首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
一个可能与PKD2基因连锁的常染色体显性多囊肾病家系   总被引:3,自引:0,他引:3  
目的 研究常染色体显性多囊肾病(autosomal dominant polycystic kidney disease,ADPKD)在中国人中的遗传异质性。方法 采用聚合酶链反应 (polymerase chain reaction, PCR)、非变性聚丙烯酰胺凝胶电泳,检测了1个ADPKD家系各成员中与PKD1基因连锁的4种和与PKD2连锁的4种微卫星标记的基因分型。然后以软件辅助构建单倍型,并推测疾病单倍型。结果 发现该ADPKD家系中,与PKD1紧密连锁的4个微卫星KG8、SM6、CW4和CW2是有信息的;与PKD2基因紧密连锁的3种微卫星DNAIMS1563、D4S414和D4S423是有信息的。推定的单倍型提示,在这个家系中疾病可能与PKD2连锁,而不与PKD1连锁。结论 在此家系中,受累成员间存在表型异质性,并且有一个早发的儿童患者。与PKD2连锁的家系较少,这个家系的报道表明中国人中存在ADPKD的遗传异质性,PKD2的异常也可能会引起中国人ADPKD的发生。另外,发现有遗传早现现象存在,且疾病通过母亲传递。这提示在与PKD1不连锁的家系中后代可能早发病。  相似文献   

2.
目的研究中国人多囊肾病基因1(polycystic kidney disease 1 gene,PKD1)突变的特点,检测基因突变位点。方法25例多囊肾患者,正常对照16名,扩增PKD1基因的第44、45外显子的基因片段,变性梯度凝胶电泳突变检测系统进行初筛,然后测序。结果发现1个移码突变(12431delCT)、1个无义突变(C12217T)、1个多态性(A50747C),突变检测率为8%(2/25)。结论检测到2个新的可能的致病突变:1个移码突变(12431delCT)、1个无义突变(C12217T)。  相似文献   

3.
常染色体显性多囊肾病PKD1基因及其蛋白质   总被引:2,自引:2,他引:0  
常染色体显性多囊肾病PKD1基因及其蛋白质丁兰张思仲常染色体显性多囊肾病(ADPKD)是人类最常见的单基因遗传病之一,为了阐明ADPKD的生化缺陷和发病机理,研究者采用了定位克隆的方法研究此病,即首先从基因着手,再研究蛋白质的性质,并以此来阐明发病机...  相似文献   

4.
目的研究两例常染色体显性多囊肾患者的致病原因。方法对常染色体显性多囊肾患者的多囊肾病1基因(PKD1)3′端单拷贝区进行了聚合酶链反应-变性高效液相色谱(PCR-denaturing high-per-formance liquid chromatography,DHPLC)分析,并对有异常峰形的PCR产物进行测序。结果在1例患者中发现第42外显子的C11901A有一个无义突变,导致原丝氨酸3897变为终止密码子;而另一例患者第35外显子的C10737T有一个错义突变,导致原苏氨酸3509变为甲硫氨酸。在正常对照中发现两种同义突变分别为第42外显子的G11824A及C11860T。结论用DHPLC和DNA测序方法对两名患者进行PKD1的突变检测中,发现一个新的无义突变、一个错义突变以及两种同义突变。  相似文献   

5.
6.
常染色体显性多囊肾组织差异表达基因的初步研究   总被引:1,自引:0,他引:1  
目的应用基因芯片技术及最新公共数据库,筛选常染色体显性多囊肾组织中差异表达的基因,对其进行功能分类,并对其中1条基因利用原位杂交技术进行验证。方法将代表8398条人类基因的PCR产物制成基因芯片。将等量的多囊肾组织和正常肾组织mRNA分别用Cy5、Cy3荧光标记,逆转录合成cDNA探针,混合后与上述基因芯片杂交。扫描杂交信号荧光强度,找出差异表达基因,对获得的基因进行分子生物信息学分析。并对其中的上调表达基因IGF1 mRNA进行原位杂交,验证基因芯片结果的准确性。结果(1)在进入研究的8398条基因中,共发现357条差异表达基因。94条基因在多囊肾组织中低表达,263条基因高表达;(2)上调表达基因主要属于原癌基因,细胞骨架蛋白和运动相关蛋白,凋亡相关蛋白,细胞信号和传递蛋白,细胞因子;下调表达基因主要属于抑癌基因,DNA结合、转录和转录因子,细胞信号和传递蛋白,参与代谢的基因;(3)IGF1 mRNA原位杂交结果与芯片结果一致。结论基因表达谱芯片可快速、高效地筛选差异表达基因;多囊肾病的发生、发展中存在着多种不同功能基因表达调控的改变。  相似文献   

7.
目的 分析与成人多囊肾病PKD2基因紧密连锁的4种微卫星DNA D4S1534、D4S1563、D4S423和D4S414在中国汉族人群中的多态性,为该病的异质性研究奠定基础。方法 采用聚合酶链反应、聚丙烯酰胺凝胶电泳和银染技术对部分无血缘关系的中国汉族人的上述4个微卫星DNA进行了多态分析。结果 在中国汉族人群中,D4S1534、D4S1563、D4S423和D4S414的等位片段分别为11种、14种、17种和15种,其等位片段大小分别为142-162bp、205-235bp、103-135bp和236-264bp,多态信息量分别为0.872、0.844、0.921和0.871。结论 在研究的中国汉族人群中,D4S1534、D4S1563、D4S423和D4S414这4种微卫星有较多的等位片段,均是高度多态的遗传标记,人为类群体遗传学提供了数据,表明这4种微卫星可用于成人多囊肾病的遗传异质性的研究、连锁分析、法医学个体鉴定和亲权鉴定。  相似文献   

8.
目的 分析常染色体显性遗传性多囊肾病(ADPKD)患者临床特征及基因突变特点。方法 入选ADPKD患者23例,收集临床数据,并进行家系调查;抽取外周血经高通量测序方法进行多囊肾基因检测。结果 23例ADPKD患者主要临床表现为腰腹痛、血尿、感染,肾功能不全;与女性患者相比,男性ADPKD患者血尿酸水平明显增高;基因检测PKD1基因突变19例;PKD2基因突变4例。同处于慢性肾脏病(CKD)5期的ADPKD患者,PKD1基因突变患者血红蛋白明显低于PKD2基因突变患者(65.89±13.59 vs 97.5±17.02,P<0.01)。结论 ADPKD可进展至肾功能衰竭,基因检测有助于早期诊断和预后评估,终末期ADPKD患者,PKD1基因突变患者预后更差。  相似文献   

9.
目的探讨8个多囊肾病家系的致病变异位点, 为常染色体显性多囊肾病(autosomal dominant polycystic kidney disease, ADPKD)的遗传咨询和产前诊断提供理论依据。方法应用全外显子组测序和高通量测序技术检测8个独立家系中先证者的PKD1、PKD2基因, 通过Sanger测序进行位点验证和家系分析, 结合多囊肾疾病数据库和蛋白变异预测软件进行生物信息学分析。结果检测出8个PDK1变异, 包括5个无义变异和3个错义变异。其中4个无义变异PDK1:c.7555C>T, c.7288C>T, c.4957C>T和c.11423G>A已报道为ADPKD的致病变异, 1个错义变异PDK1:c.2180T>G(p.Leu727Arg)报道为可能致病的变异;3个变异位点未见报道, c.6781G>T(p.Glu2261*), c.109T>G(p.Cys37Gly), c.8495A>G(p.Asn2832Ser), 其中无义变异PDK1 c.6781G>T(p.Glu2261*)为致病变异, 错义变异PDK...  相似文献   

10.
常染色体显性成人多囊肾病研究新进展   总被引:1,自引:0,他引:1  
成人多囊肾病是一种发病率高,危害严重的常染色体显性遗传病.该病发病晚,发病时往往已将致病基因传递给了下一代.由于发病的分子机制尚未完全明了,尚缺乏有效的治疗药物,使其预防和治疗比较困难.现将近年来成人多囊肾病在发病机制、诊断、治疗研究方面的最新进展作一介绍.  相似文献   

11.
12.
13.
Chung W  Kim H  Hwang YH  Kim SY  Ko AR  Ro H  Lee KB  Lee JS  Oh KH  Ahn C 《Clinical genetics》2006,70(6):502-508
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous and is caused by mutations in the PKD1 or PKD2 genes. ADPKD caused by PKD2 mutations is characterized by a longer survival and a later onset of end-stage renal disease than ADPKD caused by PKD1 mutations. PKD2 encodes a 2.9-kb messenger RNA and is derived from 15 exons. Two-dimensional gene scanning (TDGS) is more efficient in detecting mutations in genes such as PKD2 because it can scan the whole coding regions simultaneously. In order to determine the prevalence of Korean PKD2 patients, all the coding sequences of PKD2 were screened using TDGS and direct sequencing in 46 randomly selected ADPKD patients (group 1). Another 45 ADPKD patients (group 2), who were presumed to be PKD2 patients, were screened in order to identify the type of mutation in the Korean PKD2 patients. Eight novel different mutations and three known mutations in the PKD2 gene were detected in 17 patients: 6 patients (13.0%) in group 1 and 11 patients (24.4%) in group 2. Considering the sensitivity of TDGS, the prevalence of PKD2 in Korean population might be greater than 18.6%. Both known and novel mutations were identified by TDGS in Korean PKD2 patients. Overall, these results showed that TDGS might be useful for diagnosing PKD2.  相似文献   

14.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.  相似文献   

15.
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder (incidence, 1:1,000). The mutation of PKD1 is thought to account for 85% of ADPKD. Although a considerable number of studies on PKD1 mutation have been published recently, most of them concern Caucasian ADPKD patients. In the present study, we examined PKD1 mutations in Japanese ADPKD patients. Long-range polymerase chain reaction (LR-PCR) with PKD1-specific primers followed by nested PCR was used to analyze the duplicated region of PKD1. Six novel chain-terminating mutations were detected: three nonsense mutations (Q2014X transition in exon 15, Q2969X in exon 24, and E2810X in exon 23), two deletions (2132del29 in exon10 and 7024delAC in exon 15), and one splicing mutation (IVS21-2delAG). There was also one nonconservative missense mutation (T2083I). Two other potentially pathogenic missense mutations (G2814R and L2816P) were on the downstream site of one nonsense mutation. These three mutations and a following polymorphism (8662C>T) were probably the result of gene conversion from one of the homologous genes to PKD1. Six other polymorphisms were found. Most PKD1 mutations in Japanese ADPKD patients were novel and definitely pathogenic. One pedigree did not link to either PKD1 or PKD2.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号