首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that postmenopausal female distance runners demonstrate elevated levels of blood volume compared with sedentary healthy peers. We also found a strong positive relation between blood volume and maximal oxygen consumption. In young adult males, endurance exercise training increases blood volume when performed in the upright, but not in the supine body position. Based on these observations, we hypothesized that among postmenopausal females, the elevation in blood volume would be absent or attenuated in women who train in the horizontal vs. upright body position, and that the lower blood volume in the former would be associated with lower maximal aerobic capacity. Thus, we measured supine resting plasma and total blood volumes (Evans blue dye) and maximal oxygen consumption in postmenopausal women: 10 sedentary controls, 10 swimmers and 10 runners matched for age (60 +/- 2; 59 +/- 2; 58 +/- 2 years, mean +/- SE) and hormone replacement use (5 per group). The swimmers and runners were further matched for training volume (4.5 +/- 0.2 vs. 4.8 +/- 0.6 h week-1), relative performance (78 +/- 5 vs. 75 +/- 3% of age-group world record) and fat-free mass (45.5 +/- 0. 8 vs. 44.9 +/- 1.5 kg). Total blood volume and maximal oxygen consumption were highest in the runners (81.2 +/- 4; 52.4 +/- 3 mL kg-1, respectively) and progressively lower in the swimmers (68.8 +/- 3; 44.2 +/- 2) and controls (59.2 +/- 2; 37.9 +/- 2; all P < 0. 05). In the pooled population, blood volume was positively related to maximal oxygen consumption (r = 0.72, P < 0.0001). We conclude that in endurance-trained postmenopausal females matched for training volume and competitive performance: (1) blood volume is lower in those who train in the horizontal (swimmers) compared with the upright position (runners); (2) the lower blood volume is associated with a lower maximal aerobic capacity. Nevertheless, blood volume and maximal oxygen consumption are higher in postmenopausal women who train in the horizontal position than in sedentary controls.  相似文献   

2.
Six healthy subjects performed endurance training of the same duration with legs and arms consecutively. Performance and muscle structure were measured before and after training in lower and upper limbs. Training induced similar increases in maximal oxygen consumption (6 ± 1 vs. 7 ± 2 mL min?1 kg?1: legs vs. arms, P > 0.05) and mitochondrial volume in leg and arm muscles (42 ± 12 vs. 31 ± 11%: legs vs. arms, P > 0.05). The gain in mitochondrial volume after training was achieved solely by increasing the fraction of mitochondria (+40 ± 11%, P < 0.05) in the same muscle volume (+2 ± 2%, P > 0.05) in the legs. In contrast, increased muscle volume (+14 ± 3%, P < 0.05), in addition to a tendency for an increase in mitochondrial fraction (+16 ± 11%, P > 0.05), occurred in the arms after training. Thus, similar improvements in muscle oxidative capacity in upper and lower limbs were brought about by different mechanisms. It is suggested that due to infrequent use and a lack of load-bearing function, arm muscle volume is underdeveloped in untrained, sedentary or detrained/injured subjects and that the mode of endurance training used in this study is sufficient to enlarge arm muscle volume as well as aerobic capacity.  相似文献   

3.
Performance of intense dynamic exercise in highly trained athletes is associated with a reduced arterial haemoglobin saturation for O2 (SaO 2) and lower arterial PO 2 (PaO 2). We hypothesized that compared with upright exercise, supine exercise would be accompanied by a smaller reduction in SaO 2 because of a lower maximal O2 uptake (VPO 2max) and/or a more even ventilation–perfusion distribution. Eight elite bicyclists completed progressive cycle ergometry to exhaustion in both positions with concomitant determinations of ventilatory data, arterial blood gases and pH. During upright cycling VPO 2max averaged 75±1.6 mL O2 min-1 kg-1 (±SEM) and it was 10.6±1.7% lower during supine cycling (P<0.001). Also the maximal pulmonary and alveolar ventilation were lower during supine cycling (by 15±2% and 21±3%, respectively; P< 0.001) which related to a 0.8±0.1 L lower tidal volume (P<0.001). In all subjects and independent of work posture PaO 2 and SaO 2 decreased from rest to exhaustion (from 99±3 to 82±2 Torr and 98.1±0.2 to 95.2±0.4%, respectively; P<0.001); alveolar–arterial PO 2 difference increased from 6±2 to 37±3 Torr in both body positions. At exhaustion arterial PCO 2 was lower in upright than in supine (33.4±0.6 vs. 35.9±0.9 Torr; P<0.01), suggesting a greater relative hyperventilation in upright. Arterial pH was similar in upright and supine at rest (both 7.41±0.01) and at exhaustion (7.31±0.01 vs. 7.32±0.01, respectively). We conclude that despite a lower VPO 2max and supposedly an improved ventilation–perfusion distribution, altering body position from upright to supine does not influence arterial O2 desaturation during intense exercise.  相似文献   

4.
Summary Groups of top weight lifters, swimmers, runners and skiers were examined as regards functional capacity (maximal oxygen consumption measured during graded work load on a horizontal tread-mill), body build and composition (densitometry). Significant differences in mean ages (highest in skiers, lowest in swimmers) and body dimensions, attributable to natural selection, were found (highest length dimensions in swimmers, lowest in weight lifters). According to the specificity of training in individual disciplines studied, runners had lowest body weight and highest lean body mass proportion, and weight-lifters (who had highest relative weight) had lowest lean body mass proportion. Highest values of ventilation, breathing frequency, maximal oxygen consumption and oxygen pulse in skiers simultaneously with lowest pulse frequency were found; the reverse applies for weight lifters. Mutual relationships between somatic and functional characteristics in individual groups were evaluated.  相似文献   

5.
This study tested the hypotheses that trained swimmers would have greater orthostatic tolerance than runners and, if present, it would be due to differences in their autonomic and hemodynamic responses to graded central hypovolemia. Twenty intercollegiate male athletes [11 runners and 9 swimmers;O2max =70.0 (1.6) vs 69.5 (2.6) ml·kg−1·min−1, respectively] underwent graded lower body negative pressure (LBNP) to presyncope. The swimmers were heavier [80.5 (1.9) vs 70.3 (1.9) kg, P<0.05], with larger resting cardiac [4.44 (0.29) vs 3.68 (0.18) l·min−1·m−2] and total peripheral conductance [0.056 (0.04) vs 0.044 (0.02) units·m−2] indices. Neither spontaneous cardiac baroreflex sensitivity (sequence method) nor heart rate variability (spectral analysis) differed significantly between groups at rest. LBNP tolerance did not differ between groups, with an index value of 51 (2) kPa·min for the runners and 54 (4) kPa·min for the swimmers [383 (16) vs 402 (32) mmHg·min] , although the swimmers had larger declines in pulse pressure and tended (P=0.078) to have larger declines in total peripheral conductance index in the last completed stage of LBNP. These responses did not differ between groups in the last 2 min of LBNP. Neither the heart rate, mean arterial pressure nor forearm vascular conductance responses differed between groups throughout. Changes in heart rate variability indices did not differ significantly between groups, with similar declines in the high frequency component and increases in the low frequency/high frequency ratio. These data suggest that swim training does not lead to greater orthostatic tolerance than run training, and responses to maximal LBNP do not differ between swimmers and runners. Moreover, neither heart rate nor the autonomic modulation of the heart rate response to LBNP are affected by training modality. Electronic Publication  相似文献   

6.
The time course of muscle oxygen desaturation (StO2 kinetics) following exercise onset reflects the dynamic interaction between muscle blood flow and muscle oxygen consumption. In patients with peripheral arterial disease (PAD), muscle StO2 kinetics are slowed during walking exercise; potentially reflecting altered muscle oxygen consumption relative to blood flow. This study evaluated whether StO2 kinetics measured using near infrared spectroscopy (NIRS) would be slowed in PAD during low work rate calf exercise compared with healthy subjects under conditions in which blood flow did not differ. Eight subjects with PAD and eight controls performed 3 min of calf exercise at 5, 10, 30, and 50% of maximal voluntary contraction (MVC). Calf blood flow responses were measured by plethysmography. Power outputs were similar between groups for all work rates. In PAD, the time constants of StO2 kinetics were significantly slower than controls during 5% MVC (13.5 ± 1.7 vs. 6.9 ± 1.2 s, P < 0.05) and 10% MVC work rates (14.5 ± 2.7 vs. 6.8 ± 1.1 s, P < 0.05). Blood flow assessed when exercise was interrupted after 30 s did not differ between PAD and control subjects at these work rates. In contrast, the StO2 time constants were not different between groups during 30 and 50% MVC work rates, where blood flow responses in PAD subjects were lower as compared with controls. Thus in PAD, the slowed StO2 kinetic responses under conditions of unimpaired calf blood flow reflect slowed muscle oxygen consumption in PAD skeletal muscle during low work rate plantar flexion exercise as compared with healthy skeletal muscle.  相似文献   

7.
Wingate test (WT) training programmes lasting 2?C3?weeks lead to improved peak oxygen consumption. If a single 30?s WT was capable of significantly increasing stroke volume and cardiac output, the increase in peak oxygen consumption could possibly be explained by improved oxygen delivery. Thus, we investigated whether a single WT increases stroke volume and cardiac output to similar levels than those obtained at peak exercise during a graded cycling exercise test (GXT) to exhaustion. Fifteen healthy young men (peak oxygen consumption 45.0?±?5.3?ml?kg?1?min?1) performed one WT and one GXT on separate days in randomised order. During the tests, we estimated cardiac output using inert gas rebreathing (nitrous oxide and sulphur hexafluoride) and subsequently calculated stroke volume. We found that cardiac output was similar (18.2?±?3.3 vs. 17.9?±?2.6?l?min?1; P?=?0.744), stroke volume was higher (127?±?37 vs. 94?±?15?ml; P?<?0.001), and heart rate was lower (149?±?26 vs. 190?±?12 beats?min?1; P?<?0.001) at the end (27?±?2?s) of a WT as compared to peak exercise during a GXT. Our results suggest that a single WT produces a haemodynamic response which is characterised by similar cardiac output, higher stroke volume and lower heart rate as compared to peak exercise during a GXT.  相似文献   

8.
Our aim was to investigate the relationship between physiological variables (not previously studied) and performance in elite 1,500-m runners. We assessed eight male athletes with an average personal best time of 233.3 ± 6.9 s (110% of the world record) for the 1,500-m race. Ventilatory measurements, maximal oxygen consumption $ (\dot{V}{\text{O}}_{{2{\max }}} ), Our aim was to investigate the relationship between physiological variables (not previously studied) and performance in elite 1,500-m runners. We assessed eight male athletes with an average personal best time of 233.3 ± 6.9 s (110% of the world record) for the 1,500-m race. Ventilatory measurements, maximal oxygen consumption VO2max maximal vastus lateralis muscle deoxygenation (?[deoxy(Hb+Mb)])max via near-infrared spectroscopy (NIRS), and maximal velocity (V (max)) were obtained during an incremental treadmill test. During subsequent constant-speed exercise at Vmax, we determined the time to exhaustion (Tlim), end-exercise blood lactate concentration ([La]b(max)), VO2 and ?[deoxy(Hb+Mb)] kinetics parameters. The mean VO2max, [La]b(max) and Vmax were 70.2 ± 3.9 mL kg(-1) min(-1), 12.7 ± 2.4 mmol L(-1), 21.5 ± 0.5 km h(-1), respectively. VO2 at Vmax showed a significant negative correlation with Tlim, whereas [La]b(max) was positively correlated with Tlim. Race speed was found to significantly correlate with ?[deoxy(Hb+Mb)](max) (79% of maximal value obtained during a transient limb ischemia), ?[deoxy(Hb+Mb)] slow component (22.9 ± 9.3% of total amplitude) and [La]b(max) at Vmax. [La]b(max) at Vmax was also significantly correlated with ?[deoxy(Hb+Mb)] slow component, suggesting a greater release of oxygen from the hemoglobin due to the Bohr effect. We conclude that both the maximal capacity of muscle to extract O2 from the blood and the end-exercise blood lactate accumulation are important predictors of best performance in 1,500-m runners.  相似文献   

9.
Role of backrest support and hand grip contractions on regional cerebral oxygenation and blood volume were evaluated by near infrared spectroscopy in 13 healthy men during whole-body vibration (WBV). Subjects were exposed to three WBV (3, 4.5, and 6 Hz at ∼0.9 grms in the vertical direction), in a randomized order on separate days. During WBV, subjects performed right-hand maximal voluntary intermittent rhythmic hand grip contractions for 1 min. Subjects demonstrated highest oxygenation and blood volume values at 4.5 Hz, however, these responses were similar with and without backrest support (P>0.01). Compared to WBV alone, addition of hand grip exercise during WBV further increased oxygenation (0.07±0.11 vs. 0.004±0.11 od, P=0.003) and blood volume (0.156±0.20 vs. 0.066±0.17 od, P=0.000) in the right forehead. Peak oxygen uptake did not correlate to changes in oxygenation and blood volume (P>0.01). Based on the increase in ventilation volume and no change in the ratio of ventilation volume and expired carbon dioxide (P>0.01), it is concluded that WBV induces hyperventilation that might activate the pre-frontal cortical region, thus influencing cerebral responses through neuronal activation.  相似文献   

10.
Large elastic artery stiffness increases with age and menopause is a mitigating factor in women. High-intensity resistance training (RT) increases arterial stiffness in young men and women. However, the effects of moderate intensity RT on central aortic pressure wave reflection in healthy postmenopausal women are unknown. Healthy sedentary normotensive postmenopausal women were randomly assigned to either 18 weeks (2 days/week) of RT (RES n = 13) or aerobic training (AER n = 10). Central aortic pressure wave reflection and brachial artery reactivity were assessed before and after training. Central aortic pressure wave reflection was evaluated by measuring aortic augmentation index (AIa) and round trip travel time (Δt p) of the reflected arterial pressure wave using applanation tonometry. Brachial artery reactivity was assessed using brachial artery flow mediated dilation (FMD). Eighteen weeks of RT did not change AIa (28.9 ± 1.9 vs. 28.5 ± 1.9%; mean ± S.E.M.) or Δt p (140.6 ± 2.4 vs. 141.2 ± 2.1 ms). In contrast, the AER group showed a decrease in AIa from 28.8 ± 2.1 to 25.1 ± 1.4% (P < 0.05) and an increase in Δt p from 137.3 ± 2.5 to 144.6 ± 2.9 ms (P < 0.05). Brachial FMD did not significantly change in either group following training. This prospective, randomized study demonstrated that moderate intensity whole body RT in previously sedentary, normotensive postmenopausal women does not alter central aortic pressure wave reflection.  相似文献   

11.
Summary In this study the alactic anaerobic and aerobic power of top level sprinters, long-distance runners, and untrained students were compared. Maximal oxygen uptake was measured during a progressive test on a treadmill. The anaerobic power was estimated according to a newly developed bicycle ergometer technique. As reported elsewhere, the maximal oxygen uptake is very high in twelfe long-distance runners (77.6±2.7 ml/kg·min−1) whereas the maximal oxygen uptake of six sprinters amounts to 60.1±5.9 ml/kg·min−1. The average alactic anaerobic power of a control group of 32 students was 710 W or 10.1±1.2 W/kg. Significantly lower results were obtained by long-distance runners (551 W or 8.93 W/kg) whereas significantly higher results were obtained by sprinters (1,021 W or 14.16 W/kg). In top level athletes, but not in the control group, a negative relationship was found between aerobic power and anaerobic power.  相似文献   

12.
The purpose of this study was to determine if discrepancies exist between upright and inverted seated positions in isometric maximal voluntary contraction (MVC) elbow flexor force, MVC force produced in the first 100 ms (F100), MVC rate of force development, electromyographic (EMG) activity of the biceps and triceps as well as heart rate and blood pressure. The results showed significantly (p < 0.01) higher MVC force (543.6 ± 29.6 vs. 486.5 ± 23.0 N), F100 (328.3 ± 94.5 vs. 274.6 ± 101.8 N), rate of force development (p = 0.003) (1,851.9 ± 742.2 vs. 1,591.0 ± 719.6 N s−1) and biceps brachii EMG activity (48%, p < 0.01) in the upright versus inverted condition. There were relatively greater co-contractions with the inverted position (p < 0.01) due to the lack of change in triceps’ EMG and the substantial decrease in biceps’ EMG. There were no significant changes in trunk EMG activity. With inversion, there were significant decreases in heart rate (16.8%), systolic (11.6%) and diastolic (12.1%) blood pressures (p < 0.0001). These results illustrate decrements in neuromuscular performance with an inverted seated posture which may be related to an altered sympathetic response.  相似文献   

13.

Introduction

Despite VO2peak being, generally, greater while running compared to cycling, ventilation (V E) during maximal exercise is less while running compared to cycling. Differences in operating lung volumes (OLV) between maximal running and cycling could be one explanation for previously observed differences in V E and this could be due to differences in body position e.g., trunk/hip angle during exercise.

Purpose

We asked whether OLV differed between maximal running and cycling and if this difference was due to trunk/hip angle during exercise.

Methods

Eighteen men performed three graded maximal exercise tests; one while running, one while cycling in the drop position (i.e., extreme hip flexion), and one while cycling upright (i.e., seated with thorax upright). Resting flow-volume characteristics were measured in each body position to be used during exercise. Tidal flow-volume loops were measured throughout the exercise.

Results

V E during maximal running (148.8 ± 18.9 L min?1) tended to be lower than during cycling in the drop position (158.5 ± 24.7 L min?1; p = 0.07) and in the upright position (158.5 ± 23.7 L min?1; p = 0.06). End-inspiratory and end-expiratory lung volumes (EILV, EELV) were significantly larger during drop cycling compared to running (87.1 ± 4.1 and 35.8 ± 6.2 vs. 83.9 ± 6.0 and 33.0 ± 5.7 % FVC), but only EILV was larger during upright cycling compared to running (88.2 ± 3.5 % FVC). OLV and V E did not differ between cycling positions.

Conclusion

Since OLV are altered by exercise mode, but cycling position did not have a significant impact on OLV, we conclude that trunk/hip angle is likely not the primary factor determining OLV during maximal exercise.  相似文献   

14.
The purpose of this study was to determine if fluid-electrolyte, renal, hormonal, and cardiovascular responses during and after multi-hour water immersion were associated with aerobic training. Additionally, we compared these responses in those who trained in a hypogravic versus a 1-g environment. Seventeen men comprised three similarly aged groups: six long-distance runners, five competitive swimmers, and six untrained control subjects. Each subject underwent 5 h of immersion in water [mean (SE)] 36.0 (0.5)°C to the neck. Immediately before and at each hour of immersion, blood and urine samples were collected and analyzed for sodium (Na), potassium, osmolality, and creatinine (Cr). Plasma antidiuretic hormone and aldosterone were also measured. Hematocrits were used to calculate relative changes in plasma volume (%V pl). Heart rate response to submaximal cycle ergometer exercise (35% peak oxygen uptake) was measured before and after water immersion. Water immersion induced significant increases in urine flow, Na clearance (C Na), and a 3–5% decrease in V pl. Urine flow during immersion was greater (P < 0.05) in runners [2.4 (0.4) ml · min–1] compared to controls [1.3 (0.1) ml · min –1]. However, %A V pl, C Cr, C Na and during immersion were not different (P > 0.05) between runners, swimmers, and controls. After 5 h of immersion, there was an increase (P < 0.05) in submaximal exercise heart rate of 9 (3) and 10 (3) beats · min–1 in both runners and controls, respectively, but no change (P > 0.05) was observed in swimmers. Since swimmers did not experience elevated exercise tachycardia following water immersion compared to runners and sedentary controls, we conclude that exercise training in a hypogravic environment attenuates the acute cardiovascular adaption to microgravity. This effect of hypogravic aerobic training was not associated with the degree of hypovolemia and associated diuresis and natriuresis.  相似文献   

15.
We compared time to exhaustion (t lim) at maximal lactate steady state (MLSS) between cycling and running, investigated if oxygen consumption, ventilation, blood lactate concentration, and perceived exertion differ between the exercise modes, and established whether MLSS can be determined for cycling and running using the same criteria. MLSS was determined in 15 moderately trained men (30 ± 6 years, 77 ± 6 kg) by several constant-load tests to exhaustion in cycling and running. Heart rate, oxygen consumption, and ventilation were recorded continuously. Blood lactate concentration and perceived exertion were measured every 5 min. t lim (37.7 ± 8.9 vs. 34.4 ± 5.4 min) and perceived exertion (7.2 ± 1.7 vs. 7.2 ± 1.5) were similar for cycling and running. Heart rate (165 ± 8 vs. 175 ± 10 min?1; P < 0.01), oxygen consumption (3.1 ± 0.3 vs. 3.4 ± 0.3 l min?1; P < 0.001) and ventilation (93 ± 12 vs. 103 ± 16 l min?1; P < 0.01) were lower for cycling compared to running, respectively, whereas blood lactate concentration (5.6 ± 1.7 vs. 4.3 ± 1.3 mmol l?1; P < 0.05) was higher for cycling. t lim at MLSS is similar for cycling and running, despite absolute differences in heart rate, ventilation, blood lactate concentration, and oxygen consumption. This may be explained by the relatively equal cardiorespiratory demand at MLSS. Additionally, the similar t lim for cycling and running allows the same criteria to be used for determining MLSS in both exercise modes.  相似文献   

16.
Owing to changes in cardiac output, blood volume distribution and the efficacy of the muscle pump, oxygen supply may differ during upright and supine cycle exercise. In the present study we measured, in parallel, circulatory (heart rate, stroke volume, blood pressure) and metabolic parameters (oxygen uptake, lactic acid concentration [1a]) during incremental-exercise tests and at constant power levels ranging from mild to severe exercise. In supine position, cardiac output exceeded the upright values by 1.0-1.5 1 · min–1 during rest, light ([la] < 2 mmol · 1–1) and moderate ([la] =2–4 mmol · 1–1) exercise. At higher exercise intensities the cardiac output in an upright subject approached and eventually slightly exceeded the supine values. For both rest-exercise transitions and large-amplitude steps (W 140 W) the cardiac output kinetics was significantly faster in upright cycling. The metabolic parameters (VO2 and [la]) showed no simple relationship to the circulatory data. In light to moderate exercise they were unaffected by body position. Only in severe exercise, when cardiac output differences became minimal, could significant influences be observed: with supine body posture, [la] started to rise earlier and maximal power (W=23 W) and exercise duration (64 s) were significantly reduced. However, the maximal [la] value after exercise was identical in both positions. The present findings generally show advantages of upright cycling only for severe exercise. With lower workloads the less effective muscle pump in the supine position appears to be compensated for by the improved central circulatory conditions and local vasodilatation.  相似文献   

17.
Mild exercise training, cardioprotection and stress genes profile   总被引:4,自引:0,他引:4  
To improve current knowledge of the molecular mechanisms underlying exercise-induced cardioprotection in a rat model of mild exercise training, Sprague–Dawley rats were trained to run on a treadmill up to 55% of their maximal oxygen uptake for 1 h/day, 3 days/week, 14 weeks, with age-matched sedentary controls (n = 20/group). Rats were sacrificed 48 h after the last training session. Despite lack of cardiac hypertrophy, training decreased blood hemoglobin (7.94 ± 0.21 mM vs. 8.78 ± 0.23 mM, mean ± SE, P = 0.01) and increased both plasma malondialdehyde (0.139 ± 0.005 mM vs. 0.085 ± 0.009 mM, P = 0.05) and the activity of Mn-superoxide dismutase (11.6 ± 0.6 vs. 16.5 ± 1.6 mU/μg, P = 0.01), whereas total superoxide dismutase activity was unaffected. When subjected to 30-min ischemia followed by 90-min reperfusion, hearts from trained rats (n = 5) displayed reduced infarct size as compared to controls (37.26 ± 0.92% vs. 49.09 ± 2.11% of risk area, P = 0.04). The biochemical analyses in the myocardium, which included gene expression profiles, real-time PCR, Western blot and determination of enzymatic activity, showed training-induced upregulation of the following mRNAs and/or proteins: growth-arrest and DNA-damage induced 153 (GADD153/CHOP), heme-oxygenase-1 (HO-1), cyclooxygenase-2 (Cox-2), heat-shock protein 70/72 (HSP70/72), whereas heat-shock protein 60 (HSP60) and glucose-regulated protein 75 (GRP75) were decreased. As a whole, these data indicate that mild exercise training activates a second window of myocardial protection against ischemia/reperfusion by upregulating a number of protective genes, thereby warranting further investigation in man. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The blood redox status of child athletes is compared with that of age-matched untrained individuals. In the present study, 17 swimmers (10.1 ± 1.6 years) and 12 non-athletes (9.9 ± 1.1 years) participated. Reduced glutathione (GSH) was lower by 37% in swimmers compared to non-athletes (P < 0.01), oxidized glutathione (GSSG) was not different and their ratio (GSH/GSSG) was lower by 43% in swimmers compared to non-athletes (P < 0.01). Thiobarbituric acid-reactive substances concentration was higher by 25% in swimmers compared to controls. Catalase exhibited a strong trend toward lower levels in swimmers (P = 0.08). Finally, total antioxidant capacity was found lower by 28% in swimmers compared to controls (P < 0.05). In conclusion, we report that children participating in swimming training exhibit increased oxidative stress and less antioxidant capacity compared to untrained counterparts and suggest that children may be more susceptible to oxidative stress induced by chronic exercise.  相似文献   

19.
Buffer capacity (β) of skeletal muscle has been determined in trained (n=7) and in sedentary subjects (n=8). The trained subjects were active in ball games where a high degree of anaerobic energy utilization is required. Percentage fibre type occurrence in the thigh muscle was not significantly different in the two groups. However, there was a tendency towards a higher proportion of type I (slow-twitch) fibres (61.5±11.6% vs. 50.2±12.5%) and a lower proportion of type IIB fibres (2.1±3.5% vs 14.1±16.3%) in the trained subjects. The proportion of the cross-sectional area of the muscle biopsies that was made up of type I or type II fibres was not different in the two groups. All subjects performed an isometric contraction of the knee extensors to fatigue at 61% of their maximal voluntary contraction force. Muscle biopsies were taken from the quadriceps femoris muscle at rest and immediately after contraction. The buffer capacity of muscle was calculated from: β= (Muscle lactate (work)-Muscle lactate (rest))/(Muscle pH (rest) -Muscle pH (work)). A higher buffer capacity (p<0.05) was observed in the trained subjects (β=194±30 mmolxpH-1xkg-1 dry wt.) compared to the sedentary group (β=164±20) (mean±SD). An unexpected finding was that muscle lactate after contraction to fatigue was lower (30%, p<0.01) and muscle pH was higher (6.80±0.06 vs. 6.61±0.12, p<0.01) in the trained subjects than in the sedentary controls. Creatine phosphate stores were almost completely depleted in both groups. Post-exercise lactate values were related to the proportion of type II fibres in the muscle (p<0.01). There was, however, no statistical correlation betwe β and fibre type occurrence (p>0.05). In summary, the present results indicate that skeletal muscle buffer capacity can be changed by training in man. Furthermore, it is concluded that the lower lactate accumulation and pH decline after an isometric contraction to fatigue that was observed in the trained compared to the sedentary subjects is related to the training per se. However, the tendency towards a lower type I (slowtwitch) fibre percentage in the trained subjects is likely to have contributed to the observed differences.  相似文献   

20.
Summary A characteristic notch in the heart rate (f c) on-response at the beginning of square-wave exercise is described in 7 very fit marathon runners and 12 sedentary young men, during cycle tests at 30% and 60% of maximal oxygen consumption (VO2max). The (f c) notch revealed af c overshoot with respect to the (f c) values predicted from exponential beat-by-beat fitted models. While at 30% of (VO2max). all subjects showed af c over-shoot, at 60% of (VO2max). it occurred in the marathon runners but not in the sedentary subjects. The mean time of occurrence of thef c overshoot from the onset of the exercise was 16.7 (SD 4.7) s and 12.2 (SD 3.2) s at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 23.8 (SD 8.8) s at 60% of (VO2max). in the runners. The amplitude of the overshoot, with respect to rest, was 41 (SD 12) beats·min–1and 31 (SD 4) beats·min–1 at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 46 (SD 19) beats·min–1 at 60% of (VO2max). in the runners. The existence and the amplitude of thef c overshoot may have been related to central command and muscle heart reflex mechanisms and thus may have been indicators of changes in the balance between sympathetic and parasympathetic activity occurring in fit and unfit subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号