首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物可吸收高强度左旋聚丙交酯材料在体内的力学特征   总被引:6,自引:1,他引:5  
目的观察生物可吸收固态压缩法增强的、高强度左旋聚丙交酯poly-L-lactide,PLLA材料在体内的力学变化特征,评价其作为骨固定装置材料的价值. 方法用特殊的加热压缩方法-固态压缩法(solid-state compressionSC)加工左旋聚丙交酯,得SC-PLLA试棒(3.2mm×30mm),植入兔的皮下和股骨内,在长达48周的降解时间里,观察材料的力学性能(弯曲强度和剪切强度)和扫描电镜(SEM)下的微观形态. 结果植入24周后,各组SC-PLLA在体内的力学强度均可维持在弯曲强度180Mpa以上,剪切强度75Mpa以上,它们都大于皮质骨强度.剪切强度的下降比弯曲强度快.SEM见SC-PLLA降解前内部有大量排列整齐的纵向纤维,并随降解而破坏并出现孔隙. 结论固态压缩法可获得高初始强度和维持强度的PLLA,满足一般的骨内固定要求.SC-PLLA是一种有前途的生物可吸收接骨材料.  相似文献   

2.
Bone tissue engineering with porous hydroxyapatite ceramics   总被引:4,自引:0,他引:4  
The main principle of bone tissue engineering strategy is to use an osteoconductive porous scaffold in combination with osteoinductive molecules or osteogenic cells. The requirements for a scaffold in bone regeneration are: (1) biocompatibility, (2) osteoconductivity, (3) interconnected porous structure, (4) appropriate mechanical strength, and (5) biodegradability. We recently developed a fully interconnected porous hydroxyapatite (IP-CHA) by adopting the “form-gel” technique. IP-CHA has a three-dimensional structure with spherical pores of uniform size that are interconnected by window-like holes; the material also demonstrated adequate compression strength. In animal experiments, IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of bone cells, osteotropic agents, or vasculature into the pores. In this article, we review the accumulated data on bone tissue engineering using the novel scaffold, focusing especially on new techniques in combination with bone morphogenetic protein (BMP) or mesenchymal stem cells.  相似文献   

3.
探讨β-TCP的降解率是否可以影响rhBMP-2的诱导成骨量.将不同降解率的β-TCP1和β-TCP2分别与rhBMP-2复合制备成不同降解率的两种复合物,β-TCP1/rhBMP-2和β-TCP2/rhBMP-2.然后分别种植于小鼠股部肌袋中.种植后分别进行组织学检查、组织形态计量、碱性磷酸酶和降解量测定.两种复合物种植后均有软骨和骨形成,成骨量随时间推移而增加.但是,种植后8周时β-TCP1/rhBMP-2组成骨量显著高于β-TCP2/rhBMP-2组(P<0.05).种植后4周以前两组的ALP水平均随时间推移而升高(P<0.05),但是,在4~8周间则无明显差异.此外,种植后8周时β-TCP1/rhBMP-2的降解量显著高于β-TCP2/rhBMP-2(P<0.05).β-TCP的降解率可以影响BMP的诱导成骨量.  相似文献   

4.
The clinical significance of hydroxyapatite (HAP) as a bone substitute has become apparent in recent years and bone morphogenetic protein (BMP) a substance which induces bone has attracted much attention. In this study, a 1.2 cm diameter bone defects created on rabbit cranium were treated with the BMP-2 gene (cDNA plasmid) introduced with porous HAP after completion of hemostasis and the resultant bone formation was analyzed histopathologically. The amounts of bone formation was compared BMP-2 cDNA plasmids were not combined with cationic liposomes as a vector. Four groups of rabbits were compared. In the HAP group the cranial bone defect was treated with HAP containing 40 microg of liposomes and a dummy gene (PU). The BMP gene HAP group was treated with HAP soaked in liposomes and 10 microg of the BMP-2 gene. In addition, a group was treated with the gene without implanting HAP. Bone formation on the cranial defects was evaluated 3, 6 and 9 weeks after the operation, by X-ray and histopathological examinations. Three weeks after the operation there was vigorous bone formation in the cranial defect in the group which received the BMP-2 gene without HAP, and complete ossification was observed at 9 weeks. In the group which received HAP containing the BMP-2 gene, although new bone formation was evident surrounding the scaffold 3 weeks post-operation, the induced bone tissue did not fill all the pores of the scaffold even at 9 weeks post-operation. These results confirm the clinical usefulness of gene therapy for bone formation, using the BMP-2 gene combined with cationic liposomes as a vector. It is possible that the effects of administering the BMP-2 gene will be improved by specializing the microstructure of scaffold for gene therapy.  相似文献   

5.
Ectopic expression of recombinant human bone morphogenetic protein 2 (rhBMP2) induces osteogenesis, while ectopic expression of rhBMP12 and rhBMP13 induces the formation of tendon-like tissue. Despite their different in vivo activities, all three ligands bound to the type I bone morphogenic protein receptors (BMPRs), activin receptor-like kinase (ALK)-3 and ALK6, and to the type II BMPRs, activin receptor type-2A, activin receptor type-2B, and BMPR2, with similar affinities. Treatment of C3H10T1/2 cells with rhBMP2 activated SMAD signaling and induced expression of osteoblast markers including osteocalcin mRNA (Ocn). In contrast, treatment with rhBMP12 or rhBMP13 resulted in a dose-dependent induction of a tendon-specific gene (Thbs4) expression with no detectable activation of SMAD 1, 5, and 8. Differential regulation of Thbs4 and Ocn has potential utility as an in vitro biomarker for induction of tenogenic signaling. Such an assay also permits the ability to distinguish between the activities of different BMPs and may prove useful in studies on the molecular mechanisms of BMP tenogenic activity.  相似文献   

6.
The ability of recombinant human bone morphogenetic protein 2 on absorbable collagen sponge (rhBMP2/ACS) to regenerate bone in segmental defect has been well characterized. However, clinical results of rhBMP2/ACS constructs in secondary reconstruction of large mandibular and craniofacial defects have not been consistent. We hypothesized that rhBMP2 delivery triggers an endogenous response in the soft tissues surrounding the defect, in the form of expression of BMP2 and vascular endothelial growth factor (VEGF). Such osteogenic response will occur only after immediate, as opposed to delayed, rhBMP2 delivery, suggesting a new explanation to the difference in bone regeneration between the two settings. A 35-mm segmental bone and periosteum defect was created on one side of the mandible in 16 dogs divided in three groups. Group 1 (Gp1, n=6) ACS was loaded with 8 mL of rhBMP2 (0.2 mg/mL). In Gp2 (n=5) the same dose of rhBMP2/ACS was delivered into the defect 4 weeks after surgery. In Gp3 (control; n=5) the defect was reconstructed using ACS loaded with 8 mL of buffer only (devoid of rhBMP2). Tissues were collected after 12 weeks of reconstruction in all groups. Direct measurement of physical dimensions of regenerates and bone morphometry was performed to evaluate bone regeneration. The mRNA expression of both BMP2 and VEGF in the soft tissue surrounding the defect was evaluated using real-time quantitative PCR. Both BMP2 and VEGF proteins were quantified in immunostained sections. Immunoflurescence colocalization of BMP2 and acetylated low density lipoprotein (AcLDL) was done to detect the source of BMP2. Immediate delivery yielded better bone regeneration. Both BMP2 and VEGF mRNA expression was upregulated only in Gp1 (+7.3, p=0.001; +1.53, p=0.001, respectively). BMP2 protein was significantly higher in the immediate reconstruction group; however, VEGF protein was undetected in the examined sections. Immediate delivery of rhBMP2 seemed to induce endogenous release of BMP2 from the surrounding soft tissues, an effect that was lacking in delayed delivery and may explain the variability of clinical results associated with BMP2 use. Colocalization of BMP2 and endothelial cells (ECs) suggested that ECs could be the source of endogenous BMP2.  相似文献   

7.
Previously we found that laser perforation of a collagen membrane (35 microm thickness, Koken Co., Tokyo) produced an effective bone morphogenetic protein (BMP) carrier, if the created pore sizes were larger than 0.5 mm. In this study we applied the same technique to create pores of 0.2 and 1.0 mm in a thicker (1.2 mm thickness) porous biodegradable membrane made of polylactic acid and an epsilon-caprolactone copolymer (PLA-CL) to obtain an effective membranous BMP carrier with higher mechanical strength. Pieces of PLA-CL (0.5 x 1.0 x 0.12 cm) combined with rhBMP-2 (5 microg) were implanted subcutaneously into rats and processed for analyses at 1-3 weeks. The laser-perforated PLA-CL membranes equipped with 1.0 mm pores induced mineralization beginning from the margins of the pores judging from the X-ray patterns, but bone formation seemed to proceed irregularly inside the pores. In the perforated PLA-CL membrane with 1.0-mm pores bone formation did not significantly increase compared with the nonperforated one. This was due to the fact that the PLA-CL membrane was already a porous structure (85% porosity). In contrast with laser-perforated PLA-CL 0.2 mm pores, bone was induced on the collagen fibers and fiber bundles inside the pores. The different patterns of bone formation between the PLA-CL membranes with 1.0 and 0.2 mm pores seemed to be related to the active formation of perpendicular collagen fibers through the 0.2 mm pores.  相似文献   

8.
Bae JH  Song HR  Kim HJ  Lim HC  Park JH  Liu Y  Teoh SH 《Tissue engineering. Part A》2011,17(19-20):2389-2397
The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model.  相似文献   

9.
A hydroxyapatite/collagen (HAC) composite was produced to mimic the natural extracellular matrix of bone, with the collagen serving as a template for apatite formation. A three-dimensional highly porous scaffold was developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique. Naturally derived bovine bone morphogenetic protein (bBMP) was incorporated into the porous HAC-PLA scaffolds, and the composite then was implanted in diaphyseal defects (2 cm in radius) of adult beagle dogs. Controls were implanted with scaffolds without BMP. The dogs were sacrificed at 6 months, at which time biocompatibility, biodegradability, and osteoinduction were evaluated by histologic and radiologic examination and by bone mineral density (BMD) measurements. All defects healed after treatment with BMP combined with HAC-PLA, and BMD at the site of the defect was higher than the BMD of the intact radius. Fibrous union developed in the control group animals. Histologic observation indicated that the presence of BMP not only promoted osteogenesis but that it also accelerated degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.  相似文献   

10.
Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein-2 (BMP-2) carrier. Twenty-two scaffolds were implanted in 5mm segmental defects in rat femurs stabilized with K-wire for 6 and 15 weeks with and without 10 microg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro-computer tomography (microCT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects.  相似文献   

11.
Previously we found that laser perforation of a collagen membrane (35 &#119 m thickness, Koken Co., Tokyo) produced an effective bone morphogenetic protein (BMP) carrier, if the created pore sizes were larger than 0.5 mm. In this study we applied the same technique to create pores of 0.2 and 1.0 mm in a thicker (1.2 mm thickness) porous biodegradable membrane made of polylactic acid and an &#108 -caprolactone copolymer (PLA-CL) to obtain an effective membranous BMP carrier with higher mechanical strength. Pieces of PLA-CL (0.5 &#50 1.0 &#50 0.12 cm) combined with rhBMP-2 (5 &#119 g) were implanted subcutaneously into rats and processed for analyses at 1-3 weeks. The laser-perforated PLA-CL membranes equipped with 1.0 mm pores induced mineralization beginning from the margins of the pores judging from the X-ray patterns, but bone formation seemed to proceed irregularly inside the pores. In the perforated PLA-CL membrane with 1.0-mm pores bone formation did not significantly increase compared with the nonperforated one. This was due to the fact that the PLA-CL membrane was already a porous structure (85% porosity). In contrast with laser-perforated PLA-CL 0.2 mm pores, bone was induced on the collagen fibers and fiber bundles inside the pores. The different patterns of bone formation between the PLA-CL membranes with 1.0 and 0.2 mm pores seemed to be related to the active formation of perpendicular collagen fibers through the 0.2 mm pores.  相似文献   

12.
Ectopic expression of recombinant human bone morphogenetic protein 2 (rhBMP2) induces osteogenesis, while ectopic expression of rhBMP12 and rhBMP13 induces the formation of tendon-like tissue. Despite their different in vivo activities, all three ligands bound to the type I bone morphogenic protein receptors (BMPRs), activin receptor-like kinase (ALK)-3 and ALK6, and to the type II BMPRs, activin receptor type-2A, activin receptor type-2B, and BMPR2, with similar affinities. Treatment of C3H10T1/2 cells with rhBMP2 activated SMAD signaling and induced expression of osteoblast markers including osteocalcin mRNA (Ocn). In contrast, treatment with rhBMP12 or rhBMP13 resulted in a dose-dependent induction of a tendon-specific gene (Thbs4) expression with no detectable activation of SMAD 1, 5, and 8. Differential regulation of Thbs4 and Ocn has potential utility as an in vitro biomarker for induction of tenogenic signaling. Such an assay also permits the ability to distinguish between the activities of different BMPs and may prove useful in studies on the molecular mechanisms of BMP tenogenic activity.  相似文献   

13.
生物性骨载体的制备   总被引:14,自引:0,他引:14  
对生物性骨载体(Biological Bone Carrier,BBC)的制备方法,成分分析、动物体内植入试验、生物力学强度,超微结构,交叉抗原性,临床应用等一系列研究做了详尽的报道,阐述了为尽量降低BBC抗原性而采取综合处理方法的合理性,并分析归纳出BBC作为骨替代材料的优点;(1)良好的生物相容性;(2)合适的力学强度;(3)天然的多孔结构和合适的孔隙率;(4)能为宿主吸收替代;(5)来源广泛  相似文献   

14.
Recombinant human bone morphogenetic protein (rhBMP)-2 in a block copolymer composed of poly-D,L-lactic acid with randomly inserted p-dioxanone and polyethylene glycol (PLA-DX-PEG) as a carrier and porous beta-tricalcium phosphate (beta-TCP) blocks were used to generate a new fully absorbable osteogenic biomaterial. The bone regenerability of the rhBMP-2/PLA-DX-PEG/beta-TCP composite was studied in a critical-sized rabbit bone defect model. In an initial study, a composite of PLA-DX-PEG (250 mg) and beta-TCP (300 mg) loaded with or without rhBMP2 (50 microg) was implanted into a 1.5 cm intercalated bone defect created in a rabbit femur. Defects were assessed by biweekly radiography until 8 weeks postoperatively. The bony union of the defect was recognized only in the BMP-loaded group. To obtain further data on biomechanical and remodeling properties, another BMP-loaded composites group was made and observed up to 24 weeks. All defects were completely repaired without residual traces of implants. Anatomical and mechanical properties of the repaired bone examined by histology, 3-dimensional CT (3D-CT) and mechanical testing were essentially equivalent to the nonoperated-on femur at 24 weeks. These experimental results indicate that fully absorbable rhBMP-2/PLA-DX-PEG/beta-TCP is a promising composite having osteogenicity efficient enough for repairing large bone defects.  相似文献   

15.
A facile and efficient single-step mineralization approach was exploited for achieving nanoscopic hydroxyapatite (HAP) crystal layer in chitosan porous matrix, wherein a mixed water-ethanol solvent was used to control the growth of minerals. The crystallographic structure, morphology, and mechanical properties of the scaffold were analyzed with XRD, FTIR, environmental scanning electric microscopy (ESEM), TEM, and compression tests. The behaviors and responses of MC3T3-E1 pre-osteoblast cells on the scaffolds were studied as well. The results showed that the scaffolds kept woodpile structure with predefined and controlled hierarchical structure after mineralization. The inorganic phase in the mineralized chitosan scaffolds was determined as pure rod-like HAP, which settled densely on the matrix. The compression strength and compressive modulus of the scaffolds increased dramatically to 0.54 ± 0.005 MPa and 5.47 ± 0.65 MPa, respectively. During a culture period of 2 and 3 weeks, cell proliferation and in-growth were observed by phase contrast light microscopy and SEM. The alkaline phosphatase (ALP) activity increased after 1 week. Cell viability and cell proliferation index (PI) obtained higher values than that of the chitosan scaffolds. The novel single-step mineralization approach and the porous hybrid scaffolds would be a promising method for designing hybrid bone graft.  相似文献   

16.
Chen B  Lin H  Wang J  Zhao Y  Wang B  Zhao W  Sun W  Dai J 《Biomaterials》2007,28(6):1027-1035
Considerable research has been focused on the development of bone morphogenetic protein-2 (BMP-2) delivery system for homologous and efficient bone regeneration. The aim of the present study was to develop a collagen-based targeting bone repair system. A collagen-binding domain (CBD) was added to the N-terminal of native BMP-2 to allow it bind to collagen specifically. We showed that the collagen-binding bone morphogenetic protein-2 (named bone morphogenetic protein2-h, BMP2-h) had maintained the full biological activity as compared to rhBMP2 lacking the CBD. In vitro functional study also demonstrated that collagen matrix could maintain higher bioactivity of BMP2-h than native BMP-2. When demineralized bone matrix (DBM) impregnated with BMP2-h was implanted subcutaneously in rats, homogeneous bone formation was observed. Moreover, in a rabbit mandible defect model, surgical implantation of collagen matrix loaded with BMP2-h exhibited remarkable osteoinductive properties and excellent homogeneous bone formation. Our studies suggested that this novel collagen-based BMP-2 targeting bone repair system induced better bone formation not only in quantity but also in quality. Similar approaches may also be used for the repair of other tissue injuries.  相似文献   

17.
《Connective tissue research》2013,54(1-4):219-226
A partially purified BMP preparation was combined with a fibrous glass membrane (FGM) or porous particles of hydroxyapatite (PPHAP), and then implanted subcutaneously into the backs of rats. As a control of these new carriers, a conventional carrier of insoluble bone matrix (IBM) was also used. These new geometrically different solid-state carriers induced tissues in quite different manners. FGM/BMP implants induced cartilage formation within the entire inner area of the membrane accompanied by a small amount of bone formation on the surface of the membrane. In contrast, PPHAP/ BMP implants induced only bone within the pores of PPHAP without any detectable cartilage formation. Enzyme-linked immunosorbent assay revealed that the type II collagen content in FGM/BMP was six times higher than that in IBM/BMP, while there was no detectable type II collagen in PPHAP/BMP. The results were explained by the geometric properties of the two distinctive carriers.  相似文献   

18.
Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a beta tricalcium phosphate (betaTCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of 1 or 10 microg of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced betaTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, betaTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed.  相似文献   

19.
Self-reinforced polylevo-dextro-lactic acid (SR-PLA) 70 composite rods, (2 mm x 26 mm) were implanted in the dorsal subcutaneus tissue of sixteen rats. Osteotomies of the distal femur were fixed with SR-PLA70 composite rods (2 mm x 15 mm) in 39 rats. The follow-up times varied from 1 week to 1 year. After sacrifice three-point bending and shear tests were performed for subcutaneously placed rods, and radiological, histological, histomorphometrical, microradiographic, and oxytetracycline-fluorescence studies of osteotomized and intact control femora were performed. At 52 weeks the shear strength and flexural modulus of the rods were 41% of the initial value, and the flexural strength was 43% of the initial value. In the osteotomies seven specimens had to be excluded due to postoperative infection or dislocation of the fragment. Six of the thirty-two evaluated osteotomies showed signs of postoperative infection. Twenty-six osteotomies healed uneventfully. No signs of inflammatory or foreign-body reaction were observed. The present investigation demonstrated that the mechanical strength and fixation properties of the SR-PLA70 rods are suitable for fixation of cancellous bone osteotomies in rats. The present article is the first report on successful application of SR-PLA70 rods for fixation of cancellous bone osteotomies studied.  相似文献   

20.
A composite of marrow mesenchymal stem cells and porous hydroxyapatite (HA) has in vivo osteogenic potential. To investigate factors enhancing the osteogenic potential of marrow/HA composites, we prepared a bone morphogenetic protein (BMP) fraction from the 4M guanidine extract of bovine bone by heparin-sepharose affinity chromatography. Marrow/HA composites or composites containing marrow mesenchymal stem cells, BMP, and HA (marrow/BMP/HA composites) were implanted subcutaneously in 7-week-old male Fischer rats. BMP/HA composites and HA alone were also implanted. The implants were harvested after 2, 4, or 8 weeks and were prepared for histological and biochemical studies. Histological examination showed obvious de novo bone formation together with active osteoblasts at 2 weeks, as well as more extensive bone formation at 4 and 8 weeks in many pores of the marrow/BMP/HA composites. The marrow/HA composites did not induce bone formation at 2 weeks, but there was moderate bone formation at 4 weeks. At 2 weeks, only marrow/BMP/HA composites resulted in intensive osteogenic activity, judging from alkaline phosphatase and osteocalcin expression at both the protein and gene levels. These results indicate that the combination of marrow mesenchymal stem cells, porous HA, and BMP synergistically enhances osteogenic potential, and may provide a rational basis for their clinical application, although further in vivo experiment is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号