首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Studies on homeostatic aspects of sleep regulation have been focussed upon non‐rapid eye movement (NREM) sleep, and direct comparisons with regional changes in rapid eye movement (REM) sleep are sparse. To this end, evaluation of electroencephalogram (EEG) changes in recovery sleep after extended waking is the classical approach for increasing homeostatic need. Here, we studied a large sample of 40 healthy subjects, considering a full‐scalp EEG topography during baseline (BSL) and recovery sleep following 40 h of wakefulness (REC). In NREM sleep, the statistical maps of REC versus BSL differences revealed significant fronto‐central increases of power from 0.5 to 11 Hz and decreases from 13 to 15 Hz. In REM sleep, REC versus BSL differences pointed to significant fronto‐central increases in the 0.5–7 Hz and decreases in the 8–11 Hz bands. Moreover, the 12–15 Hz band showed a fronto‐parietal increase and that at 22–24 Hz exhibited a fronto‐central decrease. Hence, the 1–7 Hz range showed significant increases in both NREM sleep and REM sleep, with similar topography. The parallel change of NREM sleep and REM sleep EEG power is related, as confirmed by a correlational analysis, indicating that the increase in frequency of 2–7 Hz possibly subtends a state‐aspecific homeostatic response. On the contrary, sleep deprivation has opposite effects on alpha and sigma activity in both states. In particular, this analysis points to the presence of state‐specific homeostatic mechanisms for NREM sleep, limited to <2 Hz frequencies. In conclusion, REM sleep and NREM sleep seem to share some homeostatic mechanisms in response to sleep deprivation, as indicated mainly by the similar direction and topography of changes in low‐frequency activity.  相似文献   

2.
Study ObjectivesThis report describes findings from an ongoing longitudinal study of the effects of varied sleep durations on wake and sleep electroencephalogram (EEG) and daytime function in adolescents. Here, we focus on the effects of age and time in bed (TIB) on total sleep time (TST) and nonrapid eye movement (NREM) and rapid eye movement (REM) EEG.MethodsWe studied 77 participants (41 male) ranging in age from 9.9 to 16.2 years over the 3 years of this study. Each year, participants adhered to each of three different sleep schedules: four consecutive nights of 7, 8.5, or 10 h TIB.ResultsAltering TIB successfully modified TST, which averaged 406, 472 and 530 min on the fourth night of 7, 8.5, and 10 h TIB, respectively. As predicted by homeostatic models, shorter sleep durations produced higher delta power in both NREM and REM although these effects were small. Restricted sleep more substantially reduced alpha power in both NREM and REM sleep. In NREM but not REM sleep, sleep restriction strongly reduced both the all-night accumulation of sigma EEG activity (11–15 Hz energy) and the rate of sigma production (11–15 Hz power).ConclusionsThe EEG changes in response to TIB reduction are evidence of insufficient sleep recovery. The decrease in sigma activity presumably reflects depressed sleep spindle activity and suggests a manner by which sleep restriction reduces waking cognitive function in adolescents. Our results thus far demonstrate that relatively modest TIB manipulations provide a useful tool for investigating adolescent sleep biology.  相似文献   

3.
Electroencephalogram (EEG) wavelength and amplitude within NREM sleep, paradoxical sleep (PS), and wake were measured by computer in five intact rats and four rats with suprachiasmatic nucleus (SCN) lesions for the first recovery day following 24-h total sleep deprivation (TSD) achieved by keeping them on a rotating cylinder over water. To assess exercise effects, EEG within NREM was also analyzed in four intact rats for 8 h after separate 4-h TSD sessions at low and high rates of cylinder rotation (high rate = 12 times low rate). During recovery from 24-h TSD, EEG changed most dramatically in NREM. The number of slow waves per unit time (1-4 Hz wave incidence) and the amplitude at all wavelengths from 1 to 16 Hz were increased for up to 12 h and then fell below baseline levels for most of the next 12 h. Fast (5-16 Hz) wave incidence changed inversely with slow wave incidence. Wake and PS also showed initially increased amplitude, but shifts in incidence were from slow to fast waves. Relative to baseline, intact and SCN-lesioned rats showed similarly shaped recovery functions, indicating that EEG responses to sleep loss are largely independent of diurnal rhythms. Four-hour TSD at a low rotation rate affected NREM EEG similarly to 24-h TSD, but more mildly. The high rotation rate further increased slow wave incidence during recovery without further increasing slow wave amplitude. The results suggest that both EEG wave incidence and amplitude are responsive to prior wakefulness, but only incidence is responsive to prior exercise.  相似文献   

4.
We investigated the association between rapid eye movement (REM) density (REMd) and electroencephalogram (EEG) activity during non‐rapid eye movement (NREM) and REM sleep, within the re‐assessment, in a large sample of normal subjects, of the reduction of oculomotor activity in REM sleep after total sleep deprivation (SD). Coherently with the hypothesis of a role of homeostatic sleep pressure in influencing REMd, a negative correlation between changes in REMd and slow‐wave activity (SWA) was expected. A further aim of the study was to evaluate if the decreased REMd after SD affects ultradian changes across sleep periods. Fifty normal subjects (29 male and 21 female; mean age = 24.3 ± 2.2 years) were studied for four consecutive days and nights. Sleep recordings were scheduled in the first (adaptation), second (baseline) and fourth night (recovery). After awakening from baseline sleep, a protocol of 40 h SD started at 10:00 hours. Polysomnographic measures, REMd and quantitative EEG activity during NREM and REM sleep of baseline and recovery nights were compared. We found a clear reduction of REMd in the recovery after SD, due to the lack of REMd changes across cycles. Oculomotor changes positively correlated with a decreased power in a specific range of fast sigma activity (14.75–15.25 Hz) in NREM, but not with SWA. REMd changes were also related to EEG power in the 12.75–13.00 Hz range in REM sleep. The present results confirm the oculomotor depression after SD, clarifying that it is explained by the lack of changes in REMd across sleep cycles. The depression of REMd can not simply be related to homeostatic mechanisms, as REMd changes were associated with EEG power changes in a specific range of spindle frequency activity, but not with SWA.  相似文献   

5.
Jenni OG  Achermann P  Carskadon MA 《Sleep》2005,28(11):1446-1454
STUDY OBJECTIVES: To examine the effects of total sleep deprivation on adolescent sleep and the sleep electroencephalogram (EEG) and to study aspects of sleep homeostasis. DESIGN: Subjects were studied during baseline and recovery sleep after 36 hours of wakefulness. SETTING: Four-bed sleep research laboratory. PARTICIPANTS: Seven prepubertal or early pubertal children (pubertal stage Tanner 1 or 2 = Tanner 1/2; mean age 11.9 years, SD +/- 0.8, 2 boys) and 6 mature adolescents (Tanner 5; 14.2 years, +/- 1.4, 2 boys). INTERVENTIONS: Thirty-six hours of sleep deprivation. MEASUREMENTS: All-night polysomnography was performed. EEG power spectra (C3/A2) were calculated using a Fast Fourier transform routine. RESULTS: In both groups, sleep latency was shorter, sleep efficiency was higher, non-rapid eye movement (NREM) sleep stage 4 was increased, and waking after sleep onset was reduced in recovery relative to baseline sleep. Spectral power of the NREM sleep EEG was enhanced after sleep deprivation in the low-frequency range (1.6-3.6 Hz in Tanner 1/2; 0.8-6.0 Hz in Tanner 5) and reduced in the sigma range (11-15 Hz). Sleep deprivation resulted in a stronger increase of slow-wave activity (EEG power 0.6-4.6 Hz, marker for sleep homeostatic pressure) in Tanner 5 (39% above baseline) than in Tanner 1/2 adolescents (18% above baseline). Sleep homeostasis was modeled according to the two-process model of sleep regulation. The build-up of homeostatic sleep pressure during wakefulness was slower in Tanner 5 adolescents (time constant of exponential saturating function 15.4 +/- 2.5 hours) compared with Tanner 1/2 children (8.9 +/- 1.2 hours). In contrast, the decline of the homeostatic process was similar in both groups. CONCLUSION: Maturational changes of homeostatic sleep regulation are permissive of the sleep phase delay in the course of adolescence.  相似文献   

6.
Sleep is important for normative cognitive functioning. A single night of total sleep deprivation can reduce the capacity to encode new memories. However, it is unclear how sleep restriction during several consecutive nights affects memory encoding. To explore this, we employed a parallel‐group design with 59 adolescents randomized into sleep‐restricted (SR) and control groups. Both groups were afforded 9 h time in bed (TIB) for 2 baseline nights, followed by 5 consecutive nights of 5 h TIB for the SR group (n = 29) and 9 h TIB for the control group (n = 30). Participants then performed a picture‐encoding task. Encoding ability was measured with a recognition test after 3 nights of 9 h TIB recovery sleep for both groups, allowing the assessment of encoding ability without the confounding effects of fatigue at retrieval. Memory was significantly worse in the sleep‐restricted group (P = 0.001), and this impairment was not correlated with decline in vigilance. We conclude that memory‐encoding deteriorates after several nights of partial sleep restriction, and this typical pattern of sleep negatively affects adolescents’ ability to learn declarative information.  相似文献   

7.
De Gennaro L  Ferrara M  Bertini M 《Sleep》2001,24(6):673-679
STUDY OBJECTIVES: Aim of the present study was to assess changes in arousal rates after selective slow-wave (SWS) and total sleep deprivations. DESIGN: Two-way mixed design comparing the arousal index (Al), as expressed by the number of EEG arousals divided by sleep duration, in totally or selectively sleep deprived subjects. SETTING: Sleep laboratory. PATIENTS OR PARTICIPANTS: Nineteen normal male subjects [mean age=23.3 years (S.E.M.=0.55)]. INTERVENTIONS: Al was measured in baseline nights and after selective SWS (N=10) and total sleep deprivation (N=9). MEASUREMENTS AND RESULTS: During the baseline nights AI values changed across sleep stages as follows: stage 1 > stage 2 and REM > SWS, but did not present any significant variations as a function of time elapsed from sleep onset. The recovery after deprivation showed a reduction in EEG arousals, more pronounced after total sleep deprivation; this decrease affected NREM but not REM sleep. During the baseline nights Al showed a close-to-significance negative correlation with REM duration, while during the recovery nights a significant positive relation with stage 1 duration was found. CONCLUSIONS: The present results suggest that recuperative processes after sleep deprivation are also associated with a higher sleep continuity as defined by the reduction of EEG arousals.  相似文献   

8.
Study ObjectivesThe amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR).MethodsIn total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights.ResultsTSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep.ConclusionsPVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.  相似文献   

9.
Slow oscillations (<1 Hz) in the non-rapid eye movement (NREM) sleep electroencephalogram (EEG) result from slow membrane potential fluctuations of cortical neurones, alternating between a depolarized up-state and a hyperpolarized down-state. They are thought to underlie the restorative function of sleep. We investigated the behaviour of slow oscillations in humans under increased sleep pressure to assess their contribution to sleep homeostasis. EEG recordings (C3A2) of baseline and recovery sleep after sleep deprivation (eight healthy males, mean age 23 years; 40 h of prolonged wakefulness) were analysed. Half-waves were defined as positive or negative deflections between consecutive zero crossings in the 0.5–2 Hz range of the band-pass filtered EEG. Increased sleep pressure resulted in a redistribution of half-waves between 0.5 and 2 Hz: the number of half-waves per minute was reduced below 0.9 Hz while it was increased above 1.2 Hz. EEG power was increased above 1 Hz. The increase in frequency was accompanied by increased slope of the half-waves and decreased number of multi-peak waves. In both baseline and recovery sleep, amplitude and slope were correlated highly over a broad frequency range and positive half-waves were characterized by a lower frequency than the negative ones, pointing to a longer duration of up- than down-states. We hypothesize that the higher frequency of slow oscillatory activity after prolonged wakefulness may relate to faster alternations between up- and down-states at the cellular level under increased sleep pressure. This study does not question slow-wave activity as a marker of sleep homeostasis, as the observed changes occurred within the same frequency range.  相似文献   

10.
Vigilance state-related topographic variations of electroencephalographic (EEG) activity have been reported in humans and animals. To investigate their possible functional significance, the cortical EEG of the rat was recorded from frontal and parietal derivations in both hemispheres. Records were obtained for a 24-h baseline day, 6-h sleep deprivation (SD), and subsequent 18-h recovery. During the baseline 12-h light period, the main sleep period of the rat, low-frequency (<7.0 Hz) power in the non-rapid eye-movement (NREM) sleep EEG declined progressively. Left-hemispheric predominance of low-frequency power at the parietal derivations was observed at the beginning of the light period when sleep pressure is high due to preceding spontaneous waking. The left-hemispheric dominance changed to a right-hemispheric dominance in the course of the 12-h rest-phase when sleep pressure dissipated. During recovery from SD, both low-frequency power and parietal left-hemispheric predominance were enhanced. The increase in low-frequency power in NREM sleep observed after SD at the frontal site was larger than at the parietal site. However, frontally no interhemispheric differences were present. In REM sleep, power in the theta band (5.25-8.0 Hz) exhibited a right-hemispheric predominance. In contrast to NREM sleep, the hemispheric asymmetry showed no trend during baseline and was not affected by SD. Use-dependent local changes may underlie the regional differences in the low-frequency NREM sleep EEG within and between hemispheres. The different interhemispheric asymmetries in NREM and REM sleep suggest that the two sleep states may subserve different functions in the brain.  相似文献   

11.
Despite decades of sleep research by means of polysomnography (PSG), systematic interindividual differences in PSG-assessed sleep parameters have been scarcely investigated. The present study is the first to quantify interindividual variability in standard PSG-assessed variables of sleep structure in terms of stability and robustness as well as magnitude. Twenty-one carefully screened healthy young adults were studied continuously in a strictly controlled laboratory environment, where their PSGs were recorded for eight nights interspersed with three separate 36 h sleep deprivation periods. All PSG records were scored blind to subject and condition, using conventional criteria, and delta power in the non-REM sleep EEG was computed for four electrode derivations. Interindividual differences in sleep variables were examined for stability and robustness, respectively, by comparing results across equivalent nights (e.g. baseline nights) and across experimentally differentiated nights (baseline nights versus recovery nights following sleep deprivation). Among 18 sleep variables analyzed, all except slow-wave sleep (SWS) latency were found to exhibit significantly stable and robust--i.e. trait-like--interindividual differences. This was quantified by means of intraclass correlation coefficients (ICCs), which ranged from 36% to 89% across physiologic variables, and were highest for SWS (73%) and delta power in the non-REM sleep EEG (78-89%). The magnitude of the trait interindividual differences was considerable, consistently exceeding the magnitude of the group-average effect on sleep structure of 36 h total sleep deprivation. Notably, for non-REM delta power--a putative marker of sleep homeostasis--the interindividual differences were from 9.9 to 12.8 times greater than the group-average increase following sleep deprivation relative to baseline. Physiologic sleep variables did not vary among subjects in a completely independent manner--61.1% of their combined variance clustered in three trait dimensions, which appeared to represent sleep duration, sleep intensity, and sleep discontinuity. Any independent functional significance of these sleep physiologic phenotypes remains to be determined.  相似文献   

12.
Mendelson WB  Bergmann BM 《Sleep》2001,24(4):369-373
STUDY OBJECTIVES: We have previously reported that older (24 mo.) Fischer rats manifest a diminished post-sleep deprivation increase in NREM and REM sleep. In order to examine whether this decline reflects an age-related change in pineal function, we are now reporting on baseline and recovery sleep parameters in pinealectomized 3-, 12-, and 24-month old rats following 24 hours of sleep deprivation using the disk-over-water method. DESIGN: Three independent age groups; within each group there were sequential measures of sleep under baseline conditions and during recovery from sleep deprivation. SETTING: The Sleep Research Laboratory at the University of Chicago PARTICIPANTS: 56 male Fisher (F344) rats INTERVENTIONS: 24 hours of total sleep deprivation using the disk-over-water method MEASUREMENTS: Sleep staging of EEG and EMG, and power spectral analysis of the EEG RESULTS: Pinealectomized (pinex) rats did not differ from sham-operated (sham) rats in total sleep, REM sleep, super-modal high-amplitude NREM sleep (HS2), a measure of NREM EEG delta power, or circadian rhythm amplitude. In the pinex rats, there was a modest (2.5%) age-independent increase in NREM sleep (p<0.02). The pinex rats of all ages failed to manifest the increase in NREM sleep during recovery seen in the sham-operated animals (p<0.04). CONCLUSIONS: We found no evidence that altered pineal function is responsible for age-related changes in baseline sleep in the rat. These data also suggest that, independent of age, normal pineal function may be relevant to the ability to generate increased NREM sleep in response to prior sleep deprivation.  相似文献   

13.
The 24-hr sleep-wake distribution and power spectra of the electroencephalogram were determined in rabbits that had been implanted with cortical and hippocampal electrodes. A diurnal preference for sleep was observed. The spectral power density in nonrapid eye movement sleep (NREM sleep) of the cortex showed a decreasing trend in most frequencies within the 12-hr light period. In the 12-hr dim period no clear trend was present. Most hippocampal EEG frequencies decreased in NREM sleep in the first two hours of the light period, and thereafter stayed on a constant level. Sleep deprivation elicited the following changes: a prolonged increase of NREM sleep and a short increase of REM sleep; in the cortex, an increase of slow-wave activity (SWA; power density in the 0.25-2.0 Hz frequency band) in NREM sleep, which declined in the course of recovery; an enhancement of slow-wave (1.25-3 Hz) and theta (6.25-7 Hz) activity in REM sleep. The hippocampus showed an increase in NREM sleep power density in almost all frequencies. In REM sleep the hippocampus exhibited an increase in power density in the 6.25-7 Hz and 12.25-13 Hz bands, whereas in the 7.25-8 Hz band the values were below baseline. The results show that SWA in NREM sleep and theta activity in REM sleep are enhanced by sleep deprivation, as has been observed in other mammalian species. The EEG changes in the hippocampus resembled those in the cortex.  相似文献   

14.

Study Objectives:

Modafinil may promote wakefulness by increasing cerebral dopaminergic neurotransmission, which importantly depends on activity of catechol-O-methyltransferase (COMT) in prefrontal cortex. The effects of modafinil on sleep homeostasis in humans are unknown. Employing a novel sleep-pharmacogenetic approach, we investigated the interaction of modafinil with sleep deprivation to study dopaminergic mechanisms of sleep homeostasis.

Design:

Placebo-controlled, double-blind, randomized crossover study.

Setting:

Sleep laboratory in temporal isolation unit.

Participants:

22 healthy young men (23.4 ± 0.5 years) prospectively enrolled based on genotype of the functional Val158Met polymorphism of COMT (10 Val/Val and 12 Met/Met homozygotes).

Interventions:

2 × 100 mg modafinil and placebo administered at 11 and 23 hours during 40 hours prolonged wakefulness.

Measurements and Results:

Subjective sleepiness and EEG markers of sleep homeostasis in wakefulness and sleep were equally affected by sleep deprivation in Val/Val and Met/Met allele carriers (placebo condition). Modafinil attenuated the evolution of sleepiness and EEG 5-8 Hz activity during sleep deprivation in both genotypes. In contrast to caffeine, modafinil did not reduce EEG slow wave activity (0.75-4.5 Hz) in recovery sleep, yet specifically increased 3.0-6.75 Hz and > 16.75 Hz activity in NREM sleep in the Val/Val genotype of COMT.

Conclusions:

The Val158Met polymorphism of COMT modulates the effects of modafinil on the NREM sleep EEG in recovery sleep after prolonged wakefulness. The sleep EEG changes induced by modafinil markedly differ from those of caffeine, showing that pharmacological interference with dopaminergic and adenosinergic neurotransmission during sleep deprivation differently affects sleep homeostasis.

Citation:

Bodenmann S; Landolt HP. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. SLEEP 2010;33(8):1027-1035.  相似文献   

15.
Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non‐rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto‐central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.  相似文献   

16.
Dynamics of electroencephalographic (EEG) slow wave activity (0.5-4.5 Hz) and body temperature, as estimates, respectively, of the process S and process C, regulating sleep and waking alternate occurrence, were measured during monophasic and biphasic sleep patterns that occurred spontaneously in a 35-year-old woman who lived for 105 days in a winter-type photoperiod (10-14 h light-dark). In monophasic nights, rate of EEG synchronization showed a decreasing trend across the first three non-rapid eye movement (NREM) periods. In biphasic nights, rate of EEG synchronization increased during the third NREM period which precedes the nocturnal awakening. Temperature cycle was not different between biphasic and monophasic nights. Those results confirm that EEG dynamics reflects homeostatic sleep regulatory mechanism, and suggest that the period of prolonged wakefulness in the middle of biphasic night is pre-programmed.  相似文献   

17.

Objective:

Establish the dose-response relationship between increasing sleep durations in a single night and recovery of neurobehavioral functions following chronic sleep restriction.

Design:

Intent-to-treat design in which subjects were randomized to 1 of 6 recovery sleep doses (0, 2, 4, 6, 8, or 10 h TIB) for 1 night following 5 nights of sleep restriction to 4 h TIB.

Setting:

Twelve consecutive days in a controlled laboratory environment.

Participants:

N = 159 healthy adults (aged 22-45 y), median = 29 y).

Interventions:

Following a week of home monitoring with actigraphy and 2 baseline nights of 10 h TIB, subjects were randomized to either sleep restriction to 4 h TIB per night for 5 nights followed by randomization to 1 of 6 nocturnal acute recovery sleep conditions (N = 142), or to a control condition involving 10 h TIB on all nights (N = 17).

Measurements and Results:

Primary neurobehavioral outcomes included lapses on the Psychomotor Vigilance Test (PVT), subjective sleepiness from the Karolinska Sleepiness Scale (KSS), and physiological sleepiness from a modified Maintenance of Wakefulness Test (MWT). Secondary outcomes included psychomotor and cognitive speed as measured by PVT fastest RTs and number correct on the Digit Symbol Substitution Task (DSST), respectively, and subjective fatigue from the Profile of Mood States (POMS). The dynamics of neurobehavioral outcomes following acute recovery sleep were statistically modeled across the 0 h-10 h recovery sleep doses. While TST, stage 2, REM sleep and NREM slow wave energy (SWE) increased linearly across recovery sleep doses, best-fitting neurobehavioral recovery functions were exponential across recovery sleep doses for PVT and KSS outcomes, and linear for the MWT. Analyses based on return to baseline and on estimated intersection with control condition means revealed recovery was incomplete at the 10 h TIB (8.96 h TST) for PVT performance, KSS sleepiness, and POMS fatigue. Both TST and SWE were elevated above baseline at the maximum recovery dose of 10 h TIB.

Conclusions:

Neurobehavioral deficits induced by 5 nights of sleep restricted to 4 h improved monotonically as acute recovery sleep dose increased, but some deficits remained after 10 h TIB for recovery. Complete recovery from such sleep restriction may require a longer sleep period during 1 night, and/or multiple nights of recovery sleep. It appears that acute recovery from chronic sleep restriction occurs as a result of elevated sleep pressure evident in both increased SWE and TST.

Citation:

Banks S; Van Dongen HPA; Maislin G; Dinges DF. Neurobehavioral dynamics following chronic sleep restriction: dose-response effects of one night for recovery. SLEEP 2010;33(8):1013–1026.  相似文献   

18.
Sleep structure is highly stable within individuals but different between individuals. The present study investigated robustness of the individual sleep structure to extended total sleep deprivation. Seventeen healthy men spent a baseline night (23:00–07:00 hours), 58 h of sleep deprivation and a 14‐h recovery night (17:00–07:00 hours) in the laboratory. Intraclass correlation coefficients showed that the agreement between baseline and recovery with respect to the proportion of the different sleep stages increased as a function of recovery sleep duration. High values were reached for most of the sleep stages at the end of 14 h of recovery sleep (intraclass correlation coefficients between 0.38 and 0.76). If sleep duration of the recovery night is extended to 14 h, sleep stage distribution resembles that of a baseline night underlining the robustness of the individual sleep structure.  相似文献   

19.
Delta EEG power density, which has been viewed as a measure of intensity of NREM sleep, declines across the lifetime in humans, cats, and hamsters, but data in rats have been unclear. It is also uncertain whether older rats differ from younger animals in the degree of change in delta power during recovery sleep following short-term sleep deprivation. We have examined delta power density in NREM sleep under baseline conditions and following 48 h of sleep deprivation in young (3 months), middle-aged (12 months), and older (24 months) rats. The presence or absence of age effects was highly dependent on the method of normalizing the data. When expressed as a fraction of total NREM EEG power, there was no age effect on baseline delta power density, or on the change from baseline to recovery conditions. When expressed as a multiple of delta power in REM under the same condition, the younger rats had higher delta power density than the middle-aged and older rats. For all the ages combined, there was an increase in delta power density in the recovery condition. When examined by age, the younger rats (which started from a higher level of delta power density than the other groups) did not have an increase in delta during recovery; the middle-aged rats tended to, and the older rats (which started from lower baseline levels) significantly increased delta power density in the recovery condition. This suggests that the lower delta power seen during baseline in older rats is not due to decreased ability to generate delta activity.  相似文献   

20.
Regional differences in the effect of sleep deprivation on the sleep electroencephalogram (EEG) may be related to interhemispheric synchronization. To investigate the role of the corpus callosum in interhemispheric EEG synchronization, coherence spectra were computed in mice with congenital callosal dysgenesis (B1) under baseline conditions and after 6-h sleep deprivation, and compared with the spectra of a control strain (C57BL/6). In B1 mice coherence was lower than in controls in all vigilance states. The level of coherence in each of the three totally acallosal mice was lower than in the mice with only partial callosal dysgenesis. The difference between B1 and control mice was present over the entire 0.5-25 Hz frequency range in non-rapid eye movement sleep (NREM sleep), and in all frequencies except for the high delta and low theta band (3-7 Hz) in rapid eye movement (REM) sleep and waking. In control mice, sleep deprivation induced a rise of coherence in the Delta band of NREM sleep in the first 2 h of recovery. This effect was absent in B1 mice with total callosal dysgenesis and attenuated in mice with partial callosal dysgenesis. In both strains the effect of sleep deprivation dissipated within 4 h. The results show that EEG synchronization between the hemispheres in sleep and waking is mediated to a large part by the corpus callosum. This applies also to the functional changes induced by sleep deprivation in NREM sleep. In contrast, interhemispheric synchronisation of theta oscillations in waking and REM sleep may be mediated by direct interhippocampal connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号