstructure of the studied geopolymers was also analyzed using a scanning electron microscope (SEM). It was observed that the addition of ground walnut shells contributes to the decrease in density and mechanical properties, increase in absorption properties, and decrease in porosity of fly ash-based geopolymers. Furthermore, the addition of ground walnut shells allows for a significant reduction in efflorescence on the surface of the tested geopolymer composites. Moreover, partial or complete replacement of sand by ground walnut shells in geopolymer composites based on fly ash allows for a significant reduction in their thermal conductivity, which makes it possible to use these composites as insulation materials.  相似文献   

20.
This study examines foamed geopolymer composites based on fly ash from the Skawina coal-fired power plant in Poland. The paper presents the effect of adding 3% and 5% by weight of glass wool waste on selected properties of foamed geopolymers. The scope of the tests carried out included density measurements, compressive and bending strength tests, measurements of the heat conduction coefficient, and the results of measurements of changes in thermal radiation in samples subjected to a temperature of 800 °C. The obtained results indicate that glass wool waste can be successfully used to lower the density and heat conduction coefficient of foamed geopolymer composites with a fly ash matrix. In addition, the results of changes in thermal radiation in the samples subjected to the temperature of 800 °C showed a positive effect of the addition of glass wool waste. Moreover, the introduction of the addition of glass wool waste made it possible to increase the compressive strength of the examined foamed geopolymers. For the material modified with 3% by weight of mineral wool, the increase in compressive strength was about 10%, and the increase in fibers in the amount of 5% by weight resulted in an increase of 20% concerning the base material. The obtained results seem promising for future applications. Such materials can be used in technical constructions as thermal insulation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号