首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro evaluation of the PUCA II intra-arterial LVAD   总被引:1,自引:0,他引:1  
The "pulsatile catheter" (PUCA) pump is a minimally invasive intra-arterial left ventricular assist device intended for acute support of critically ill heart failure patients. To assess the hydrodynamic performance of the PUCA II, driven by an Arrow AutoCat IABP driver, we used a (static) mock circulatory system in which the PUCA II was tested at different loading conditions. The PUCA II was subsequently introduced in a (dynamic) cardiovascular simulator (CVS) to mimic actual in vivo operating conditions, with different heart rates and 2 levels of left ventricular (LV) contractility. Mock circulation data shows that PUCA II pump performance is sensitive to afterload, pump rate and preload. CVS data demonstrate that PUCA II provides effective LV unloading and augments diastolic aortic pressure. The contribution of PUCA II to total flow is inversely related to LV contractility and is higher at high heart rates. We conclude that, with the current IABP driver, the PUCA II is most effective in 1:1 mode in left ventricles with low contractility.  相似文献   

2.
Penn State is currently developing a 12-mL, pulsatile, pneumatically driven pediatric ventricular assist device intended to be used in infants. After extensive in vitro testing of the pump in a passive-filling, mock circulatory loop, an acute animal study was performed to obtain data with a contracting ventricle. The objectives were to determine the range of pneumatic pressures and time required to completely fill and empty the pediatric ventricular assist device under various physiologic conditions, simulate reductions in ventricular contractility and blood volume, and provide data for validation of the mock circulatory loop. A 15-kg goat was used. The cannulation was achieved via left thoracotomy from the left ventricle to the descending aorta. The pump rate and systolic duration were controlled manually to maintain complete filling and ejection. The mean ejection time ranged from 280 ms to 382 ms when the systolic pressure ranged from 350 mm Hg to 200 mm Hg. The mean filling time ranged from 352 ms to 490 ms, for the diastolic pressure range of -60 mm Hg to 0 mm Hg. Esmolol produced a decrease in left ventricular pressure, required longer pump filling time, and reduced LVAD flow.  相似文献   

3.
Purpose: Mismatches between pump output and venous return in a continuous-flow ventricular assist device may elicit episodes of ventricular suction. This research describes a series of in vitro experiments to characterize the operating conditions under which the EVAHEART centrifugal blood pump (Sun Medical Technology Research Corp., Nagano, Japan) can be operated with minimal concern regarding left ventricular (LV) suction. Methods: The pump was interposed into a pneumatically driven pulsatile mock circulatory system (MCS) in the ventricular apex to aorta configuration. Under varying conditions of preload, afterload, and systolic pressure, the speed of the pump was increased step-wise until suction was observed. Identification of suction was based on pump inlet pressure. Results: In the case of reduced LV systolic pressure, reduced preload (=10 mmHg), and afterload (=60 mmHg), suction was observed for speeds =2,200 rpm. However, suction did not occur at any speed (up to a maximum speed of 2,400 rpm) when preload was kept within 10-14 mmHg and afterload =80 mmHg. Although in vitro experiments cannot replace in vivo models, the results indicated that ventricular suction can be avoided if sufficient preload and afterload are maintained. Conclusion: Conditions of hypovolemia and/or hypotension may increase the risk of suction at the highest speeds, irrespective of the native ventricular systolic pressure. However, in vitro guidelines are not directly transferrable to the clinical situation; therefore, patient-specific evaluation is recommended, which can be aided by ultrasonography at various points in the course of support.  相似文献   

4.
Various control and monitoring algorithms have been proposed to improve the left-ventricular assist device (LVAD) therapy by reducing the still-occurring adverse events. We developed a novel multi-objective physiological control system that relies on the pump inlet pressure (PIP). Signal-processing algorithms have been implemented to extract the required features from the PIP. These features then serve for meeting various objectives: pump flow adaptation to the perfusion requirements, aortic valve opening for a predefined time, augmentation of the aortic pulse pressure, and monitoring of the LV pre- and afterload conditions as well as the cardiac rhythm. Controllers were also implemented to ensure a safe operation and prevent LV suction, overload, and pump backflow. The performance of the control system was evaluated in vitro, under preload, afterload and contractility variations. The pump flow adapted in a physiological manner, following the preload changes, while the aortic pulse pressure yielded a threefold increase compared to a constant-speed operation. The status of the aortic valve was detected with an overall accuracy of 86% and was controlled as desired. The proposed system showed its potential for a safe physiological response to varying perfusion requirements that reduces the risk of myocardial atrophy and offers important hemodynamic indices for patient monitoring during LVAD therapy.  相似文献   

5.
The intra-aorta pump is a novel continuous flow (CF) left ventricular (LV) device. According to literatures, the pulsatile flow LV device can provide superior LV unloading and circulatory support compared with CF LV assist devices at the same level of ventricular assist device flow. Therefore, a pulsatile control algorithm for the intra-aorta pump is designed. It can regulate the pump to generate pulsatile arterial pressure (AP) and blood flow. A mathematic model of the cardiovascular-pump system is used to verify the feasibility of the control strategy in the presence of LV failure. The surplus hemodynamic energy (SHE), pulsatile ratio (PR), and pulsatile attenuation index (PAI) are used to evaluate the pulsatility of AP and blood flow. The SHE is 8,012.0 ergs/cm(3) by using the pulsatile control strategy (PCS) compared with 5,630.0 ergs/cm(3) by failing heart without support. The PR is 0.302 in the PCS vs. 0.315 in failing heart without support. Meanwhile, the PAI is 85.9% in the PCS compared with 69.7% in failing heart without support. The results demonstrate that the presented control strategy can maintain the pulsatility of AP and blood flow. Moreover, the pulsatile controller provides notably LV unloading. To test the response of the controller to the change of blood demand of patients, another simulation is conducted. In this simulation, the peripheral resistance is reduced to mimic the status of a slight physical active; the Emax is increased to simulate the ventricular contractility recovery. The simulation results demonstrate that the proposed control strategy can automatically regulate the pump in response to the change of the parameters of the circulatory system. To test the dynamic character of the intra-aorta pump, an in vitro experiment is conducted on an in vitro experiment rig. The experimental results demonstrate that the intra-aorta pump can achieve the pulsatile pump speed calculated by the pulsatile controller. The PCS is feasible for the intra-aorta pump. As a key feature, the proposed control strategy provides adequate perfusion in response to the change of blood demands of patients, while restoring the pulsatility of AP and blood flow.  相似文献   

6.
A new control strategy for a mock circulatory system (MCS) has been developed to mimic the Starling response of the natural heart. The control scheme is based on Suga's elastance model, which is implemented using nested elastance and pressure feedback control systems. The elastance control loop calculates the desired chamber pressure using a time-varying elastance function and the ventricular chamber volume signal. The pressure control loop regulates the chamber pressure according to this reference signal. Simulations and tests on MCS hardware showed that the elastance-based controller responds to changes in preload, afterload, and contractility in a manner similar to the natural heart. Since the elastance function is an arbitrary function of time, the controller allows modification of ventricular chamber contractility, giving researchers a new tool to mimic various pathological conditions which can be used in the evaluation of cardiac devices such as ventricular assist devices. © 2001 Biomedical Engineering Society. PAC01: 8719Uv, 8780-y, 8719Rr  相似文献   

7.
Continuous-flow left ventricular assist devices (LVADs) provide acceptable clinical results, but the long waiting period for heart transplantation leads to diverse complications. LVAD support can cause reverse left ventricular (LV) remodeling that results in the improvement of LV function and allows LVAD removal. We present a case of successful removal of a DuraHeart LVAD because of sufficient recovery of LV function. Before LVAD removal, we conducted an “LVAD weaning test” by decreasing pump speed and performing an additional normal saline infusion test. We consider that the LVAD weaning test can be used in place of the “pulsatile LVAD off test.”  相似文献   

8.
目的 设计并制作基于婴幼儿心室辅助泵——罗叶泵的体外测试平台,分别完成20 mL婴幼儿罗叶泵的流体性能实验和耐疲劳实验。方法 将罗叶泵驱动装置、20 mL婴幼儿罗叶泵、前负荷腔、前负荷压力传感器、后负荷腔、前负荷压力传感器、心电监护器、阻尼器和流量计等按不同的实验目的组装成不同的测试平台,流体温度控制为37 ℃,分别用来完成20 mL婴幼儿罗叶泵的流体性能实验和耐疲劳实验。结果 所制作的流体性能实验平台能较好的模拟人体前后负荷;在固定泵输出压力时,测量了20 mL婴幼儿罗叶泵泵频率与泵前压力(前负荷)、泵后压力(后负荷)和流量的关系;所组装的耐疲劳实验平台能够测试罗叶泵的耐疲劳性能;20 mL婴幼儿罗叶泵在连续搏动70 d后,其形变率仅为4 %。结论 所组装的搏动泵测试平台能测试20 mL婴幼儿罗叶泵的流体性能和耐疲劳性能;所制作的20mL婴幼儿罗叶泵具有较好的稳定性和耐疲劳性。 更多还原  相似文献   

9.
The efficiency of left ventricular assist devices (LVADs) depends on the capacity of the inflow cannula to drain blood into the pump. Left atrial (LA) and left ventricular (LV) sites were compared in an animal model mimicking different hemodynamic conditions. Three calves (56.3+/-5.0 kg) were equipped with a Thoratec LVAD. A regular cardiopulmonary bypass (CPB) circuit was used as a right ventricular assist device (RVAD) (jugular vein/pulmonary artery), and preload conditions were adjusted by storage (or perfusion) of blood into (or from) the venous reservoir. LA and LV drainage, tested separately or simultaneously, was measured by its effect on the LVAD's performance. The LVAD was used alone on a beating heart or together with the RVAD (biVAD) on a beating and on a fibrillating heart. Increasing the central venous pressure (CVP) highlighted the differences between the LA and LV cannulation sites when the LVAD was tested either alone or together with the RVAD (biVAD) on a beating heart. Drainage through the LA or the LV was similar when CVP was set at 8 mm Hg, and increasing CVP to 14 mm Hg allowed for better drainage through the LV cannula. In contrast, after induction of fibrillation to mimic extreme heart failure, the drainage was better through the LA cannula. Using both LA and LV cannulae simultaneously did not improve the LVAD output in any of the conditions tested. LV cannulation provides better blood drainage when used on a normal beating heart and, therefore, allows for increased LVAD performance. However, in severe heart failure, blood drainage through the LV cannula decreases and the LA cannulation site is superior.  相似文献   

10.
Pulsatile operation of rotary blood pumps (RBPs) has received interest due to potential concern with nonphysiological hemodynamics. This study aimed to gain insight to the effects of various RBP modes on the heart-device interaction. A Deltastream diagonal pump (Medos Medizintechnik GmbH) was inserted in a cardiovascular simulator with apical-to-ascending aorta cannulation. The pump was run in continuous mode with incrementally increasing rotating speed (0-5000 rpm). This was repeated for three heart rates (50-100-150 bpm) and three levels of left ventricular (LV) contractility. Subsequently, the Deltastream was run in pulsatile mode to elucidate the effect of (de)synchronization between heart and pump. LV volume and pressure, arterial pressure, flows, and energetic parameters were used to evaluate the interaction. Pump failure (0 rpm) resulted in aortic pressure drops (17-46 mm Hg) from baseline. In continuous mode, pump flow compensated by diminished aortic flow, thus yielding constant total flow. High continuous rotating speed resulted in acute hypertension (mean aortic pressure up to 178 mm Hg). In pulsatile mode, unmatched heart and pulsatile pump rates yielded unphysiologic pressure and flow patterns and LV unloading was found to be highly dependent on synchronization phase. Optimal unloading was achieved when the minimum rotating speed occurred at end-systole. We conclude that, in continuous mode, a perfusion benefit can only be achieved if the continuous pump flow exceeds the preimplant (baseline) cardiac output. Pulsatile mode of support results in complex pressure and volume variations and requires accurate triggering to achieve optimal unloading.  相似文献   

11.
目的选择硅胶管流动腔的前、后负荷,模拟生理脉动流条件下动脉内皮细胞所承受的切应力和周向应力环境。方法利用在体脉动血流切应力和周向应力波形,在求得硅胶管流动腔几何和力学特性的情况下,反向求解硅胶管流动腔内径、压力和流量波形;根据所求得的压力和流量波形,确定出硅胶管流动腔的后负荷(即输入阻抗)条件;利用冯忠刚等提出的三弹性腔九元件集中参数模型模拟该后负荷,并求出各元件参数。结果三弹性腔九元件集中参数模型模拟出的输入阻抗模和幅角与目标输入阻抗模和幅角能较好的吻合。结论该方法为选择合适的硅胶管流动腔前、后负荷,构建能较真实再现动脉脉动血流切应力和周向应力环境的硅胶管流动腔系统提供了一定的理论依据。  相似文献   

12.
We developed a computational model to investigate the hemodynamic effects of a pulsatile left ventricular assist device (LVAD) on the cardiovascular system. The model consisted of 16 compartments for the cardiovascular system, including coronary circulation and LVAD, and autonomic nervous system control. A failed heart was modeled by decreasing the end-systolic elastance of the ventricle and blocking the mechanism controlling heart contractility. We assessed the physiological effect of the LVAD on the cardiovascular system for three types of LVAD flow: co-pulsation, counter-pulsation, and continuous flow modes. The results indicated that the pulsatile LVAD with counter-pulsation mode gave the most physiological coronary blood perfusion. In addition, the counter-pulsation mode resulted in a lower peak pressure of the left ventricle than the other modes, aiding cardiac recovery by reducing the ventricular afterload. In conclusion, these results indicate that, from the perspective of cardiovascular physiology, a pulsatile LVAD with counter-pulsation operation is a plausible alternative to the existing LVAD with continuous flow mode. An erratum to this article can be found at  相似文献   

13.
Clinical evidence of myocardial recovery in a small cohort of patients supported with a left ventricular assist device (LVAD) has been reported. Development of an optimal LVAD weaning protocol is needed for these patients to sustain recovery after device explant. In this study, we tested the hypothesis that LVAD stroke volume reduction produces a steady-state mechanical reloading of left ventricular (LV) pressures and volumes compared with LVAD rate reduction that results in transient mechanical reloading of the heart due to beat-to-beat variation in LV pressures and volumes. The relationship of LVAD flow to LVAD stroke volume and systolic interval over a range of LVAD rates (60, 80, 100, 120, and 140 bpm) was validated in a mock circulatory flow loop. In six acute experiments, calves were implanted with a pneumatic paracorporeal LVAD (PVAD, Thoratec, Pleasanton, CA). The PVAD was operated asynchronously in the auto volume mode (full decompression) for 30 minutes to establish a baseline control condition. The calf hearts were then mechanically reloaded by LVAD rate reduction (80, 60, and 40 bpm) or LVAD stroke volume reduction (100, 120, and 140 bpm) protocols consisting of 30 minutes of support at each LVAD beat rate. The order of weaning protocols was randomized with a 30-minute recovery period (LVAD volume mode to fully decompress heart allowing it to rest) between protocols to enable return to baseline control state. Aortic pressure and flow, LV pressure and volume, pulmonary artery flow, and LVAD flow waveforms were recorded for each test condition. The LVAD stroke volume reduction protocol produced steady-state mechanical reloading compared with VAD rate reduction that resulted in transient LV mechanical reloading. This distinction is due to differences in their temporal relationships between LVAD and LV filling and emptying cycles. The acute hemodynamic benefit of LVAD stroke volume reduction was greater reduction in LV end-diastolic pressure and increase in LV segmental shortening than LVAD rate reduction. The long-term effects of steady-state and transient LV mechanical reloading on myocardial structure and function toward achieving sustained myocardial recovery warrant further investigation.  相似文献   

14.
The purpose of this article is to present test results for a second generation, high efficiency, nonpulsatile centrifugal blood pump that is being developed for use as a left ventricular assist device (LVAD). The LVAD pump uses a hybrid passive-active magnetic bearing support system that exhibits extremely low power loss, low vibration, and high reliability under transient conditions and varying pump orientations. A unique feature of the second generation design configuration is the very simple and direct flow path for both main and washing blood flows. The pump was tested in both vertical and horizontal orientations using a standard flow loop to demonstrate the performance and durability of the second generation LVAD. Steady state and transient orientation pump operating characteristics including pressure, flow, speed, temperatures, vibration, and rotor orientation were measured. During the tests, pump performance was mapped at several operating conditions including points above and below the nominal design of 5 L/min at 100 mm Hg pressure rise. Flow rates from 2 to 7 L/min and pressure rises from 50 to 150 mm Hg were measured. Pump speeds were varied during these tests from 2,500 to 3,500 rpm. The nominal design flow of 5 L/min at 100 mm Hg pressure rise was successfully achieved at the design speed of 3,000 rpm. After LVAD performance testing, both 28 day continuous duty and 5 day transient orientation durability tests were completed without incident. A hydrodynamic backup bearing design feasibility study was also conducted. Results from this design study indicate that an integral hydrodynamic backup bearing may be readily incorporated into the second generation LVAD and other magnetically levitated pump rotors.  相似文献   

15.
The in vitro sensitivity of continuous flow pumps to preload and afterload pressure has been well characterized. We compared flow in the Jarvik 2000 and HeartMate II continuous flow left ventricular assist devices (LVADs) at different inflow and outflow pressures and different pump speeds. This allowed us to measure the impact of a changing inflow pressure on the pump flow rate at different speeds but against a constant afterload. The resulting preload sensitivity curves showed that, overall, both LVADs have a mean preload sensitivity of 0.07 L/min/mm Hg in the physiologic ranges of pressures and flows encountered during normal operation. The HeartMate II pump had an increased preload sensitivity (up to approximately 0.1 L/min/mm Hg) as the preload was increased. The preload sensitivity of the Jarvik 2000 LVAD was more variable, having several peaks and troughs as the preload was increased. In future LVADs, improved preload sensitivity may allow passive regulation of pump output, optimize ventricular unloading, and decrease the risk of ventricular suction by the pump.  相似文献   

16.
To promote cardiac recovery, we developed a recovery directed left ventricular assist device (RDLVAD) that consists of a valved apical conduit, an afterload controlling chamber (ACC), and a pump. We evaluated its efficacy by comparison with an ordinary LVAD. In each of six pigs with ischemia-induced heart failure, flow and pressure measurements were made while maintaining the total blood flow and arterial pressure equal in the two groups. RDLVAD was able to direct all the blood ejected from the LV into the ACC (0-15 mm Hg) but not into the aorta (73 mm Hg). In the ordinary LVAD, however, some ejection occurred into the aorta despite vigorous suction of the LV. Thus, RDLVAD increased DPTI/SPTI 2.3 times (p < 0.005) and decreased left ventricular end-diastolic pressure by 40% and maximum dP/dt by 20% (p < 0.05). Even the apical valve, at approximately half the diameter of the aortic valve, was able to allow all the blood ejected from the LV to enter the ACC. In one control group pig that achieved almost no ejection into the aorta, left ventricular relaxation and dilatation was extremely limited. RDLVAD may promote cardiac recovery by ensuring less LV work, a greater blood supply/demand ratio in the coronary circulation, and full ventricular relaxation.  相似文献   

17.
The aim of this study is to define the fluid mechanics of a pulsatile pneumatically driven pediatric ventricular assist device (PVAD), for the reduced flow rates encountered during device weaning and myocardial recovery, and relate the results to the potential for thromboembolic events. We place an acrylic model of the PVAD in a mock circulatory loop filled with a viscoelastic blood analog and operate at four stroke volumes (SVs), each with two different filling conditions, to mimic how the flow rate of the device may be reduced. Particle image velocimetry is used to acquire flow field data. We find that a SV reduction method provides better rotational flow and higher wall shear rates than a beat rate reduction method; that a quick filling condition with a compressed diastolic time is better than a slow filling condition; and, that a reduction in SV to 40% led to greatly reduced fluid movement and wall shear rates that could increase the thrombogenicity of the device. SV reduction is a viable option for flow reduction during weaning, however, it does lead to significant changes to the device flow field and future studies are needed to develop operational protocols for the PVAD during bridge-to-recovery.  相似文献   

18.
An implantable biventricular assist device offers a considerable opportunity to save the lives of patients with combined irreversible right and left ventricular failure. The purpose of this study was to evaluate the hemodynamic and physiologic performance of the combined implantation of the CorAide left ventricular assist device (LVAD) and the DexAide right ventricular assist device (RVAD). Acute hemodynamic responses were evaluated after simulating seven different physiological conditions in two calves. Evaluation was performed by fixing the speed of one individual pump and increasing the speed of the other. Under all conditions, increased LVAD or RVAD speed resulted in increased pump flow. The predominant pathophysiologic effect of independently varying DexAide and CorAide pump speeds was that the left atrial pressure was very sensitive to increasing RVAD speed above 2,400 rpm, whereas the right atrial pressure demonstrated much less sensitivity to increasing LVAD speed. An increase in aortic pressure and RVAD flow was observed while increasing LVAD speed, especially under low contractility, ventricular fibrillation, high pulmonary artery pressure, and low circulatory blood volume conditions. In conclusion, a proper RVAD-LVAD balance should be maintained by avoiding RVAD overdrive. Additional studies will further investigate the performance of these pumps in chronic animal models.  相似文献   

19.
The PUCA (pulsatile catheter) pump is a left ventricular assist device (LVAD) capable of unloading the left ventricle (LV) and improving coronary flow by providing a counterpulsation effect. It consists of an extracorporeal located membrane pump, coupled to a transarterial catheter that enters the body via a superficial artery and ends in the LV. Blood is aspirated from the LV and pumped in the ascending aorta through the same catheter guided by a valve system. Timing and frequency of the PUCA pump influence its efficacy. To study the influence of several pump parameters a numerical model of the device and the circulatory system has been developed. Results of animal experiments were used to validate the model. Optimization studies resulted in a pump configuration with a stroke volume of 50 cc and pump:heart frequency mode of 1:2 that starts ejection at the beginning of diastole.  相似文献   

20.
A number of advanced cardiovascular assist devices have been developed recently with the capability to prolong the life expectancy of patients with cardiac disease. To allow long-term use, it is necessary to assemble these devices using as few accessories as possible; however, a sensor for mechanical disorder detection is typically included to ensure mechanical reliability. Although a rotary left ventricular assist device (LVAD) has a simple mechanism, a malrotation caused by thrombogenesis can occur at any time. This situation could cause fatal damage to the cardiovascular circulation of the patient. In this study, we propose a simple, noninvasive method based on Korotkoff sounds, which would be able to detect the pressure-flow state during circulation supported by a rotary LVAD. Korotkoff sounds provide a means to noninvasively measure blood pressure in auscultation. We have found that the sounds are directly influenced by the pressure-flow state. We measured the arterial sound generated by an occluded brachial artery, as well as the Korotkoff sound generated during rotary LVAD circulation. To verify the effectiveness of the system, a circulatory simulator, rather than a human subject, was used. The arterial sound of several abnormal pressure-flow conditions was investigated. The simulator consists of a pulsatile blood pump, a compliance chamber, flow valves, a venous reservoir, and a rotary LVAD. Abnormal pressure-flow states are generated by simply changing the rotational speed of the rotary LVAD. We established the relationship between an abnormal pressure-flow state and the characteristics of the arterial sound, thus demonstrating that a malrotation of the rotary LVAD can be detected by the change of the arterial sound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号