首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells.  相似文献   

2.
3.
4.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants and many of their toxic effects, including their immunotoxicities, are mediated by the activation of aryl hydrocarbon receptor (AhR). We previously reported that Aroclor 1254, one of the most widely used PCB mixtures, increased DNA fragmentation in mouse spleen cells, suggesting that apoptosis was correlated with the immunotoxicity of PCB (Yoo et al., Toxicol. Lett. 91, 83-89, 1997). In the present study we investigated the mechanism by which PCB induces apoptosis and the involvement of AhR in the PCB-mediated apoptosis of mouse spleen cells. Aroclor 1254 induced DNA fragmentation without AhR activation, and the apoptosis was unaffected by alpha-naphtoflavone, a well-known antagonist of AhR. Moreover, the PCB congeners (PCB 47, 52, 128, and 153), which have little affinity for AhR, induced DNA fragmentation, whereas congeners (PCB 77, 126, and 169) that have high affinity for AhR did not induce fragmentation. The di-ortho form of PCB (PCB 153) and Aroclor 1254 induced DNA fragmentation in the spleen cells of both AhR knockout mice and Ah low-response mice, whereas the non-ortho form of PCB (PCB 126) did not induce DNA fragmentation. In the light of these findings, it is evident that AhR is not involved in PCB-mediated apoptosis. PCB 153 significantly increased caspase-3 activity in both spleen cells and human leukemia cells, and z-VAD-fmk, a general inhibitor of caspases, prevented PCB-induced DNA fragmentation. Based on our findings, the most likely mechanism that can account for this biological effect involves the induction of caspase-dependent apoptotic cell death.  相似文献   

5.
Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), may severely compromise normal function of vascular endothelial cells (EC). We have previously shown that PCB 77 (3,3',4,4'-tetrachlorobiphenyl), an arylhydrocarbon receptor (AhR) agonist, can induce oxidative stress in cultured EC. We now show that PCB 77 can activate EC and induce a cellular stress response that is reflected by the activation of c-Jun N-terminal/stress-activated protein kinases (JNK/SAPK). Our data also suggest that this PCB 77-mediated stress response can be modulated by the intracellular glutathione content. EC treated with buthionine-sulphoximine (BSO), an inhibitor of glutathione synthesis, further enhanced PCB-induced JNK/SAPK activity. This stress response was sustained only in the presence of BSO plus PCB 77. Media supplementation with the glutathione precursor N-acetyl-cysteine (NAC) reduced PCB 77-induced JNK/SAPK. Intracellular glutathione also may be implicated in PCB-induced EC apoptosis. Individual treatment with PCB, BSO, or linoleic acid induced activation of caspase 3. Compared to PCB 77 alone, annexin V activity was further amplified during combined treatment with BSO and PCB 77. DNA fragmentation was mostly observed when cells were treated with both BSO and PCB 77. The caspase 3-specific inhibitor DEVD-CHO protected cells against PCB 77/BSO-mediated apoptosis and inhibited the caspase activity without affecting JNK/SAPK activation or cellular glutathione levels. These results suggest that AhR ligands, such as PCB 77, cause vascular EC dysfunction by modulating intracellular glutathione, which subsequently leads to activation of stress-specific kinases. Furthermore, inhibition of glutathione synthesis by BSO can further potentiate the PCB 77-induced stress response and ultimately lead to apoptotic cell death.  相似文献   

6.
Halogenated aromatic hydrocarbons (HAHs) are ubiquitous environment contaminants that produce many of their toxic effects by binding to the aryl hydrocarbon receptor (AhR). However, several investigations have demonstrated that certain polychlorinated biphenyl (PCB) congeners, principally di-ortho-chlorinated PCB congeners, or mixtures containing multiple di-ortho-chlorinated PCBs, inhibit AhR-mediated responses induced by other toxic HAHs. Most relevant to the present study are past reports demonstrating antagonism by these uniquely acting PCB congeners on AhR agonist-mediated inhibition of humoral immune responses. The mechanism responsible for antagonism of AhR agonists by certain PCBs is presently unknown. The present study evaluated the antagonist activity of several di-ortho-substituted PCB congeners [PCB47 (2,2',4,4'), PCB52 (2,2',5,5'), PCB128 (2,2',3,3',4,4'), and PCB153 (2,2',4,4',5,5')] when present in combination with AhR agonists [TCDD (2,3,7,8,-tetrachlorodibenzo-p-dioxin), PCB126 (3,3',4,4',5), and PCB77 (3,3',4,4')] on CYP1A1 induction and inhibition of lipopolysaccharide (LPS)-induced immunoglobulin production in the CH12.LX B cell line. In contrast to non-ortho-substituted PCB (PCB77), which showed additive effects on CYP1A1 induction in combination with TCDD, all of the di-ortho-substituted PCBs examined produced antagonism. Di-ortho-substituted PCB (PCB52) also antagonized TCDD- or PCB126- mediated inhibition of IgM secretion and immunoglobulin heavy chain mRNA expression in the LPS-activated B cells. In addition, PCB52 inhibited TCDD-induced AhR DNA binding to a dioxin-responsive element. Collectively, these results suggest that the mechanism responsible for antagonism by di-ortho-substituted PCB congeners of AhR agonist-mediated CYP1A1 induction and inhibition of antibody responses in B cells occurs through interference with agonist activation of the cytosolic AhR complex.  相似文献   

7.
8.
9.
Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.  相似文献   

10.
Exposure to specific congeners of polychlorinated biphenyls (PCBs) can induce proinflammatory alterations, which may contribute to the formation of blood-borne tumor metastasis. The main aim of the present study was to establish an experimental model of PCB exposure in which PCBs are administered by oral gavage, which resembles the human exposure through the food chain. To determine structure-function relationship, we studied induction of inflammatory responses in the livers, lungs and brains of mice treated with PCB77 (a major coplanar PCB), PCB104 (a non-coplanar PCB with multiple ortho-chlorine substituents), and PCB153 (a major non-coplanar PCB) after a single gavage dose (150 μmol/kg body weight). The strongest expression of proinflammatory proteins occurred 24 h following the PCB administration independent of the class of PCB congeners. These data indicate that food-chain exposure to PCBs can induce proinflammatory mediators in organs that are potential targets for PCB-induced toxicity.  相似文献   

11.
Polychlorinated biphenyls (PCBs) exhibit tumor-promoting effects in experimental animals. We investigated effects of six model PCB congeners and hydroxylated PCB metabolites on proliferation of contact-inhibited rat liver epithelial WB-F344 cells. The 'dioxin-like' PCB congeners, PCB 126, PCB 105, and 4'-OH-PCB 79, a metabolite of the planar PCB 77 congener, induced cell proliferation in a concentration-dependent manner. In contrast, the 'non-dioxin-like' compounds that are not aryl hydrocarbon receptor (AhR) agonists, PCB 47, PCB 153, and 4-OH-PCB 187, an abundant noncoplanar PCB metabolite, had no effect on cell proliferation at concentrations up to 10 muM. The concentrations of dioxin-like PCBs leading to cell proliferation corresponded with the levels inducing the expression of cytochrome P450 1A1 mRNA, suggesting that the release from contact inhibition was associated with AhR activation. The effects of PCB 126 and PCB 153 on expression of proteins controlling G0/G1-S-phase transition and S-phase progression were compared. Only PCB 126 was found to upregulate cyclin A and D2 protein levels, and to increase both total cyclin-dependent kinase 2 (cdk2) and cyclin A/cdk2 complex activities. Despite the observed upregulation of cyclin D2, no increase in cdk4 activity was observed. The expression of cdk inhibitor p27Kip1 was not affected by either PCB 126 or PCB 153. These results suggest that dioxin-like PCBs can induce cell proliferation of contact-inhibited rat liver epithelial cells by increasing cyclin A protein levels, a process that then leads to upregulation of cyclin A/cdk2 activity and initiation of DNA replication. This mechanism could be involved in tumor-promoting effects of dioxin-like PCBs.  相似文献   

12.
Polychlorinated biphenyls (PCBs) are a group of persistent pollutants that are detected in maternal serum and umbilical cord, suggesting that fetal exposure also needs to be considered. The effects of dioxin-like PCB congeners 3,3',4,4'-tetrachlorobiphenyl (PCB77) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) and a non-dioxin-like compound 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) on the expression of endothelial nitric oxide synthase (eNOS), known to maintain blood flow to the fetus, in human umbilical vein endothelial cells (HUVECs) were investigated. The mRNA levels of eNOS, aryl hydrocarbon receptor (AhR) and cytochrome P450 (CYP) 1A1 in cells treated with 5 microM PCBs for 24 hours were analysed by real-time RT-PCR. Cells were also treated with alpha-naphthoflavone (alpha NF), an AhR antagonist or ICI 182780, an estrogen receptor (ER) antagonist, one hour prior to PCB exposure, to observe the effects of these receptors on eNOS modulation. Each PCB increased the eNOS mRNA level by 4.5-fold that was markedly inhibited by alphaNF. ERs were also suspected of altering eNOS levels because ICI 182780 treatment resulted in a decrease in the eNOS level. These results suggest that the eNOS mRNA expression increases due to the action of PCBs related to both AhR and ERs in HUVECs, and that maternal PCB exposure could influence fetal circulation.  相似文献   

13.
Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants that display a complex spectrum of toxicological properties. Exposure to PCBs has been associated with morphological anomalies in cell cultures. However, most mechanistic studies of PCBs' toxic activity have been focused on coplanar congeners. It is of importance to determine whether PCB treatment would influence cell configuration and whether these changes would depend on the structural characteristics of PCBs. In this study, we investigated cell morphological alteration in Vero cell cultures after exposure to coplanar PCB 126 and noncoplanar PCB 153. The survival of Vero cells was measured through the MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) test. Cytotoxicity results suggested that PCB congeners had a toxic, antiproliferative effect on Vero cells. Morphological studies described structural modifications and provided evidence that apoptosis might be the main cell death pathway in PCB 153‐treated cells. The comparison between PCB 126 and PCB 153 indicated that the cell death mechanisms involved in coplanar or noncoplanar PCB congener exposure were different in Vero cells. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.  相似文献   

14.
15.
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants implicated in the development of pro-inflammatory events critical in the pathology of atherosclerosis and cardiovascular disease. PCB exposure of endothelial cells results in increased cellular oxidative stress, activation of stress and inflammatory pathways leading to increased expression of cytokines and adhesion molecules and ultimately cell death, all of which can lead to development of atherosclerosis. To date no studies have been performed to examine the direct effects of PCB exposure on the vasculature relaxant response which if impaired may predispose individuals to hypertension, an additional risk factor for atherosclerosis. Overactivation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) following oxidative/nitrosative stress in endothelial cells and subsequent depletion of NADPH has been identified as a central mediator of cellular dysfunction. The aim therefore was to investigate whether 2,2′,4,6,6′-pentachlorobiphenyl (PCB 104) directly causes endothelial cell dysfunction via increased oxidative stress and subsequent overactivation of PARP. Exposure of ex vivo rat aortic rings to PCB 104 impaired the acetylcholine-mediated relaxant response, an effect that was dependent on both concentration and exposure time. In vitro exposure of mouse endothelial cells to PCB 104 resulted in increased cellular oxidative stress through activation of the cytochrome p450 enzyme CYP1A1 with subsequent overactivation of PARP and NADPH depletion. Pharmacological inhibition of CYP1A1 or PARP protected against the PCB 104-mediated endothelial cell dysfunction. In conclusion, the environmental contaminants, PCBs, can activate PARP directly impairing endothelial cell function that may predispose exposed individuals to development of hypertension and cardiovascular disease.  相似文献   

16.
Exposure to polychlorinated biphenyls (PCBs) disturbs many estrogen-mediated biochemical processes. PCBs may cause these abnormalities by altering expression of the aromatase gene CYP19. This study demonstrated that high concentrations of PCB126 increased basal CYP19 mRNA abundance in mouse testicular Leydig I-10 cells and human adrenocortical H295R cells. Stimulating the cells with chorionic gonadotropin or 8-Br-cAMP concealed the estrogenic effect of PCB126. PCB126 is a powerful ligand for nuclear receptor AhR. Antagonizing the AhR activity of H295R by an inhibitor abolished PCB126-elicited CYP19 induction. However, PCB126 elevated basal CYP19 expression and aromatase activity in a slow progressive manner contrary to the sharp induction of the classic AhR target gene CYP1A1. Exposure of H295R to PCBs with different AhR activation abilities also varied CYP19 and CYP1A1 expression in dissimilar patterns, although the CYP19 mRNA levels were in line with the AhR activation abilities of the congeners. In contrast to PCB126, PCB39, which could not activate AhR and lacked effect on CYP1A1, significantly reduced CYP19 mRNA expression. AhR apparently played an important role in CYP19 gene regulation, but it might regulate CYP19 differently from CYP1A1 in the adrenocortical cells. Regardless of the action mechanism, PCB exposure increases risk for CYP19 dysregulation.  相似文献   

17.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. Much of the research has focused on the carcinogenic potential of higher chlorinated PCBs, but accumulative evidence has shown that lower chlorinated PCB congeners have initiating and promoting activities. The goal of this study was to examine the potential of lower chlorinated PCBs, including 2,2′,5,5′-tetrachlorobiphenyl (PCB52) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77), to induce DNA damage and apoptosis in human MDA-MB-231 (MDA) and MCF-7 breast cancer cells. Results confirmed that treatment of cells with PCB52 and PCB77 resulted in oxidative stress and caspase-dependent apoptosis in both MDA and MCF-7 cells. We noticed that at non-cytotoxic concentrations PCB52 and PCB77-induced decreases in intracellular NAD(P)H in MDA cells but not in MCF-7 cells. Further investigation confirmed that decreases in intracellular NAD(P)H in PCB-treated MDA cells are primarily due to reduction in intracellular NAD+ pool mediated by poly(ADP-ribose)polymerase-1 activation through formation of DNA strand breaks. Antagonism was observed between PCB52 and PCB77 for the effect on induction of DNA strand breaks in MDA cells. Overall, this evidence demonstrates that at non-cytotoxic concentrations, lower chlorinated PCB congeners are capable of inducing oxidative DNA lesions in ERα(−)/MDA cells but not in ERα(+)/MCF-7 cells and that functional ERα plays a protective role in modulating the PCB-induced DNA damage in human breast cancer cells.  相似文献   

18.
19.
20.
Polychlorinated biphenyls (PCBs), a structurally diverse group of environmental pollutants, are effective promoters in two-stage cancer models, which implies that epigenetic mechanisms are involved. Inhibition of gap junctional intercellular communication (GJIC) belongs among critical epigenetic events of tumor promotion. We determined the relative potencies of a series of environmentally relevant PCB congeners to inhibit GJIC in vitro in a rat liver epithelial cell line with pluripotent oval cell characteristics. The nonplanar PCBs were potent inhibitors of GJIC, whereas the coplanar PCBs did not inhibit GJIC. We then compared the effects of the coplanar PCB 126 (3,3',4,4',5-pentachlorobiphenyl) and the noncoplanar PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl) with effects of two model GJIC inhibitors, a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF). In contrast to TPA or EGF, PCB 153 elicited a long-term downregulation of GJIC (up to 48 h). Using Western blot analysis with phospho-specific antibodies, it was found that PCB 153, and not PCB 126, activated mitogen-activated protein kinases ERK1/2; however in contrast to TPA and EGF, this activation was observed at the time points subsequent to GJIC inhibition. Moreover, blocking of ERK1/2 activation did not prevent the GJIC inhibition induced by PCB 153. Therefore, additional intracellular signaling pathways potentially involved in the downregulation of GJIC by PCBs were screened by using specific chemical probes inhibiting serine/threonine kinases, tyrosine kinases, and phospholipases. The inhibition of diacylglycerol lipase partially blocked and the selective inhibition of Src kinases and phosphatidylcholine-specific phospholipase C (PC-PLC) completely blocked the inhibitory effects of the noncoplanar PCB on GJIC, indicating that PC-PLC or sphingomyelinase and Src might be upstream regulators of noncoplanar PCB-induced inhibition of GJIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号