首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Because of the potential roles of the primo vascular system (PVS) in cancer metastasis, immune function, and regeneration, understanding the molecular biology of the PVS is desirable. The current state of PVS research is comparable to that of lymph research prior to the advent of Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). There is very little knowledge of the molecular biology of the PVS due to difficulties in identifying and isolating primo endothelial cells. Present investigations rely on the morphology and the use of differential staining procedures to identify the PVS within tissues, making detailed molecular studies all but impossible. To overcome such difficulties, one may emulate the explosive development of lymph molecular biology. For this purpose, there is a need for a reliable method to obtain PVS specimens to initiate the molecular investigation. One of the most reliable methods is to detect the primo vessels and primo nodes afloat in the lymph flow. The protocols for observation of the PVS in the large lymph ducts in the abdominal cavity and the thoracic cavity were reported earlier. These methods require a laparectomy and skillful techniques. In this work, we present a protocol to identify and harvest PVS specimens from the lymph ducts connecting the inguinal and the axillary nodes, which are located entirely in the skin. Thus, the PVS specimen is more easily obtainable. This method is a stepping-stone toward development of a system to monitor migration of cancer cells in metastasis from a breast tumor to the axillary nodes, where cancer cells use the PVS as a survival rope in hostile lymph flow.  相似文献   

2.
Molecular-level understanding of the structure and the functions of the lymphatic system has greatly enhanced the importance of this second circulation system, especially in connection with cancer metastasis and inflammation. Recently, a third circulatory system, the primo vascular system (PVS) was found in various parts of an animal's body, especially as threadlike structures floating in the lymphatic flow in lymph vessels. Although the medical significance of this emerging system will require much work in the future, at present, several important suggestions in connection with immune cells, stem cells, and cancer metastasis have already appeared. Experiments to observe the PVS in the lymph vessels near the caudal vena cava of rabbits and rats have been performed by several independent teams, but reproduction requires considerable skill and technical know-how. In this article, we provide a detailed protocol to detect the PVS inside the lymph vessels of a rabbit. Detection and isolation are the first steps in unraveling the physiological functions of the PVS, which awaits intensive research.  相似文献   

3.
Traditional Eastern medicine has had a successful existence for a long time and has provided functional paths for curing disease. However, some scientists do not accept acupuncture, primarily because the meridian system lacks a physical anatomical basis. To date, scientific theories have not been able to explain the functional paths used by traditional Eastern medicine to cure disease. According to Western medicine, no known anatomical foundation exists for the meridians and unknown nervous, circulatory, endocrine, and immune mechanisms mediate the effects of acupuncture. In the early 1960s, only one hypothesis was proposed to explain the anatomical basis of the meridians. By using different experimental approaches during the past 10 years, the number of scientific papers that report the discovery of different anatomical and physiological evidence confirming the existence of an anatomical basis for the meridian system has increased. Morphological science is greatly challenged to offer a new biomedical theory that explains the possible existence of new bodily systems such as the primo vascular system (PVS). The PVS is a previously unknown system that integrates the features of the cardiovascular, nervous, immune, and hormonal systems. It also provides a physical substrate for the acupuncture points and meridians. Announcements of the morphological architectonics and the function of the PVS fundamentally changed the basic understanding of biology and medicine because the PVS is involved in the development and the functions of living organisms. We propose a new vision of the anatomical basis for the PVS and the vital energy—called “Qi”—as an electromagnetic wave that is involved very closely with the DNA in the PVS. DNA provides genetic information and it functions as a store of information that can be obtained from the electromagnetic fields of the environment. The PVS is the communication system between living organisms and the environment, and it lies at the lowest level of life. The theory of the PVS could be a good basis for forming a new point of view of Darwin's evolutionary theory. Discoveries in morphological theory—such as discoveries with respect to the PVS—have not been made since the 18th century. For that reason, the PVS needs more attention.  相似文献   

4.
The purpose of this study was to trace the formative process of primo vascular system (PVS) research over the past decade and to describe the characteristics of the Korean scientific community. By publishing approximately 30 papers in journals ranking in the Science Citation Index (Expanded), the PVS research team actively convinced domestic and international scientists of the anatomical existence of the PVS and its possible application to Korean and Western medicine. In addition, by sharing the PVS observation technique, the team promoted the dissemination and further pursuit of the research. In 2012, however, PVS researchers performed smaller scale research without advancing to a higher level as compared to the early days. The main reasons were found to be the Korean Research and Development policy of supporting creative, small-scale basic research and applied research of Western scientific fields that promised potentially greater success on an extensive scale; the indifference concerning, and the disbelief in, the existence of a new circulatory system were shown by the Western medical community. In addition, the Oriental medical community was apathetic about working with the PVS team. Professors Kwang-Sup Soh and Byung-Cheon Lee were the prime movers of PVS research under difficult conditions. Spurred by their belief in the existence and significance of the PVS, they continued with their research despite insufficient experimental data. The Korean scientific community is not ready to promote the Korea-oriented creative field of the PVS team.  相似文献   

5.
Until now, even though intensive research has been dedicated to the primo vascular system (PVS) during these years, no statistical data on primo vessels and primo vessels in lymph flow have been available. Recently, the general morphological features of primo vessels in lymph vessels around the abdominal aorta were identified from microdissections of tissues from New Zealand White rabbits, and with Alcian blue staining, primo vessels in lymphatic vessels could be definitely identified under a digital microscope. The micro-dissected specimens in situ reveal rod-shaped nuclei stained by Acridine orange. The blue-stained nuclei, which were distributed in a broken-lined stripe, formed a tube structure of about 20 μm in diameter. The distance between the nuclei of two cells on neighboring aligned stripes, which is also the diameter of the micro tube, was measured to be about 5~10μm. The average length of the primo vessels was 2.4 mm, with the longest being 5.6 mm. The average size of the primo vessel was 50 μm, and the average diameters of the primo and the lymph vessels were 26.0 μm and 258.5 μm, respectively. Occasionally, without the use of Alcian blue staining, milk-white transparent primo vessels were observed floating in lymph vessels. Thus, we suggest that the PVS might also have an important function connected with the lymph system. We also expect the traditional Korean meridian system to leave its invisible world during the last thousands of years and soon enter the visible scientific world.  相似文献   

6.
This article provides potential reasons for the past 45-year halt in research between the time of the Bonghan system of Bong Han Kim (B.H. Kim) and that of the primo vascular system (PVS) of Kwang-Sup Soh (K.S. Soh), briefly but more accurately in its history. Over the years, numerous questions related to the Bonghan system and the PVS have arisen, especially from researchers interested in pursuing PVS research: When and how did B.H. Kim's study results on the Bonghan system become known to public? Why did B.H. Kim and his publications disappear after 1966? Why was little study performed on the system for almost 50 years after Kim? Why and how was the research on the system reinitiated in 2002 by Kwang-Sup Soh? Why did the Bonghan system become the PVS? These questions, as well as technical difficulties in identifying the system, have discouraged many researchers from becoming involved in research on the system. The motivation for preparing this article was to remove doubts about the existence of this important organ, which might have been caused by its unusual and unclear historical background, by providing an accurate history.  相似文献   

7.
The purpose of this review is to describe the methodology, instruments, and subject animals used until now for studies of the meridian (Kyungrak) system and the primo vascular system (PVS). The PVS is observed as an anatomical system distributed in cavities, organs, and tissues throughout the body. We analyzed the most important points of the PVS based on the results obtained until the present. Our main effort has been directed to describing the main thesis relating to the morphological structures and their topography, the functional mechanisms of the PVS, and possible roles of the PVS in pathological processes. The substance of the PVS in all its aspects is as a system covering the whole body and regulating and coordinating the biological processes that are the basis for life. In conclusion, we suggest that the finding of the PVS represents the discovery of a new integrated morphological-functional system.  相似文献   

8.
The primo vascular system (PVS) has been observed in various animals such as mice, rats, rabbits, dogs, swine, and cow, but not in humans. In this work, we report on the observation of a human PVS on both the epithelial fascia and inside the blood vessels of the umbilical cord (UC). The main morphological characteristics of the primo vessels (PVs) and primo nodes (PNs) from the human UC were in agreement with those of the PVS in various animal organs, including the thicknesses and the transparency of the PVs, the sizes of the PNs, the broken-line arrangement of the rod-shaped nuclei, the sparse distribution of nuclei, and the presence of hollow lumens in the central inner parts of the PNs. It was rather surprising that the human PV was not thicker than the PVs from small animals. The difference between the PVS and blood/lymph vessels was confirmed using immunofluorescence staining of von Willebrand factor, CD31, LYVE-1, and D2-40. The positive expression of the PVS to proliferating cell nuclear antigen, a cell-proliferation marker, was consistent with the recent finding of very small embryonic-like stem cells in the PVS of mice.  相似文献   

9.
Two periods of primo vascular system (PVS) discovery exist. The first one includes the five reports of B. H. Kim made from 1962 to 1965. The second one is from 2002 until the present time and includes reports made mainly by the Seoul National University group using modern methods. The purpose of this article is to describe the claims in B. H. Kim's reports, to comment on the most important points of his claims, and to offer hypotheses for the morphological architecture and the function of the PVS. The PVS integrated the cardiovascular, nervous, and hormonal systems. Thus, the particularities of the various body systems are combined in the PVS. The PVS is not a simple circulatory system like the cardiovascular system. Its influence on all body systems is a combination of not only substances and signals but also energy and information. The primordial PVS is like a matrix for the vascular and the nervous systems, which are formed around the PVS. The PVS is duplicated by the vascular and the nervous systems in the very early stage of body development. This is the reason why the PVS combines the features of the vascular, the nervous, and the hormonal systems. Subsequently, all embryonic body systems have developed, the primordial PVS remains connected to them, but dominates and controls them as the primeval functional system.  相似文献   

10.
BackgroundThe primo vascular system (PVS) has been difficult to detect due to its small diameter and translucent features of the threadlike network. Thus, contrast-enhancing dyes including Alcian blue, Trypan blue and Janus green B had to be used for finding and taking out PVS from rat and mouse.ObjectiveGeneration of monoclonal antibodies (mAbs) against PVS of rat was intended to use as a detector for PVS and a biological tool for functional study of PVS.Materials and methodsPrimo vessel (PV) and Primo node (PN) were isolated from organ surfaces of rat and then their proteins were isolated and injected into mouse as an immunogen. The classical traditional method was applied for production of mAbs against PVS. The various techniques, such as cell fusion, screening of hybridoma, ELISA, Western blotting (WB), immunofluorescence microscopy (IF), and limiting dilution, were used to generate mAbs against PVS.ResultsAmong 16 mAbs generated, 4 representative mAbs were characterized with their specificities in ELISA, WB, and IF. α-rPVS-m1-1 and α-rPVS-m4-6 had strong binding affinities to PVS in both ELISA and WB but did not show specificities in IF at all. On the contrary, α-rPVS-m3-2 and α-rPVS-m3-4 almost did not respond in WB but had strong binding affinities in ELISA and specificities in IF. Two mAbs stained predominantly at extra cellular matrix and cell membrane of PVS of rat in IF, and they were able to discriminate PVS from blood vessel (BV) and lymphatic vessel (LV).Conclusions4 representative mAbs against PVS of rat were characterized by ELISA, WB, and IF. α-rPVS-m3-2 and α-rPVS-m3-4, which had strong specificities in IF, can be used as a tool in discriminating PVS from other similar tissues and in elucidate biological function of PVS.  相似文献   

11.
BackgroundThe primo vascular system (PVS) is a novel network composed of primo nodes (PNs) and primo vessels (PVs). Currently, its anatomy is not fully understood.ObjectivesThe aim of this study was to elucidate the three-dimensional PN–PV structure.MethodsOrgan-surface PVS tissue was isolated from healthy and anemic rats. The tissues were analyzed by X-ray microcomputed tomography (CT), hematoxylin and eosin staining, and scanning electron microscopy.ResultsFrom CT images, we identified one or more bundles in a PV. In the PN, the bundles were enlarged and existed in isolation and/or in anastomosis. The transverse CT images revealed four areas of distinct intensities: zero, low, intermediate, and high. The first two were considered to be the sinuses and the subvessels of the PVS and were identified in the hematoxylin and eosin–stained PN sections. The enlargement of the PN from anemic rats was associated with an increase in the intermediate-intensity area. The high-intensity area demarcated the bundle and was overlapped with the mesothelial cells. In scanning electron microscopy, the PV bundles branched out, tapering down to a single bundle at some distance from the PN. Each bundle was composed of several subvessels (∼5 μm). Clustered round microcells (1–25 μm), scattered flat oval cells (∼15 μm), and amorphous extracellular matrix were observed on the surface of the PVS tissue.ConclusionsThe results newly showed that the primo bundle is a structural unit of both PVs and PNs. A bundle was demarcated by high CT intensity and mesothelial cells and consisted of multiple subvessels. The PN bundles contained also sinuses.  相似文献   

12.
The primo vascular systems (PVS) observed in the central nervous system have been limited to the ones floating in the cerebrospinal fluid. In those experiments, it was difficult to obtain the same results because the PVS was not fixed in a given anatomical position. In the current work, we report a finding of a PVS in a well-defined location, namely, underneath the superior sagittal sinus in the sagittal fissure, so that repetition of the experiments is possible. This provides a cornerstone for PVS research because the lack of reproducible sample-taking hindered a deeper study of the PVS, such as RNA sequencing or RNA microarray. This obstacle can be overcome through the discovery in the current work. This PVS showed characteristics of the PVS observed in other organs. It showed the bundle structure of subvessels, the parallel distributions of F-actins, and the rod-shaped nuclei. Furthermore, it had a primo node in front of the confluence of sinuses above the pineal body. It had branches shooting off from the main primo vessel in the subarachnoid space toward the cerebral hemispheres. The results indicate that this PVS underneath superior sagittal sinus has proper features to function as a flowing channel.  相似文献   

13.
Murine melanoma requires the complex development of lymphatic, vascular, and non-vascular structures. A possible relationship between the primo vascular system (PVS) and the melanoma metastasis has been proposed. In particular, the PVS may be involved in oxygen transport. Vasculogenic-like networks, similar to the PVS, have been found within melanoma tumors, but their functional relationship with the PVS and meridian structures are unclear. Herein, we report on the use of an electrochemical O(2) sensor to study oxygenation levels of melanoma tumors in mice. We consistently found higher tissue oxygenation in specific sites of tumors (n=5). These sites were strongly associated with vascular structures or the PVS. Furthermore, the PVS on the tumor surface was associated with adipose tissue. Our findings suggest that the PVS is involved in the regulation of metastasis.  相似文献   

14.
The primo vascular system (PVS) is a very important topic of study nowadays because of their role in transport and regeneration of tissue and in cell migration and cancer metastasis. The PVS was detected in different organs of the rabbit but not in the placenta. In this work, we observe the PVS inside the blood vessels of the placenta for the first time. The main characteristic features of the primo vessels (PVs) from the rabbit placenta were in agreement with the PVS in different organs of animals, including the rod-shaped nuclei and their arrangement.  相似文献   

15.
Background/aimRecently, a novel circulatory system, the primo vascular system (PVS), was found to be a potent metastatic route of cancer cells. The aim of the current work is to demonstrate that cancer cells injected into the testis migrate through the primo vessel (PV).Materials and methodsNCI-H460 cells labeled with fluorescent nanoparticles (FNP) or green fluorescent protein (GFP) gene transfection were injected into testicular parenchyma in 24 rats. After 24 hours of injection, the abdominal cavity was investigated via a stereomicroscope, to detect the PVS, and the samples were analyzed histologically with 4′,6-diamidino-2-phenylindole (DAPI) and hematoxylin and eosin.ResultsInjected cancer cells were detected inside the PVS distributed on the abdominal organs. Some were detected inside intestinal parenchyma into which the attached primo vessels (PVs) entered.ConclusionThe results supported the fact that the PVS may be a novel migration path of cancer cells, in addition to the lymphatic and hematogenous routes.  相似文献   

16.
针刺治疗持续性植物状态的临床研究   总被引:10,自引:0,他引:10  
目的 观察针刺治疗持续性植物状态(PVS)的疗效。方法 对50例PVS患者运用针灸催醒及脑复苏后的系列症状对症治疗。结果与结论 针灸治疗PVS总有效率为82%。疗效与病程有很大关系,病程越长,有效率愈低;治疗在11-15个疗程者效果最佳,短疗程的治疗意义不大。  相似文献   

17.
Objective: To study the Sanwei Wugan Cuxing method against PVS scale score and wake-promoting effect in patients with a persistent vegetative state.Methods: Thirty patients with a persistent vegetative state aged from 1 to 60 years old were included in the study.PVS scale score, the effect of the Sanwei Wugan Cuxing method against PVS scale score and wake-promoting effect in patients with a persistent vegetative state were analyzed and discussed.Results: Thirty patients who were consistent with the diagnosis of persistent vegetative state adhered to treatment for six months.PVS ratings have been improved to varying degrees.PVS scale scores in 14 patients were greater than or equal to 12 points, basically out of the vegetative state; wake-promoting rate was 46.67%.Through SPSS 18 analysis, PVS score had significant difference before and after treatment.Conclusion: The Sanwei Wugan Cuxing method has exact effects in patients with a persistent vegetative state.  相似文献   

18.
The primo vascular system (PVS) is reported to have a periductium composed of cells with spherical or spindle-shaped nuclei and abundant cytoplasm. However, little is known about these periductium cells. In this study, we examined the morphological features of cells covering the PVS tissue isolated from the surface of abdominal organs of rats. By hematoxylin and eosin (H&E) staining, we observed a layer of dark nuclei on the basement membrane at the borders of the sections of primo node (PN), primo vessel (PV), and their subunits. The nuclei appeared thin and linear (10-14 μm), elliptical (8-10 × 3-4 μm), and round (5-7 μm). The borders of the PVS tissue sections were immunostained with a selective antibody for mesothelial cells (MCs). Areas of immunoreactivity overlapped with the flattened cells are shown by hematoxylin and eosin staining. By scanning electron microscopy, we further identified elliptical (11 × 21 μm) and rectangular squamous MCs (length, 10 μm). There were numerous stomata (∼200 nm) and microparticles (20-200 nm) on the surface of the PVS MCs. In conclusion, this study presents the novel finding that the PVS periductium is composed of squamous MCs. These cells tightly line the luminal surface of the PVS tissue, including PNs, PVs, and small branches of the PVs in the abdominal cavity. These results will help us to understand the physiological roles such as hyaluronan secretion and the fine structure of PVS tissue.  相似文献   

19.
目的:通过临床试验,研究三维五感促醒法对持续植物状态患者PVS评分量表的影响和促醒作用。方法:本研究通过对30例符合持续植物状态诊断的1~60岁患者实施三维五感促醒法治疗,并对治疗前后PVS量表分值变化的进行科学分析,探讨三维五感促醒法对持续植物状态患者PVS量表评分的影响和促醒作用。结果:30例符合持续植物状态诊断的患者在坚持治疗半年后,PVS评分均有不同程度的提高,有14人PVS量表评分大于等于12分,基本脱离植物状态,促醒率达到46.67%。通过SPSS18分析,治疗前后患者PVS评分具有显著差异。结论:三维五感促醒法对持续植物状态患者确切的促醒作用。  相似文献   

20.
笔者发现的信道结构不完备性定律为经络信道结构的系统性提供了理论依据。以往没有发现特殊结构的结论为这一认识提供了反证。新结构观认为:毛细血管、淋巴管、神经等生长需要靶细胞产生的诱导因子;初始发育时细胞和间隙、缝隙分布的不对称导致序因子的产生和分布不均衡;又由此导致毛细血管、淋巴管、神经等的分布形态出现时空有序;经络是对这种形态分布特征的简单刻画,它服从系统性统计分布规律;经络的信道结构是分布优化、有序兼容的系统性结构。笔者认为经络信道的空间序结构、时间序结构、发育过程的逻辑结构基础和兼容性均具有解剖可视性。精细解剖学、定量解剖学、发育过程解剖学、比较解剖学,生物体的数字化三维重建、发育过程的结构动态重建都应成为经络信道结构研究的重要工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号