首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin (5-HT) closes a specific K channel (“S”) in the cell body of Aplysia sensory neurons, resulting in a slow excitatory postsynaptic potential and spike broadening. To determine whether the S channel is present and can be modulated in processes of the neuron other than the cell body, we studied the effects of 5-HT on growth cones of sensory neurons in culture by using the patch-clamp technique. Simultaneous application of 5-HT to the cell body and to the growth cones of sensory neurons produced, in both, a slow depolarization of ~5 mV. Also, 5-HT produced a lengthening of the duration of action potential in the growth cone and cell body by 20-30%. Similar effects were observed in isolated growth cones that had been severed from the rest of the neuron, implying that the growth cones contain all the molecular components (i.e., receptors, channels, cAMP cascade) necessary for 5-HT action. Cell-attached patch-clamp recordings demonstrated the presence of S channels in sensory neuron growth cones. Application of serotonin to the bath produced long-lasting all-or-none closures of these channels in a manner identical to the previously characterized action of 5-HT in the cell body. Thus, channel modulation is not restricted to the cell body and probably occurs throughout the sensory neuron. This strengthens the view that S-channel modulation may also occur at the sensory neuron presynaptic terminal, where it could play a role in the presynaptic facilitation produced by 5-HT.  相似文献   

2.
Facilitation of the monosynaptic connection between siphon sensory neurons and gill and siphon motor neuron contributes to sensitization and dishabituation of the gill and siphon withdrawal reflex in Aplysia. The facilitatory transmitter serotonin (5-HT) initiates two mechanisms that act in parallel to increase transmitter release from siphon sensory neurons. 5-HT acts, at least partly through cAMP, to broaden the presynaptic action potential. 5-HT also initiates a second process that facilitates depressed sensory neuron synapses by a mechanism independent of changes in action potential duration. Recent experiments indicated that either of two protein kinases, cAMP-dependent protein kinase A and protein kinase C, are capable of effectively activating this second facilitatory mechanism, restoring synaptic transmission in depressed synapses. We have used the adenylyl cyclase inhibitor SQ 22,536 [9-(tetrahydro-2-furyl)adenine or THFA] to explore the contribution of cAMP to the reversal of synaptic depression. THFA effectively inhibited both adenylyl cyclase activity in vitro and known cyclase-mediated effects in intact sensory neurons. THFA also completely blocked facilitation of depressed synapses by 5-HT. These results suggest that adenylyl cyclase plays a critical role in the reversal of synaptic depression that contributes to dishabituation in this system.  相似文献   

3.
Serotonin (5-hydroxytriptamin, 5-HT) triggers germinal vesicle breakdown (GVBD) of oocytes and the transporting of the mature oocyte through the gonoduct via cilia motility in bivalves. The 5-HT receptor in the oocyte membrane of the Japanese scallop, Patinopecten yessoensis, has been pharmacologically characterized as a mixed profile of 5-HT1/5-HT2 and is induced by estradiol-17β (E2). Here we report the isolation, cloning, and tissue expression of the 5-HT receptor from the gonad of the Japanese scallop. A full-length cDNA (1818 bp) encoding a putative 5-HT receptor (5-HTpy) of 454 amino acid residues was isolated from the ovary and shared 53.3% and 40.2% homology with the Aplysia 5-HT1ap and mouse 5-HT1A, respectively. The 5-HTpy sequence possessed typical characteristics of 5-HT1, including seven transmembrane domains, a long third inner loop, and a short fourth inner terminal. Phylogenetic analysis suggested that 5-HTpy was classified into the 5-HT1 subtype as well as other invertebrate 5-HT1 receptors. Semi-quantitative RT-PCR showed the expression of the 5-HTpy gene in both the nervous system and peripheral tissues and the induction of expression by E2 in the ovarian tissue. In situ hybridization revealed a strong 5-HTpy signal in the oocytes, spermatids, and ciliary epithelium of the gonoducts in the ovary and testis. These results suggest that the effects of 5-HT on the induction of oocyte maturation, sperm motility, and transport of mature oocytes and sperm through the ciliated epithelium of the gonoducts are mediated by 5-HTpy.  相似文献   

4.
Studies of sensitization and classical conditioning of the gill-withdrawal reflex in Aplysia have shown that the synaptic connections between identified glutamatergic sensory neurons and motor neurons can be enhanced in one of two ways: by a heterosynaptic (modulatory input-dependent) mechanism that gives rise with repetition to long-term facilitation and by a homosynaptic (activity-dependent) mechanism that gives rise with repetition to a facilitation that is partially blocked by 2-amino-5-phosphonovaleric acid and by injection of 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetate (BAPTA) into the postsynaptic cell and is similar to long-term potentiation in the hippocampus. We here have examined how these two forms of facilitation interact at the level of an individual synaptic connection by using a culture preparation consisting of a single bifurcated sensory neuron that forms independent synaptic contacts with each of two spatially separated motor neurons. We find that the homosynaptic facilitation produced by a train of action potentials is cell wide and is evident at all of the terminals of the sensory neuron. By contrast, the heterosynaptic facilitation mediated by the modulatory transmitter serotonin (5-HT) can operate at the level of a single synapse. Homosynaptic activation gives rise to only a transient facilitation lasting a few hours, even when repeated in a spaced manner. The heterosynaptic facilitation produced by a single pulse of 5-HT, applied to one terminal of the sensory neuron, also lasts only minutes. However, when one or more homosynaptic trains of spike activity are paired with even a single pulse of 5-HT applied to one of the two branches of the sensory neuron, the combined actions lead to a selective enhancement in synaptic strength only at the 5-HT-treated branch that now lasts more than a day, and thus amplifies, by more than 20-fold, the duration of the individually produced homo- and heterosynaptic facilitation. This form of synapse-specific facilitation has unusual long-term properties. It does not require protein synthesis, nor is it accompanied by synaptic growth.  相似文献   

5.
Presynaptic facilitation of transmitter release from Aplysia sensory neurons is an important contributor to behavioral sensitization of the gill and siphon withdrawal reflex. The enhanced release is accompanied by reduction of the serotonin-sensitive S current in the sensory neurons and a consequent increase in duration of the presynaptic action potential (ranging from 10% to 30%). We find that changes of similar magnitude in the duration of depolarizing voltage-clamp steps in sensory neurons in intact abdominal ganglia yield increases in synaptic potentials of 45-120%. In dissociated cell culture, these changes lead to increases of 25-60% in the synaptic potential. Prolongation of presynaptic depolarization using voltage clamp or prolongation of the duration of the action potential by K+-channel blockers leads to prolongation of the time-to-peak of the synaptic potentials; similar changes in time-to-peak occur during presynaptic facilitation. The time-to-peak is not changed by homosynaptic depression or by changing the Ca2+ concentration, procedures that alter release without changing the duration of the action potential. Preventing the spike from broadening by voltage clamping the presynaptic neuron substantially reduces or blocks the facilitation. These results suggest that broadening of the action potential during facilitation is a causal factor in the enhancement of transmitter release.  相似文献   

6.
Serotonin (5-HT) stimulation of prolactin (PRL) secretion is mediated through the dopaminergic (DAergic) system, with 5-HT ligands having no direct effect on pituitary PRL release. Infusion of 5-HT into the third ventricle (ICV) or electrical stimulation (ES) of the medial preoptic area (POM) or the ventromedial nucleus (VMN) induces an increase in circulating PRL in the turkey. These increases in PRL do not occur when a selective antagonist blocks the D1 dopamine (DA) receptors in the infundibular area (INF). In this study, the ICV infusion of (R)(−)-DOI hydrochloride (DOI), a selective 5-HT2A eceptor agonist, caused PRL to increase. Pretreatment with Ketanserin tartrate salt (KETAN), a selective 5-HT2A receptor antagonist, blocked DOI-induced PRL secretion, attesting to the specificity of the response. DOI-induced PRL secretion was prevented when the D1 DA receptors in the INF were blocked by the D1 DA receptor antagonist, R(+)-SCH-23390 hydrochloride microinjection, suggesting that the DAergic activation of the vasoactive intestinal peptide (VIP)/PRL system is mediated by a stimulatory 5-HT2A receptor subtype. The DOI-induced PRL increase did not occur when (±)-8-OH-DPAT (DPAT) was concurrently infused. DPAT is a 5-T1A receptor agonist which appears to mediate the inhibitory influence of 5-HT on PRL secretion. When DPAT was microinjected directly into the VMN, it blocked the PRL release affected by ES in the POM. These data suggested that when 5-HT2A receptors are activated, they influence the release of DA to the INF. When 5-HT1A receptors are stimulated, they somehow inhibit the PRL-releasing actions of 5-HT2A receptors. This inhibition could take place centrally, or it could occur postsynaptically at the pituitary level. It is known that D2 DA receptors in the pituitary antagonize PRL-releasing effect of VIP. A release of DA to the pituitary, initiated by 5-HT1A receptors, could effectively inhibit PRL secretion.  相似文献   

7.

Objective

Serotonin (5-HT) infusion in vivo causes hypotension and a fall in total peripheral resistance. However, the vascular segment and the receptors that mediate this response remain in question. We hypothesized that 5-HT7 receptors mediate arteriolar dilation to 5-HT in skeletal muscle microcirculation.

Methods

Cremaster muscles of isoflurane-anesthetized male Sprague-Dawley rats were prepared for in vivo microscopy of third- and fourth-order arterioles and superfused with physiological salt solution at 34°C. Quantitative real-time PCR (RT-PCR) was applied to pooled samples of first- to third-order cremaster arterioles (2–4 rats/sample) to evaluate 5-HT7 receptor expression.

Results

Topical 5-HT (1–10 nmols) or the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (10–30 nM), dilated third- and fourth-order arterioles, responses that were abolished by 1 μM SB269970, a selective 5-HT7 receptor antagonist. In contrast, dilation induced by the muscarinic agonist, methacholine (100 nmols) was not inhibited by SB269970. Serotonin (10 nmols) failed to dilate cremaster arterioles in 5-HT7 receptor knockout rats whereas arterioles in wild-type litter mates dilated to 1 nmol 5-HT, a response blocked by 1 μM SB269970. Quantitative RT-PCR revealed that cremaster arterioles expressed mRNA for 5-HT7 receptors.

Conclusions

5-HT7 receptors mediate dilation of small arterioles in skeletal muscle and likely contribute to 5-HT-induced hypotension, in vivo.  相似文献   

8.
The multiple 5-hydroxytryptamine (5-HT, serotonin) receptor subtypes are distinguished. In this article, we described mainly the 5-HT4 receptor of four subtypes of functional 5-HT receptors, 5-HT1, 5-HT2, 5-HT3, and 5-HT4, recognized in the gastrointestinal tract. In-vivo microdialysis experiments determined that activation of the 5-HT4 receptor stimulated intestinal motor activity associated with a local increase in acetylcholine (ACh) release from the intestinal cholinergic neurons in the whole body of dogs. The 5-HT4 receptor-mediated response of ACh release in the antral, corporal, and fundic strips isolated from guinea pig stomach corresponds to the presence of 5-HT4 receptor in the myenteric plexus. In-vitro receptor autoradiograms of the stomach and colon indicate that the distribution of 5-HT4 receptors in human tissues is similar to that in the guinea pig, although density of 5-HT4 receptors in the myenteric plexus of human tissues is lower than that in guinea pig tissues. The 5-HT4 receptors located in the myenteric plexus may participate in gastrointestinal motility, and thus the 5-HT4 agonists and antagonists may be available for treatment of dysfunction of gastrointestinal motility. Received: November 22, 1999 / Accepted: March 24, 2000  相似文献   

9.
The type and function of 5-hydroxytryptamine (5-HT) receptors on intestinal muscle cells in humans are not known. 5-HT receptors were characterized pharmacologically and by radioligand binding. Contraction, relaxation, inositol 1,4,5-triphosphate (IP3) and adenosine 3′,5′-cyclic monophosphate (cAMP) formation, and 5-HT binding were measured in dispersed muscle cells and in cells in which only one receptor type was preserved by selective receptor protection. 5-HT binding was completely inhibited by 5-HT and partially by 5-HT2A (ketanserin), 5-HT4 (SDZ-205,557), and 5-HT1p (N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide; 5-HTP-DP) receptor antagonists. 5-HT caused contraction that was inhibited by ketanserin and augmented by SDZ-205,557 and 5-HTP-DP. In the presence of ketanserin, 5-HT caused relaxation of cholecystokinin-contracted cells that was inhibited by SDZ-205,557 and 5-HTP-DP. 5-HT increased IP3, which was inhibited by ketanserin, and cAMP, which was inhibited by SDZ-205,557 and 5-HTP-DP. In cells with only 5-HT2A receptors, 5-HT caused contraction only, and residual binding was inhibited by ketanserin. In cells with only receptors, 5-HT caused only relaxation and residual binding was inhibited by SDZ-205,557 and 5-HTP-DP. 5-HT2A receptors mediating contraction and 5-HT4 receptors mediating relaxation coexist on human intestinal muscle cells. The 5-HT4 receptors are closely similar or identical to 5-HT1p receptors.  相似文献   

10.
In utero ethanol exposure results in a decreased concentration of serotonin (5-HT) in brain regions containing the cell bodies of 5-HT neurons and their cortical projections. The concentration of 5-HT reuptake sites is also reduced in several brain areas. The present study extended prior work by evaluating the effects of chronic maternal ethanol consumption and maternal buspirone treatment on 5-HT1A and 5-HT2A receptors in multiple brain areas of offspring. Receptors were quantitated early in postnatal development and at an age when the 5-HT networks are normally well-established. Because fetal 5-HT functions as an essential neurotrophic factor, these studies also determined whether treatment of pregnant rats with buspirone, a 5-HT1A agonist, could overcome the effects of the fetal 5-HT deficit and prevent ethanol-associated receptor abnormalities. The results demonstrated that in utero ethanol exposure significantly alters the binding of 0.1 nM [3H]-8-hydroxy-dipropylaminotetralin to 5-HT1A receptors in developing animals. Ethanol impaired the development of 5-HT1A receptors in the frontal cortex, parietal cortex, and lateral septum; these receptors did not undergo the normal developmental increase between postnatal days 19 and 35. The dentate gyms was also sensitive to the effects of in utero ethanol exposure. 5-HT1A receptors were increased in this region at 19 days. Maternal buspirone treatment prevented the ethanol-associated abnormalities in 5-HT1A receptors in the dentate gyms, frontal cortex, and lateral septum. Neither maternal ethanol consumption nor buspirone treatment altered the binding of 2 nM [3H]ketanserin to 5-HT2A receptors in the ventral dentate gyrus, dorsal raphe, parietal and frontal cortexes, striatum, substantia nigra, or nucleus accumbens.  相似文献   

11.
5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.  相似文献   

12.
Aplysia siphon sensory cells exhibit heterosynaptic facilitation of transmitter release during both sensitization and classical conditioning of the siphon withdrawal response. In the present study, we asked whether facilitation must invariably enhance transmission at all terminals of a neuron or whether facilitation can instead occur at one set of terminals without also occurring at other terminals of the same cell. To examine this question, we compared effects of local application of serotonin and of connective stimulation on transmission at central and peripheral branches of single sensory cells. We found that heterosynaptic facilitation can be branch-specific and can occur at either central or peripheral synapses independently. We also found that siphon sensory cells exhibit homosynaptic post-tetanic potentiation, allowing us to compare effects of hetero- and homosynaptic facilitation in the same cells. By contrast to heterosynaptic facilitation, homosynaptic facilitation occurs concomitantly at both central and peripheral synapses of siphon sensory cells. Thus, while both heterosynaptic and homosynaptic facilitation involve increases in transmitter release from sensory neuron terminals, heterosynaptic facilitation provides a greater specificity and flexibility in the modification of synaptic connections.  相似文献   

13.
14.
Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice.Serotonin (5-hydroxytryptamine, or 5-HT) is an important modulator of anxiety circuits (1). The diverse effects of serotonin are mediated through various 5-HT receptors (5-HT-Rs), including 5-HT1–7-Rs (2). Recent pharmacologic and genetic studies have highlighted an important role of 5-HT2c-Rs in anxiety disorders; however, the interpretation of physiological and behavioral data remains difficult owing to a lack of selective pharmacologic ligands (3).5-HT2c-Rs are expressed in various cell types and brain regions of the anxiety circuit, including the amygdala and the dorsal raphe nucleus (DRN), a midbrain region containing high concentrations of 5-HT neurons. It has been suggested that 5-HT2c-Rs are expressed in GABAergic neurons, and that 5-HT2c-R activation may contribute to an inhibitory feedback control of 5-HT cell firing (4). The functional and behavioral consequences of such a possible inhibitory feedback mechanism for 5-HT firing have not yet been investigated, however.Unfortunately, current techniques for identifying the functions of 5-HT2c-Rs in vertebrate brains are of limited value. For example, agonists and antagonists of 5-HT2c-Rs are often unspecific, and their action is not restricted to a specific cell type. Complete and conditional knockouts of the receptor gene have limited control of developmental and compensation effects by other G-protein–coupled receptors (GPCRs), and none of the current techniques allows for the physiological control of the 5-HT2c-R activation on a millisecond to second time scale.To overcome the limitations of pharmacologic and genetic approaches, we have developed a new light-activated GPCR based on vertebrate melanopsin (vMo). Both 5-HT2c-Rs and vMo couple to the Gq signaling pathway (5, 6). To investigate the functional consequence of Gq signal activation in the cell types and cellular structures where 5-HT2c-Rs are located, we virally expressed vMo carrying the C terminus (CT) of the 5-HT2c-R in GABAergic neurons in the DRN. We found that light activation of vMo-CT5-HT2c decreases the firing of 5-HT neurons and modulates anxiety behaviors in mice. Our results demonstrate a previously unidentified, autoregulatory negative feedback mechanism for the firing of serotonergic neurons to control anxiety in mice.  相似文献   

15.
Whereas short-term (minutes) facilitation at Aplysia sensory–motor neuron synapses is presynaptic, long-term (days) facilitation involves synaptic growth, which requires both presynaptic and postsynaptic mechanisms. How are the postsynaptic mechanisms recruited, and when does that process begin? We have been investigating the possible role of spontaneous transmitter release from the presynaptic neuron. In the previous paper, we found that spontaneous release is critical for the induction of long-term facilitation, and this process begins during an intermediate-term stage of facilitation that is the first stage to involve postsynaptic as well as presynaptic mechanisms. We now report that increased spontaneous release during the short-term stage acts as an orthograde signal to recruit postsynaptic mechanisms of intermediate-term facilitation including increased IP3, Ca2+, and membrane insertion and recruitment of clusters of AMPA-like receptors, which may be first steps in synaptic growth during long-term facilitation. These results suggest that the different stages of facilitation involve a cascade of pre- and postsynaptic mechanisms, which is initiated by spontaneous release and may culminate in synaptic growth.  相似文献   

16.

Background and Objective

Although 5-fluorouracil (5-FU) is a widely used as chemotherapy agent, severe mucositis develops in approximately 80 % of patients. 5-FU-induced small intestinal mucositis can cause nausea and vomiting. The current study was designed to investigate peripheral alterations due to the 5-FU-induced mucositis of neuronal and non-neuronal 5-HT3 and NK1 receptor expression by immunohistochemical analysis.

Methods

5-FU was administered by i.p. injection to C57BL/6 mice. After 4 days, segments of the jejunum were removed. The specimens were analyzed by immunohistochemistry, real-time PCR, and enzyme immunoassay.

Results

The numbers of 5-HT3 receptor immunopositive cells and nerve fibers in mucosa were increased by 5-FU treatment. The 5-HT3 receptor immunopositive cell bodies were found only in jejunal submucosa and myenteric plexus in the 5-FU-treated mice. The numbers of NK1 receptor cells in mucosa and immunopositive expression of NK1 receptors in deep muscular plexus were dramatically increased in 5-FU-treated mice. Real-time PCR demonstrated that 5-FU treatment significantly increased mRNA levels of 5-HT3A, 5-HT3B, and NK1 receptors. The amounts of 5-HT and substance P increased after 5-FU treatment. The 5-HT3 or NK1 receptor immunopositive cells colocalized with both 5-HT and substance P. Furthermore, 5-HT3 and NK1 receptors colocalized with CD11b.

Conclusions

The 5-HT3 and NK1 immunopositive macrophages and mucosal mast cells in lamina propria release 5-HT and substance P, which in turn activate their corresponding receptors on mucosal cells in autocrine and paracrine manners. It is assumed to result in the release of 5-HT and substance P in mucosa.  相似文献   

17.
Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one of which is coupled to the cAMP/protein kinase A (PKA) pathway and the other to the inositol triphosphate/protein kinase C (PKC) pathway. Here we describe a genetic approach to assessing the isolated contribution of the PKA pathway to short-term facilitation. We have cloned from Aplysia an octopamine receptor gene, Ap oa(1), that couples selectively to the cAMP/PKA pathway. We have ectopically expressed this receptor in Aplysia sensory neurons of the pleural ganglia, where it is not normally expressed. Activation of this receptor by octopamine stimulates all four presynaptic events involved in short-term synaptic facilitation that are normally produced by serotonin: (i) membrane depolarization; (ii) increased membrane excitability; (iii) increased spike duration; and (iv) presynaptic facilitation. These results indicate that the cAMP/PKA pathway alone is sufficient to produce all the features of presynaptic facilitation.  相似文献   

18.
To study the contribution of cAMP to the spike broadening produced by serotonin (5-HT) in the pleural sensory neurons of the tail withdrawal reflex, we utilized two phosphodiesterase-resistant cAMP analogs: the Sp diastereomer of cyclic adenosine 3',5'-monophosphothioate (Sp-cAMP[S]), which activates protein kinase A, and the antagonist Rp diastereomer of cyclic adenosine 3',5'-monophosphothioate (Rp-cAMP[S]), agonist Sp-cAMP[S] was injected into the sensory neurons, it caused spike broadening comparable to that induced by 5-HT. In turn, the cAMP antagonist Rp-cAMP[S] blocked approximately 50% of the 5-HT-induced spike broadening. We next examined the K+ currents that are modulated by 5-HT and determined how these currents are affected by cAMP. Confirming Baxter and Byrne [(1989) J. Neurophysiol. 62, 665-679], we found that 5-HT modulated two currents, an S-type K+ current (IKS) as well as a transient and voltage-dependent K+ current (IKV). Rp-cAMP[S] blocked the reduction by 5-HT of the early phase of IKV in parallel with, and to the same degree (60%), as this inhibitor blocked the IKS and spike broadening. These results support the idea that in the pleural sensory neurons cAMP mediates a significant part of the spike broadening that accompanies short-term facilitation produced by 5-HT and that cAMP can produce spike broadening by modulating both IKV and IKS.  相似文献   

19.
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder associated with substantial cardiovascular and neurobehavioral morbidity. Yet this is a disorder for which there are no widely effective pharmacotherapies. The pathophysiology of obstructive sleep apnea namely, normal respiration in waking with disordered breathing only in sleep, suggests that this disorder should be readily amenable to drug therapy. Over the past 10 years, we have gained tremendous insight into the neurochemical mechanisms involved in state-dependent control of respiration. It is apparent from this work that there are many potential avenues for pharmacotherapies, including several seemingly conflicting directions for serotonergic therapies.Serotonin delivery is reduced to upper airway dilator motor neurons in sleep, and this contributes, at least in part, to sleep-related reductions in dilator muscle activity and upper airway obstruction. The dilator motor neuron post-synaptic serotonin receptors are 5-HT2A and 5-HT2C subtypes, and in adults the presynaptic 5-HT receptor in motor nuclei is 5-HT1B, an inhibitory receptor. Serotonin receptors are also found within central respiratory neuronal groups, and these receptor subtypes include 5-HT1A (inhibitory) and 5-HT2 receptors. Peripherally, stimulation of 5-HT2A, 5-HT2C and 5-HT3 receptor subtypes have an inhibitory effect on respiration via action at the nodose ganglion. Many of these receptor subtypes and their signal transduction pathways may be affected by oxidative stress in obstructive sleep apnea. These alterations will make finding drug therapies for sleep apnea more challenging, but not insurmountable. Future directions are suggested for elucidating safe, well-tolerated serotonergic drugs for this disorder.Tryptophan was one of the first serotonergic drugs tested for OSAHS. This drug was withdrawn from the market as a result of reports linking tryptophan use with eosinophilic myalgia syndrome and life-threatening pulmonary hypertension. Newer drugs with serotonergic activity tested in persons with sleep-disordered breathing include buspirone, fluoxetine and paroxetine. Trials are presently being conducted to evaluate the effects of 5-HT2A and 5-HT3 antagonists on OSAHS. Many of the drugs tested have not shown significant improvement in sleep apnea. However, with continued effort to elucidate the pharmacology of neurochemical control of state-dependent changes in respiratory control, the availability of pharmacological therapy for this disorder is not too far away.  相似文献   

20.
Summary The vascular responses to 5-hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT, a selective 5-HT1-like receptor agonist), alphamethyl-5-HT (-M-5-HT, a relatively selective 5-HT2 receptor agonist), noradrenaline (NA), and KCl were examined in isolated, cannulated, and perfused canine common carotid arterial preparations. They caused strong vasoconstrictions. The rank order of vasoconstrictive potency was 5-HT > -M-5-HT NA > 5-CT >> KCl. The 5-HT-induced vasoconstriction was significantly depressed by methysergide (a 5-HT1 and 5-HT2 receptor antagonist), ketanserin (a selective 5-HT2 receptor antagonist), and spiperone (a selective 5-HT2 receptor antagonist). The 5-CT- and -M-5-HT-induced vasoconstrictions were also significantly inhibited by methysergide, spiperone, and ketanserin. The NA-induced vasoconstriction was readily inhibited by bunazosin (an -adrenoceptor antagonist) and ketanserin but not significantly inhibited by spiperone and methysergide. KCl has a weak potency for producing a vasoconstriction of the canine common carotid artery. A relatively large dose of diltiazem (a calcium channel blocker) did not modify 5-HT-induced vasoconstrictions. From these results, we conclude that (a) the canine common carotid artery contains abundant 5-HT receptors; (b) there are no functional 5-HT1 receptors, but 5-HT2 receptors are prominent; (c) 5-CT-induced vasoconstrictions might be due to activation of 5-HT2 but not to 5-HT1 receptors; (d) 5-HT-induced vasoconstriction might not involve -adrenoceptors; and (e) the vasoconstriction related to 5-HT in the common carotid artery is not significantly mediated via activation of calcium ion channels of smooth muscle cells, but may be induced by calcium ions from intracellular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号