首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ efflux by Ca2+ cation antiporter (CaCA) proteins is important for maintenance of Ca2+ homeostasis across the cell membrane. Recently, the monomeric structure of the prokaryotic Na+/Ca2+ exchanger (NCX) antiporter NCX_Mj protein from Methanococcus jannaschii shows an outward-facing conformation suggesting a hypothesis of alternating substrate access for Ca2+ efflux. To demonstrate conformational changes essential for the CaCA mechanism, we present the crystal structure of the Ca2+/H+ antiporter protein YfkE from Bacillus subtilis at 3.1-Å resolution. YfkE forms a homotrimer, confirmed by disulfide crosslinking. The protonated state of YfkE exhibits an inward-facing conformation with a large hydrophilic cavity opening to the cytoplasm in each protomer and ending in the middle of the membrane at the Ca2+-binding site. A hydrophobic “seal” closes its periplasmic exit. Four conserved α-repeat helices assemble in an X-like conformation to form a Ca2+/H+ exchange pathway. In the Ca2+-binding site, two essential glutamate residues exhibit different conformations compared with their counterparts in NCX_Mj, whereas several amino acid substitutions occlude the Na+-binding sites. The structural differences between the inward-facing YfkE and the outward-facing NCX_Mj suggest that the conformational transition is triggered by the rotation of the kink angles of transmembrane helices 2 and 7 and is mediated by large conformational changes in their adjacent transmembrane helices 1 and 6. Our structural and mutational analyses not only establish structural bases for mechanisms of Ca2+/H+ exchange and its pH regulation but also shed light on the evolutionary adaptation to different energy modes in the CaCA protein family.  相似文献   

2.
Sorcin is a penta-EF-hand protein that interacts with intracellular target proteins after Ca2+ binding. The sarcolemmal Na+/Ca2+ exchanger (NCX1) may be an important sorcin target in cardiac muscle. In this study, RNAi knockdown of sorcin, purified sorcin or sorcin variants was employed in parallel measurements of: (i) NCX activity in isolated rabbit cardiomyocytes using electrophysiological techniques and (ii) sorcin binding to the NCX1 calcium binding domains (CBD1 and (iii) using surface plasmon resonance and gel overlay techniques. Sorcin is activated by Ca2+ binding to the EF3 and EF2 regions, which are connected by the D helix. To investigate the importance of this region in the interaction with NCX1, three variants were examined: W105G and W99G, mutated respectively near EF3 and EF2, and E124A that does not bind Ca2+ due to a mutation at EF3. Downregulation of sorcin decreased and supplementation with wt sorcin (3 μM) increased NCX activity in isolated cardiomyocytes. The relative stimulatory effects of the sorcin variants were: W105G > wt sorcin > Sorcin Calcium Binding Domain (SCBD) > W99G > E124A. Sorcin binding to both CBD1 and 2 was observed. In the presence of 50 µM Ca2+, the interaction with CBD1 followed the order W105G > SCBD > wt sorcin > W99G > E124A. In sorcin, the interacting surface can be mapped on the C-terminal Ca2+-binding domain in the D helix region comprising W99. The fast association/dissociation rates that characterize the interaction of sorcin with CBD1 and 2 may permit complex formation/dissociation during an excitation/contraction cycle.  相似文献   

3.
Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) Ca2+ transporters pump cytosolic Ca2+ into the endoplasmic reticulum, maintaining a Ca2+ gradient that controls vital cell functions ranging from proliferation to death. To meet the physiological demand of the cell, SERCA activity is regulated by adjusting the affinity for Ca2+ ions. Of all SERCA isoforms, the housekeeping SERCA2b isoform displays the highest Ca2+ affinity because of a unique C-terminal extension (2b-tail). Here, an extensive structure–function analysis of SERCA2b mutants and SERCA1a2b chimera revealed how the 2b-tail controls Ca2+ affinity. Its transmembrane (TM) segment (TM11) and luminal extension functionally cooperate and interact with TM7/TM10 and luminal loops of SERCA2b, respectively. This stabilizes the Ca2+-bound E1 conformation and alters Ca2+-transport kinetics, which provides the rationale for the higher apparent Ca2+ affinity. Based on our NMR structure of TM11 and guided by mutagenesis results, a structural model was developed for SERCA2b that supports the proposed 2b-tail mechanism and is reminiscent of the interaction between the α- and β-subunits of Na+,K+-ATPase. The 2b-tail interaction site may represent a novel target to increase the Ca2+ affinity of malfunctioning SERCA2a in the failing heart to improve contractility.  相似文献   

4.
A common abnormality of cellular Ca2+ handling in most tissues of spontaneously hypertensive rats (SHR) has been suggested. Therefore we investigated the ATP-dependent Ca2+ transport and Na+/Ca2+ exchange system in basolateral membrane vesicles (BLMV) of renal cortices from SHR and normotensive Wistar-Kyoto rats (WKY) at 12 and 20 weeks of age. In WKY the maximal transport rate of the ATP-dependent Ca2+ transport was 5.7 nmol/min/mg prot with an affinity for Ca2+ of 0.14 µM. These values were not significantly different in SHR at both ages studied. High concentrations of Na+ inhibited ATP-dependent Ca2+ uptake by 40% in BLMV of SHR and WKY. Low concentrations of Na+ stimulated ATP-dependent Ca2+ transport 20% in both rats. These findings suggest equal Na+/Ca2+ exchange activity in WKY and SHR. The present study failed to show a significant change in ATP-dependent Ca2+ transport and Na+/Ca2+ exchange activity in renal BLMV in SHR, suggesting that the Ca2+ homeostasis of the cortical cells is normal in SHR as far as the plasmamembrane is concerned.  相似文献   

5.
Assays for complete quantification of Na+, K+-and Ca2+-ATPase in crude homogenates of rat ventricular myocardium by determination of K+-and Ca2+-dependentp-nitrophenyl phosphatase (pNPPase) activities were evaluated and optimized. Using these assays the total K+-and Ca2+-dependentpNPPase activities in ventricular myocardium of 11–12 week-old rats were found to be 2.98±0.10 and 0.29±0.02 mol×min–1×g–1 wet wt. (mean±SEM) (n=5), respectively. Coefficient of variance of interindividual determinations was 7 and 12%, respectively. The total Na+, K+-and Ca2+-ATPase concentrations were estimated to 2 and 10 nmol×g–1 wet wt., respectively. Evaluation of a putative developmental variation revealed a biphasic age-related change in the rat myocardial Ca2+-dependentpNPPase activity with an increase from birth to around the third week of life followed by a decrease. By contrast, the K+-dependentpNPPase activity of the rat myocardium showed a decrease from birth to adulthood. It was excluded that the changes were simple out-come of variations in water and protein content of myocardium. Expressed per heart, the K+-and Ca2+-dependentpNPPase activity gradually increased to a plateau. The present assay for Na+, K+-ATPase quantification has the advantage over [3H] ouabain binding of being applicable on the ouabain-resistant rat myocardium, and is more simple and rapid than measurements of K+-dependent 3-0-methylfluorescein phosphatase (3-0-MFPase) in crude tissue homogenates. Furthermore, with few modifications thepNPPase assay allows quantification of Ca2+-ATPase on crude myocardial homogenates. Age-dependent changes in K+-and Ca2+-dependentpNPPase activities are of developmental interest and indicate the importance of close age match in studies of quantitative aspects of Na+, K+-and Ca2+-ATPase in excitable tissues.Abbreviations Na+, K+-ATPase sodium, potassium-dependent ATPase - Ca2+-ATPase caldium-dependent ATPase - pNP p-nitrophenyl - pNPP p-nitrophenyl phosphate - 3-0-MFP 3-0 methylfluorescein phosphate - DOC sodium deoxycholate  相似文献   

6.
The effects of Na+ and Ca2+ concentrations in the reperfusate on post-ischemic myocardial recovery were examined. Also, the myocardial protective effects of amiloride, an inhibitor of the Na+/Ca2+ and Na+/H+ exchange systems, added to cardioplegic solutions were assessed, using an isolated working rat heart perfusion system. Global myocardial ischemia was induced by 30-min normothermic cardioplegic arrest, using St. Thomas’ solution. The concentration of Na+ in the reperfusate varied, stepwise, from 75 to 145 mM/l, and that of Ca2+, from 0.1 to 2.5 mM/l. In this study post-ischemic functional recovery was best at 110 mM/l Na+ and 1.2–1.8 mM/l Ca2+ in the reperfusate. A significantly greater postischemic functional recovery and a lower creatine kinase release were observed when amiloride was added to the cardioplegic solution. Ca2+ overload via Na+/Ca2+ and Na+/H+ exchange systems would, thus, appear to be due, at least in part, to post-ischemic reperfusion injury.  相似文献   

7.
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca2+ concentration inside pancreatic acinar cells ([Ca2+]i), due to excessive release of Ca2+ stored inside the cells followed by Ca2+ entry from the interstitial fluid. The sustained [Ca2+]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca2+ release-activated Ca2+ channels (CRAC) would prevent sustained elevation of [Ca2+]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca2+ ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca2+. Ca2+ entry then occurred upon admission of Ca2+ to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca2+ entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca2+ spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca2+]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca2+]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.  相似文献   

8.
The central importance of calcium clearance proteins, and their regulators, in the modulation of myocardial contractility and intracellular Ca2+ concentration ([Ca2+]i) has long been established. Key players identified include the Na+-Ca2+ exchanger, the Na+-K+ ATPase, the sarco(endo)plasmic reticulum Ca2+-ATPase and associated phospholamban. Gene-targeted and transgenic murine models have been critical in the elucidation of their function. The study of these proteins in the regulation of contractile parameters in vascular smooth muscle, on the other hand, is less well studied. More recently, gene-targeted and transgenic models have expanded our knowledge of Ca2+ clearance proteins and their role in both tonic and phasic smooth muscle contractility. In this review, we will briefly treat the mechanisms which underlie Ca2+ clearance in smooth muscle. These will be addressed in light of studies using gene-modified mouse models, the results of which will be compared and contrasted with those in the cardiomyocyte. The recently identified human mutations in phospholamban, which lead to dilated cardiomyopathy, are also present in vascular and other smooth muscle. Given the importance of these Ca2+ clearance systems to modulation of smooth muscle, it is likely that mutations will also lead to smooth muscle pathology.  相似文献   

9.
The present study was conducted to investigate the effects of the diabetic condition on the Ca2+ mobilization and glutamate release in cerebral nerve terminals (synaptosomes). Diabetes was induced in male mice by intraperitoneal injection of streptozotocin. Cytosolic free Ca2+ concentration ([Ca2+]i) and glutamate release in synaptosomes were determined using fura-2 and enzyme-linked fluorometric assay, respectively. Diabetes significantly enhanced the ability of the depolarizing agents K+ and 4-aminopyridine (4-AP) to increase [Ca2+]i. In addition, diabetes significantly enhanced K+- and 4-AP-evoked Ca2+-dependent glutamate release. The pretreatment of synaptosomes with a combination of ω-agatoxin IVA (a P-type Ca2+ channel blocker) and ω-conotoxin GVIA (an N-type Ca2+ channel blocker) inhibited K+- or 4-AP-induced increases in [Ca2+]i and Ca2+-dependent glutamate release in synaptosomes from the control and diabetic mice to a similar extent, respectively. These results indicate that diabetes enhances a K+- or 4-AP-evoked Ca2+-dependent glutamate release by increasing [Ca2+]i via stimulation of Ca2+ entry through both P- and N-type Ca2+ channels.  相似文献   

10.
Calcium-binding protein 1 (CaBP1) is a neuron-specific member of the calmodulin superfamily that regulates several Ca2+ channels, including inositol 1,4,5-trisphosphate receptors (InsP3Rs). CaBP1 alone does not affect InsP3R activity, but it inhibits InsP3-evoked Ca2+ release by slowing the rate of InsP3R opening. The inhibition is enhanced by Ca2+ binding to both the InsP3R and CaBP1. CaBP1 binds via its C lobe to the cytosolic N-terminal region (NT; residues 1–604) of InsP3R1. NMR paramagnetic relaxation enhancement analysis demonstrates that a cluster of hydrophobic residues (V101, L104, and V162) within the C lobe of CaBP1 that are exposed after Ca2+ binding interact with a complementary cluster of hydrophobic residues (L302, I364, and L393) in the β-domain of the InsP3-binding core. These residues are essential for CaBP1 binding to the NT and for inhibition of InsP3R activity by CaBP1. Docking analyses and paramagnetic relaxation enhancement structural restraints suggest that CaBP1 forms an extended tetrameric turret attached by the tetrameric NT to the cytosolic vestibule of the InsP3R pore. InsP3 activates InsP3Rs by initiating conformational changes that lead to disruption of an intersubunit interaction between a “hot-spot” loop in the suppressor domain (residues 1–223) and the InsP3-binding core β-domain. Targeted cross-linking of residues that contribute to this interface show that InsP3 attenuates cross-linking, whereas CaBP1 promotes it. We conclude that CaBP1 inhibits InsP3R activity by restricting the intersubunit movements that initiate gating.  相似文献   

11.
This study presents a theoretical analysis of the role of store Ca2+ uptake on sinoatrial node (SAN) cell pacemaking. Two mechanisms have been shown to be involved in SAN pacemaking, these being: 1) the membrane oscillator model where rhythm generation is based on the interaction of voltage-dependent membrane ion channels and, 2) the store oscillator model where cyclical release of Ca2+ from intracellular Ca2+ stores depolarizes the membrane through activation of the sodium-calcium exchanger (NCX). The relative roles of these oscillators in generation and modulation of pacemaker rate have been vigorously debated and have many consequences. The main new outcomes of our study are: 1) uptake of Ca2+ by intracellular Ca2+ stores increases the maximum diastolic potential (MDP) by reducing the cytosolic Ca2+ concentration [Ca2+]c and hence decreasing the NCX current; 2) this hyperpolarization enhances recruitment of key pacemaker currents (e.g. the hyperpolarization-activated HCN current (If) and T-type Ca2+ current (IT-Ca)); 3) the resultant enhanced Ca2+ entry during the pacemaker depolarization increases [Ca2+]c causing advancement of the store Ca2+ release cycle and increased NCX current. In overview, the novel feature of our study is an investigation of the role of store Ca2+ uptake on SAN pacemaking. This occurs during the early diastolic period and causes enhanced If, IT-Ca and store release (and hence INCX) during the later diastolic period. There is thus a symbiotic interaction between the two pacemaker “clocks” over the entire diastolic period, this providing robust and highly malleable SAN pacemaking. Accounting for store Ca2+ uptake also provides insight into hitherto unexplained SAN behaviour, as we exemplify for the sinus bradycardia exhibited in catecholaminergic polymorphic ventricular tachycardia (CPVT).  相似文献   

12.
Summary Changes in intracellular Ca2+ release in the diaphragm muscle of alloxan-diabetic mice were compared with changes in normal muscles and non-diabetic denervated muscles. We measured Ca2+ transient aequorin luminescence by direct electrical stimulation of these muscles. External Ca2+-free solution readily decreased the Ca2+ transient in normal muscles but had less of an effect in diabetic muscles. Only when the muscles were pre-injected with EGTA (reducing intracellular levels of free Ca2+) did the Ca2+ transients decrease significantly in diabetic muscles, however, there was no effect in denervated muscles. The caffeine-induced increase in Ca2+ transients, however, was delayed in both diabetic muscles and non-diabetic denervated muscles. The caffeine response was observed in normal muscles under the external Ca2+-free conditions even after EGTA-pretreatment, whereas it was suppressed, after a brief increase, in both diabetic and non-diabetic denervated muscles. These results demonstrate (1) the insensitivity of intracellular Ca2+ mobilization to external Ca2+ levels and the ready accumulation of intracellular Ca2+ in the cytosol in the diabetic state, (2) increased permeability to Ca2+ in the denervated state and (3) impairment of the Ca2+ pool which responds to caffeine in both diabetes and the non-diabetic denervated state. Diabetic neuromyopathy thus appears to be a state of abnormal Ca2+-mobilization caused secondarily by high levels of blood glucose.  相似文献   

13.
Alteration of intracellular Ca2+ homeostasis in failing cardiomyocytes is associated with changes in regulatory proteins located in the sarcoplasmic reticulum (SR) and sarcolemma, which participate in Ca2+ fluxes across the membrane during the cardiac cycle. These regulatory proteins include Ca2+-ATPase (SERCA 2A), phospholamban (PLB), ryanodine-sensitive Ca2+ release channels (RR), and the sarcolemmal Na+–Ca2+ exchanger (NCX). Although their status is known in failed myocardium, it is poorly understood during the progression of heart failure (HF), particularly in large animals. We studied the left ventricular (LV) myocardium of six dogs with moderate HF and six with severe HF produced by multiple intracoronary microembolizations, compared with six normal dogs (NL). Oxalate-dependent SR Ca2+ uptake and expression of SERCA 2A, PLB, phosphorylated PLB at serine 16 (PLB-Ser) and threonine 17 (PLB-Thr), RR, and NCX were determined. Percent LV ejection fraction declined by 47% compared with NL (34.1% ± 1% vs 64% ± 2%) in dogs with moderate HF (HF-2W) 2 weeks after the last embolization and by 42% (20.5% ± 1% vs 34.1% ± 1%) in dogs with severe HF (HF-4M) at 4 months compared with HF-2W. Left ventricular pressure during isovolumic contraction (+dP/dt, mmHg/s) and relaxation (–dP/dt, mmHg/s) was significantly reduced in severe compared with moderate HF. Oxalate-dependent SR Ca2+ uptake (nmol 45Ca2+ accumulated/min per milligram noncollagen protein) declined by 25% (21.3 ± 1 vs 28.5 ± 2) in HF-2W and 49% in HF-4M. Protein expression of SERCA 2A and PLB decreased by 67% and 35%, respectively, in HF-2W compared with NL, whereas SERCA 2A expression increased by 167% and PLB decreased by 40% in HF-4M compared with HF-2W. However, SERCA 2A protein was still significantly lower in HF-4M compared with NL. PLB-Ser and PLB-Thr increased significantly in HF-2W but decreased in HF-4M compared with NL. Similar changes in mRNA encoding PLB and SERCA 2A were observed in dogs with moderate and severe HF. The RR protein level declined in dogs with moderate and severe HF, whereas NCX protein did not change with moderate HF but increased with sever HF. These results suggest that the regulatory proteins responsible for Ca2+ uptake, Ca2+ release, and Na+–Ca2+ exchange are critically associated with the deterioration of LV function during the progression of HF.  相似文献   

14.
Chronic alcohol ingestion leads to alcoholic cardiomyopathy manifested by ventricular dysfunction and heart failure. Although accumulation of reactive oxygen species may play a role in alcohol-induced heart injury, direct impact of enhanced antioxidant defense on pathogenesis of alcoholic cardiomyopathy has not been elucidated. This study was designed to examine the effect of transgenic overexpression of the free radical scavengermetallothionein on alcohol-induced cardiac contractile dysfunction. Wild-type FVB and metallothionein mice were placed on a 4% alcohol or control diet for 12 wk. Cardiac contractile function was evaluated in cardiomyocytes including peak shortening (PS), time-to-peak shortening, time-to-90% relengthening (TR90), maximal velocity of shortening/relengthening (±dL/dt), intracellular Ca2+ rise (change in fura-2 fluorescent intensity [ΔFF1]) and intracellular Ca2+ decay rate. Intracellular Ca2+ cycling proteins including sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), Na+−Ca2+ exchanger (NCX) and phospholamban were assessed using Western blot analysis. Alcohol intake depressed PS, ±dL/dt, and ΔFF1, increased baseline fura-2 fluorescence intensity (FF1), and prolonged intracellular Ca2+ decay and TR90, all of which with the exception of ΔFF1 were abrogated by metallothionein. Enhanced stimulating frequency caused lessened PS decline at 1.0 Hz from FVB ethanol group, which was not affected by metallothionein. Immunoblotting data showed reduced SERCA2a, NCX and phospholamban expression in FVB group consuming alcohol. All of these alcohol-induced changes in cardiac proteins were nullified by the metallothionein transgene. In summary, our findings suggest a beneficial role of antioxidants in alcohol-induced cardiomyocyte dysfunction.  相似文献   

15.

Background

Na+/Ca2+ exchange (NCX) reversal-mediated Ca2+ entry is a critical pathway for stimulating proliferation in many cell lines. However, the role of reverse-mode NCX1 in neointima formation and atherosclerosis remains unclear. The aims of the present study were to investigate the functional role of NCX1 in the pathogenesis of atherosclerosis and vascular smooth muscle cell (VSMC) proliferation, and to determine the interaction between NCX1 and store depletion in VSMCs.

Methods

A rat balloon injury model was established to examine the effect of the knockdown of NCX1 on neointima formation after injury. VSMCs were cultured to verify that NCX1 knockdown suppressed serum-induced VSMC proliferation.

Results

The results showed that balloon injury induced neointima formation and upregulated NCX1 expression at 7 and 14 days after injury in rat carotid arteries (1.18- and 1.45-fold, respectively). A lentivirus vector expressing short hairpin (sh)RNA against rat NCX1 dramatically downregulated NCX1, proliferating cell nuclear antigen (PCNA) and Ki-67 expression, and suppressed neointima formation in vivo (62% at 7 days and 70% at 14 days). KB-R7943 (an inhibitor of reverse-mode NCX1) and NCX1 knockdown significantly inhibited serum-induced VSMC proliferation (65% at 72 hours and 41% at 72 hours, respectively), determined according to PCNA and Ki-67 expression and cell counting in vitro, and markedly suppressed store depletion-mediated Ca2+ entry and peripheral cytosolic Na+ transients in VSMCs.

Conclusions

Reverse-mode NCX1 is activated by store depletion and is required for proliferative VSMC proliferation and neointima formation after arterial injury.  相似文献   

16.
Summary Effects of oxygen free radicals on Ca2+/Mg2+ ATPase and ATP-independent Ca2+-binding activities were examined in rat heart sarcolemma. Membranes were incubated with different oxygen radical generating media such as xanthine + xanthine oxidase, hydrogen peroxide, and hydrogen peroxide + Fe2+. In the presence of xanthine + xanthine oxidase, Ca2+ ATPase activity was stimulated and this effect was prevented by the addition of superoxide dismutase. Hydrogen peroxide also showed a significant increase in Ca2+-ATPase activity in a dose-dependent manner and this effect was blocked by catalase. On the other hand, a combination of hydrogen peroxide + Fe2+ decreased Ca2+-ATPase activity; this depression was prevented by the addition of D-mannitol. The observed change in Ca2+-ATPase activity due to oxygen free radicals was associated with changes in Vmax, whereas Ka remained unaffected. Both xanthine + xanthine oxidase and hydrogen peroxide increased whereas, hydrogen peroxide + Fe2+ inhibited the ATP-independent Ca2+-binding activities. It is suggested that oxygen free radicals may influence Ca2+ movements in the cell by altering the Ca2+/Mg2+ ATPase and Ca2+-binding activities of the membrane and these effects may be oxygen-radical species specific.  相似文献   

17.
Omega-3 polyunsaturated fatty acids (PUFA) confer protection against myocardial injury after ischemia-reperfusion. There are two subfractions of mitochondria located in different regions of the cell: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The present study explored possible differences between Ca2+-induced mitochondrial swelling in rat SSM and IFM fractions under control conditions (control group [CG]) and after dietary supplementation with omega-3 PUFA (experimental group [EG]). Changes in mitochondrial matrix volumes were measured using the light-scattering technique. In the CG, the time courses of swelling were comparable in both mitochondrial fractions, with no difference in Ca2+-induced swelling between the two mitochondrial fractions. In the SSM fraction, no difference in the time course of swelling in Ca2+-free solution between CG and EG was detected. In the EG, both SSM and IFM fractions demonstrated a decreased sensitivity to Ca2+; IFM fractions, however, exhibited significantly less pronounced swelling following Ca2+ addition. The authors conclude that IFM and SSM fractions do not differ in their sensitivity to Ca2+-induced swelling. While dietary omega-3 PUFA protected both mitochondrial fractions against Ca2+-evoked swelling, the protective effect appeared to be more pronounced for the IFM fraction than for the SSM fraction.  相似文献   

18.
Taking advantage of a fluorescent Ca2+ indicator selectively targeted to the trans-Golgi lumen, we here demonstrate that its Ca2+ homeostatic mechanisms are distinct from those of the other Golgi subcompartments: (i) Ca2+ uptake depends exclusively on the activity of the secretory pathway Ca2+ ATPase1 (SPCA1), whereas the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) is excluded; (ii) IP3 generated by receptor stimulation causes Ca2+ uptake rather than release; (iii) Ca2+ release can be triggered by activation of ryanodine receptors in cells endowed with robust expression of the latter channels (e.g., in neonatal cardiac myocyte). Finally, we show that, knocking down the SPCA1, and thus altering the trans-Golgi Ca2+ content, specific functions associated with this subcompartment, such as sorting of proteins to the plasma membrane through the secretory pathway, and the structure of the entire Golgi apparatus are dramatically altered.  相似文献   

19.
Neuronal Ca2+ signals can affect excitability and neural circuit formation. Ca2+ signals are modified by Ca2+ flux from intracellular stores as well as the extracellular milieu. However, the contribution of intracellular Ca2+ stores and their release to neuronal processes is poorly understood. Here, we show by neuron-specific siRNA depletion that activity of the recently identified store-operated channel encoded by dOrai and the endoplasmic reticulum Ca2+ store sensor encoded by dSTIM are necessary for normal flight and associated patterns of rhythmic firing of the flight motoneurons of Drosophila melanogaster. Also, dOrai overexpression in flightless mutants for the Drosophila inositol 1,4,5-trisphosphate receptor (InsP3R) can partially compensate for their loss of flight. Ca2+ measurements show that Orai gain-of-function contributes to the quanta of Ca2+-release through mutant InsP3Rs and elevates store-operated Ca2+ entry in Drosophila neurons. Our data show that replenishment of intracellular store Ca2+ in neurons is required for Drosophila flight.  相似文献   

20.
Summary We investigated the net transsarcolemmal Ca2+ shifts and Ca/Ca exchange by means of45Ca in isolated, perfused ventricles of guinea pig heart treated with vanadate to inhibit ATP-driven sarcolemmal Ca2+ pump. The heart was stimulated (at the rate of 60/min) and perfused with a solution containing45Ca for 60 min. Thereafter stimulation was stopped and either perfusion with radioactive solution was continued or the solution was exchanged for a non-radioactive one. In the first case, tissue45Ca content (equivalent to the exchangeable Ca2+ content) dropped from 1.960±0.120 mmol/kg of wet weight (w.w.) to 0.715±0.049 mmol/kg w.w. and stabilized at this level between 5th and 10th min. In the second case, decrease in45Ca content continued and within 40 min attained 0.047±0.004 mmol/kg w.w., despite stabilizing of the total exchangeable Ca2+ content. Drop of45Ca content in the rested heart perfused (until the end of experiments) with radioactive solution resulted from the net transsarcolemmal Ca2+ shift and it was strongly inhibited by removal of extracellular Na+. The continuing drop in45Ca content in the heart perfused with non-radioactive solution while total Ca2+ content stabilized must have resulted from Ca/Ca exchange; it was stimulated by removal of extracellular Na+. These experiments separate two modes of45Ca fluxes and suggest that a common route of these fluxes is the Na/Ca exchanger.This work was supported by a grant: C.P.B.R.11.6 No 58.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号