首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared different methods for assigning confidence intervals to the analysis of variance estimator of the intraclass correlation coefficient (rho). The context of the comparison was the use of rho to estimate the variance inflation factor when planning cluster randomized trials. The methods were compared using Monte Carlo simulations of unbalanced clustered data and data from a cluster randomized trial of an intervention to improve the management of asthma in a general practice setting. The coverage and precision of the intervals were compared for data with different numbers of clusters, mean numbers of subjects per cluster and underlying values of rho. The performance of the methods was also compared for data with Normal and non-Normally distributed cluster specific effects. Results of the simulations showed that methods based upon the variance ratio statistic provided greater coverage levels than those based upon large sample approximations to the standard error of rho. Searle's method provided close to nominal coverage for data with Normally distributed random effects. Adjusted versions of Searle's method to allow for lack of balance in the data generally did not improve upon it either in terms of coverage or precision. Analyses of the trial data, however, showed that limits provided by Thomas and Hultquist's method may differ from those of the other variance ratio statistic methods when the arithmetic mean differs markedly from the harmonic mean cluster size. The simulation results demonstrated that marked non-Normality in the cluster level random effects compromised the performance of all methods. Confidence intervals for the methods were generally wide relative to the underlying size of rho suggesting that there may be great uncertainty associated with sample size calculations for cluster trials where large clusters are randomized. Data from cluster based studies with sample sizes much larger than those typical of cluster randomized trials are required to estimate rho with a reasonable degree of precision.  相似文献   

2.
Cluster randomized and multicentre trials evaluate the effect of a treatment on persons nested within clusters, for instance, patients within clinics or pupils within schools. Optimal sample sizes at the cluster (centre) and person level have been derived under the restrictive assumption of equal sample sizes per cluster. This paper addresses the relative efficiency of unequal versus equal cluster sizes in case of cluster randomization and person randomization within clusters. Starting from maximum likelihood parameter estimation, the relative efficiency is investigated numerically for a range of cluster size distributions. An approximate formula is presented for computing the relative efficiency as a function of the mean and variance of cluster size and the intraclass correlation, which can be used for adjusting the sample size. The accuracy of this formula is checked against the numerical results and found to be quite good. It is concluded that the loss of efficiency due to variation of cluster sizes rarely exceeds 10 per cent and can be compensated by sampling 11 per cent more clusters.  相似文献   

3.
BACKGROUND: Cluster randomized trials are increasingly popular. In many of these trials, cluster sizes are unequal. This can affect trial power, but standard sample size formulae for these trials ignore this. Previous studies addressing this issue have mostly focused on continuous outcomes or methods that are sometimes difficult to use in practice. METHODS: We show how a simple formula can be used to judge the possible effect of unequal cluster sizes for various types of analyses and both continuous and binary outcomes. We explore the practical estimation of the coefficient of variation of cluster size required in this formula and demonstrate the formula's performance for a hypothetical but typical trial randomizing UK general practices. RESULTS: The simple formula provides a good estimate of sample size requirements for trials analysed using cluster-level analyses weighting by cluster size and a conservative estimate for other types of analyses. For trials randomizing UK general practices the coefficient of variation of cluster size depends on variation in practice list size, variation in incidence or prevalence of the medical condition under examination, and practice and patient recruitment strategies, and for many trials is expected to be approximately 0.65. Individual-level analyses can be noticeably more efficient than some cluster-level analyses in this context. CONCLUSIONS: When the coefficient of variation is <0.23, the effect of adjustment for variable cluster size on sample size is negligible. Most trials randomizing UK general practices and many other cluster randomized trials should account for variable cluster size in their sample size calculations.  相似文献   

4.
ObjectiveSimple guidelines for calculating efficient sample sizes in cluster randomized trials with unknown intraclass correlation (ICC) and varying cluster sizes.MethodsA simple equation is given for the optimal number of clusters and sample size per cluster. Here, optimal means maximizing power for a given budget or minimizing total cost for a given power. The problems of cluster size variation and specification of the ICC of the outcome are solved in a simple yet efficient way.ResultsThe optimal number of clusters goes up, and the optimal sample size per cluster goes down as the ICC goes up or as the cluster-to-person cost ratio goes down. The available budget, desired power, and effect size only affect the number of clusters and not the sample size per cluster, which is between 7 and 70 for a wide range of cost ratios and ICCs. Power loss because of cluster size variation is compensated by sampling 10% more clusters. The optimal design for the ICC halfway the range of realistic ICC values is a good choice for the first stage of a two-stage design. The second stage is needed only if the first stage shows the ICC to be higher than assumed.ConclusionEfficient sample sizes for cluster randomized trials are easily computed, provided the cost per cluster and cost per person are specified.  相似文献   

5.
The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross‐section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Background: Cluster randomized trials occur when groups or clusters of individuals, rather than the individuals themselves, are randomized to intervention and control groups and outcomes are measured on individuals within those clusters. Within primary care, between 1997 and 2000, there has been a virtual doubling in the number of published cluster randomized trials. A recent systematic review, specifically within primary care, found study quality to be both generally lower than that reported elsewhere and not to have shown any recent quality improvement. Objective: To discuss the design, conduct and analysis of cluster randomized trials within primary care in terms of the appropriate expertise required, potential bias, ethical considerations and expense. Discussion: Compared with trials that involve the randomization of individual participants, cluster randomized trials are more complex to design and analyse and, for a given sample size, have decreased power and a broadening of confidence intervals. Cluster randomized trials are specifically prone to potential bias at two levels—the cluster and individual. Regarding the former, it is recommended that cluster allocation be undertaken by a party independent to the research team and careful consideration be given to ensure minimal cluster attrition. Bias at the individual level can be overcome by identifying trial participants before randomization and at this time obtaining consent for intervention, data collection or both. A unique ethical aspect to cluster randomized trials is that cluster leaders may consent to the trial on behalf of potential cluster members. Additional costs of cluster randomized trials include the increased number of patients required, the complexity in their design and conduct and, usually, the need to recruit clusters de novo.

Conclusion: Cluster randomized trials are a powerful and increasingly popular research tool. They are uniquely placed for the conduct of research within primary-care clusters where intracluster contamination can occur. Associated methodological issues are straightforward and surmountable and just need careful consideration and management.  相似文献   

7.
Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster level and individual level variance should be known before the study starts, but this is often not the case. We suggest using an internal pilot study design to address this problem of unknown variances. A pilot can be useful to re‐estimate the variances and re‐calculate the sample size during the trial. Using simulated data, it is shown that an initially low or high power can be adjusted using an internal pilot with the type I error rate remaining within an acceptable range. The intracluster correlation coefficient can be re‐estimated with more precision, which has a positive effect on the sample size. We conclude that an internal pilot study design may be used if active recruitment is feasible within a limited number of clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The statistical issues in clinical trials where clusters, communities or groups rather than individuals are randomized are often not fully appreciated. In this paper we discuss the design and analysis of trials in which pairs of clusters are randomized in the context of one recent trial, the British Family Heart Study. Both sample size calculations and the analysis strategy need to take account of the between-cluster component of variance. The analysis can be considered as a random effects meta-analysis across cluster pairs, and can usefully be presented as such. Techniques developed in the context of meta-analysis can then be used in the analysis, for example using a profile likelihood method to derive a confidence interval for the overall treatment effect which takes into account the variability in the estimate of the between-cluster variance. The methods presented here are contrasted with previously published methods for cluster randomized trials. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
The intraclass correlation coefficient rho plays a key role in the design of cluster randomized trials. Estimates of rho obtained from previous cluster trials and used to inform sample size calculation in planned trials may be imprecise due to the typically small numbers of clusters in such studies. It may be useful to quantify this imprecision. This study used simulation to compare different methods for assigning bootstrap confidence intervals to rho for continuous outcomes from a balanced design. Data were simulated for combinations of numbers of clusters (10, 30, 50), intraclass correlation coefficients (0.001, 0.01, 0.05, 0.3) and outcome distributions (normal, non-normal continuous). The basic, bootstrap-t, percentile, bias corrected and bias corrected accelerated bootstrap intervals were compared with new methods using the basic and bootstrap-t intervals applied to a variance stabilizing transformation of rho. The standard bootstrap methods provided coverage levels for 95 per cent intervals that were markedly lower than the nominal level for data sets with only 10 clusters, and only provided close to 95 per cent coverage when there were 50 clusters. Application of the bootstrap-t method to the variance stabilizing transformation of rho improved upon the performance of the standard bootstrap methods, providing close to nominal coverage.  相似文献   

10.
Cluster randomized trials evaluate the effect of a treatment on persons nested within clusters, where treatment is randomly assigned to clusters. Current equations for the optimal sample size at the cluster and person level assume that the outcome variances and/or the study costs are known and homogeneous between treatment arms. This paper presents efficient yet robust designs for cluster randomized trials with treatment‐dependent costs and treatment‐dependent unknown variances, and compares these with 2 practical designs. First, the maximin design (MMD) is derived, which maximizes the minimum efficiency (minimizes the maximum sampling variance) of the treatment effect estimator over a range of treatment‐to‐control variance ratios. The MMD is then compared with the optimal design for homogeneous variances and costs (balanced design), and with that for homogeneous variances and treatment‐dependent costs (cost‐considered design). The results show that the balanced design is the MMD if the treatment‐to control cost ratio is the same at both design levels (cluster, person) and within the range for the treatment‐to‐control variance ratio. It still is highly efficient and better than the cost‐considered design if the cost ratio is within the range for the squared variance ratio. Outside that range, the cost‐considered design is better and highly efficient, but it is not the MMD. An example shows sample size calculation for the MMD, and the computer code (SPSS and R) is provided as supplementary material. The MMD is recommended for trial planning if the study costs are treatment‐dependent and homogeneity of variances cannot be assumed.  相似文献   

11.
In multilevel populations, there are two types of population means of an outcome variable ie, the average of all individual outcomes ignoring cluster membership and the average of cluster-specific means. To estimate the first mean, individuals can be sampled directly with simple random sampling or with two-stage sampling (TSS), that is, sampling clusters first, and then individuals within the sampled clusters. When cluster size varies in the population, three TSS schemes can be considered, ie, sampling clusters with probability proportional to cluster size and then sampling the same number of individuals per cluster; sampling clusters with equal probability and then sampling the same percentage of individuals per cluster; and sampling clusters with equal probability and then sampling the same number of individuals per cluster. Unbiased estimation of the average of all individual outcomes is discussed under each sampling scheme assuming cluster size to be informative. Furthermore, the three TSS schemes are compared in terms of efficiency with each other and with simple random sampling under the constraint of a fixed total sample size. The relative efficiency of the sampling schemes is shown to vary across different cluster size distributions. However, sampling clusters with probability proportional to size is the most efficient TSS scheme for many cluster size distributions. Model-based and design-based inference are compared and are shown to give similar results. The results are applied to the distribution of high school size in Italy and the distribution of patient list size for general practices in England.  相似文献   

12.
Three-level cluster randomized trials (CRTs) are increasingly used in implementation science, where 2fold-nested-correlated data arise. For example, interventions are randomly assigned to practices, and providers within the same practice who provide care to participants are trained with the assigned intervention. Teerenstra et al proposed a nested exchangeable correlation structure that accounts for two levels of clustering within the generalized estimating equations (GEE) approach. In this article, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in three-level CRTs. Given the nested exchangeable correlation structure, we derive the asymptotic variances of the estimator of the treatment effect for different types of outcomes. When the number of clusters is small, researchers have proposed bias-corrected sandwich estimators to improve performance in two-level CRTs. We extend the variances of two bias-corrected sandwich estimators to three-level CRTs. The equal provider and practice sizes were assumed to calculate number of practices for simplicity. However, they are not guaranteed in practice. Relative efficiency (RE) is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal provider and practice sizes. The expressions of REs are obtained from both asymptotic variance estimation and bias-corrected sandwich estimators. Their performances are evaluated for different scenarios of provider and practice size distributions through simulation studies. Finally, a percentage increase in the number of practices is proposed due to efficiency loss from unequal provider and/or practice sizes.  相似文献   

13.
The power to detect a treatment effect in cluster randomized trials can be increased by increasing the number of clusters. An alternative is to include covariates into the regression model that relates treatment condition to outcome. In this paper, formulae are derived in order to evaluate both strategies on basis of their costs. It is shown that the strategy that uses covariates is more cost-efficient in detecting a treatment effect when the costs to measure these covariates are small and the correlation between the covariates and outcome is sufficiently large. The minimum required correlation depends on the cluster size, and the costs to recruit a cluster and to measure the covariate, relative to the costs to recruit a person. Measuring a covariate that varies at the person level only is recommended when cluster sizes are small and the costs to recruit and measure a cluster are large. Measuring a cluster level covariate is recommended when cluster sizes are large and the costs to recruit and measure a cluster are small. An illustrative example shows the use of the formulae in a practical setting.  相似文献   

14.
We used theoretical and simulation‐based approaches to study Type I error rates for one‐stage and two‐stage analytic methods for cluster‐randomized designs. The one‐stage approach uses the observed data as outcomes and accounts for within‐cluster correlation using a general linear mixed model. The two‐stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one‐stage and two‐stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one‐stage and six two‐stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two‐stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one‐stage model with Kenward–Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one‐stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster‐randomized trials, the Kenward–Roger method is the preferred one‐stage approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second‐order penalized quasi‐likelihood estimation (PQL). Starting from first‐order marginal quasi‐likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second‐order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed‐form formulas for sample size calculation are based on first‐order MQL, planning a trial also requires a conversion factor to obtain the variance of the second‐order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Girardeau, Ravaud and Donner in 2008 presented a formula for sample size calculations for cluster randomised crossover trials, when the intracluster correlation coefficient, interperiod correlation coefficient and mean cluster size are specified in advance. However, in many randomised trials, the number of clusters is constrained in some way, but the mean cluster size is not. We present a version of the Girardeau formula for sample size calculations for cluster randomised crossover trials when the number of clusters is fixed. Formulae are given for the minimum number of clusters, the maximum cluster size and the relationship between the correlation coefficients when there are constraints on both the number of clusters and the cluster size. Our version of the formula may aid the efficient planning and design of cluster randomised crossover trials.  相似文献   

17.
We used simulation to compare accuracy of estimation and confidence interval coverage of several methods for analysing binary outcomes from cluster randomized trials. The following methods were used to estimate the population-averaged intervention effect on the log-odds scale: marginal logistic regression models using generalized estimating equations with information sandwich estimates of standard error (GEE); unweighted cluster-level mean difference (CL/U); weighted cluster-level mean difference (CL/W) and cluster-level random effects linear regression (CL/RE). Methods were compared across trials simulated with different numbers of clusters per trial arm, numbers of subjects per cluster, intraclass correlation coefficients (rho), and intervention versus control arm proportions. Two thousand data sets were generated for each combination of design parameter values. The results showed that the GEE method has generally acceptable properties, including close to nominal levels of confidence interval coverage, when a simple adjustment is made for data with relatively few clusters. CL/U and CL/W have good properties for trials where the number of subjects per cluster is sufficiently large and rho is sufficiently small. CL/RE also has good properties in this situation provided a t-distribution multiplier is used for confidence interval calculation in studies with small numbers of clusters. For studies where the number of subjects per cluster is small and rho is large all cluster-level methods may perform poorly for studies with between 10 and 50 clusters per trial arm.  相似文献   

18.
Cluster randomized trials (CRTs) were originally proposed for use when randomization at the subject level is practically infeasible or may lead to a severe estimation bias of the treatment effect. However, recruiting an additional cluster costs more than enrolling an additional subject in an individually randomized trial. Under budget constraints, researchers have proposed the optimal sample sizes in two-level CRTs. CRTs may have a three-level structure, in which two levels of clustering should be considered. In this paper, we propose optimal designs in three-level CRTs with a binary outcome, assuming a nested exchangeable correlation structure in generalized estimating equation models. We provide the variance of estimators of three commonly used measures: risk difference, risk ratio, and odds ratio. For a given sampling budget, we discuss how many clusters and how many subjects per cluster are necessary to minimize the variance of each measure estimator. For known association parameters, the locally optimal design is proposed. When association parameters are unknown but within predetermined ranges, the MaxiMin design is proposed to maximize the minimum of relative efficiency over the possible ranges, that is, to minimize the risk of the worst scenario.  相似文献   

19.
Stratified randomized designs are popular in cluster randomized trials (CRTs) because they increase the chance of the intervention groups being well balanced in terms of identified prognostic factors at baseline and may increase statistical power. The objective of this paper is to assess the gains in power obtained by stratifying randomization by cluster size, when cluster size is associated with an important cluster level factor which is otherwise unaccounted for in data analysis. A simulation study was carried out using a CRT where UK general practices were the randomized units as a template. The results show that when cluster size is strongly associated with a cluster level factor which is predictive of outcome, the stratified randomized design has superior power results to the completely randomized design and that the superiority is related to the number of clusters.  相似文献   

20.
Stratified cluster randomization trials (CRTs) have been frequently employed in clinical and healthcare research. Comparing with simple randomized CRTs, stratified CRTs reduce the imbalance of baseline prognostic factors among different intervention groups. Due to the popularity, there has been a growing interest in methodological development on sample size estimation and power analysis for stratified CRTs; however, existing work mostly assumes equal cluster size within each stratum and uses multilevel models. Clusters are often naturally formed with random sizes in CRTs. With varying cluster size, commonly used ad hoc approaches ignore the variability in cluster size, which may underestimate (overestimate) the required number of clusters for each group per stratum and lead to underpowered (overpowered) clinical trials. We propose closed-form sample size formulas for estimating the required total number of subjects and for estimating the number of clusters for each group per stratum, based on Cochran-Mantel-Haenszel statistic for stratified cluster randomization design with binary outcomes, accounting for both clustering and varying cluster size. We investigate the impact of various design parameters on the relative change in the required number of clusters for each group per stratum due to varying cluster size. Simulation studies are conducted to evaluate the finite-sample performance of the proposed sample size method. A real application example of a pragmatic stratified CRT of a triad of chronic kidney disease, diabetes, and hypertension is presented for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号