首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Brain stimulation》2020,13(2):447-449
BackgroundMotor surround inhibition (mSI) is a phenomenon supportive for executing selective finger movements, wherein synergist muscles are selectively facilitated while surround muscles are inhibited. Previous studies of conditioning inputs to several intracortical and cortico-cortical inhibitory networks did not show an influence on mSI. The inhibitory posterior parietal-motor network, which is crucial for executing fine movements, however, has not been studied.Objective/hypothesisTo investigate the role of inhibitory posterior parietal-motor network in mSI. We hypothesized that conditioning this inhibitory network would enhance mSI.Methods11 healthy adults completed study. mSI was elicited by applying a TMS pulse over the motor cortex coupled with or without a conditioning input to an inhibitory spot in the posterior parietal cortex at 2 or 4 ms interval.ResultsConditioning input to the posterior parietal cortex increased mSI by ∼20%ConclusionThe inhibitory posterior parietal-motor network appears to contribute to the genesis of mSI.  相似文献   

2.
BackgroundTranscranial direct current stimulation (tDCS), an emerging technique of noninvasive brain stimulation, has shown to produce beneficial neural effects in consequence with improvements in motor behavior. There are not many studies examining the use of tDCS for lower limb motor control and learning. Most studies using tDCS for facilitating lower limb motor coordination have applied tDCS to the lower limb motor cortex (M1). As the cerebellum is also critically involved in movement control, it is important to dissociate the effect of tDCS on the cerebellum and M1 with respect to lower limb motor control before we begin the application of tDCS as a neuromodulatory tool.Objective/HypothesisThe purpose of this study was to determine the effects of cerebellar vs. motor cortical tDCS on short term ankle visuomotor learning in healthy individuals.MethodsEight healthy individuals practiced a skilled ankle motor tracking task while receiving either facilitatory anodal tDCS to cerebellum, inhibitory cathodal tDCS to cerebellum, facilitatory anodal tDCS to M1, inhibitory cathodal tDCS to M1 or sham stimulation. Pre- and post-measures of changes in cortical excitability of the tibialis anterior muscle and measures of tracking accuracy were assessed.ResultsAnodal cerebellar, cathodal cerebellar, and anodal M1 stimulation improved target-tracking accuracy of the ankle. This was not dependent on the observed changes in motor cortical excitability of the tibialis anterior muscle.Conclusion(s)Polarity independent effects of tDCS on cerebellum were observed. The present study shows that modulation effects of tDCS can occur because of changes in the cerebellum, a structure implicated in several forms of motor learning, providing an additional way in which tDCS can be used to improve motor coordination.  相似文献   

3.
ObjectiveThis study aims to investigate the role of the primary motor cortex ipsilateral to the movement (ipsilateral M1) in unilateral motor execution.MethodsFifteen right-handed healthy subjects underwent functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) experiments. Motor tasks were performed with the right-side limb. Subjects followed visual cues to execute movements in the scanner and independent component analysis (ICA) was applied to analyse the data. Interhemispheric inhibition (IHI), short-interval intracortical inhibition (SICI) and recruitment curves (RCs) of motor-evoked potentials (MEPs) in right M1 were measured by TMS and responses were recorded from the left flexor carpi radialis (FCR) and left anterior deltoid (AD).ResultsGroup ICA showed activations of bilateral M1s highly related to motor tasks. Additionally, TMS results showed significant increases of MEP RCs on the left FCR and left AD during right wrist flexion and right shoulder flexion. Prominent decreases of IHI and SICI were also observed under the same conditions.ConclusionsDuring unilateral muscle contraction, co-activation of the ipsilateral M1 involves additional processes modulated by intra- and interhemispheric interactions and its size of activations is specifically enhanced on the homotopic representation.SignificanceThe ipsilateral M1 plays a central role in unilateral motor executions.  相似文献   

4.
《Brain stimulation》2014,7(6):864-870
BackgroundContinuous theta burst stimulation (cTBS) of the human primary motor cortex (M1) induces long-term depression (LTD)-like plastic changes in corticospinal excitability, but several studies have reported high inter-subject variability of this effect. Most studies use a tonic voluntary contraction of the target muscle before cTBS to set stimulation intensity; however, it is unclear how this might affect response variability.ObjectiveTo examine the influence of pre-activation of the target hand muscle on inter-subject response variability to cTBS of the human M1.MethodsThe response to cTBS was assessed by changes in motor evoked potential (MEP) amplitude in the right first dorsal interosseous (FDI) muscle. For Study 1, ten healthy subjects attended two sessions. They were instructed in one session to keep their FDI relaxed for the entire testing period (pre-relax), and in the other to perform a 2-min 10% of maximal voluntary tonic contraction 15 min before cTBS (pre-active). For Study 2, data from our previous study were re-analyzed to extend the pre-relax condition to an additional 26 subjects (total n = 36).ResultscTBS-induced highly consistent LTD-like MEP depression in the pre-relax condition, but not in the pre-active condition. Inter-subject response variability increased in the pre-active condition.ConclusionscTBS induces consistent LTD-like plasticity with low inter-subject variability if pre-activation of the stimulated motor cortex is avoided. This affirms a translational potential of cTBS in clinical applications that aim at reducing cortical excitability.  相似文献   

5.
《Brain stimulation》2020,13(3):819-831
BackgroundThe function of the primate’s posterior parietal cortex (PPC) in sensorimotor transformations is well-established, though in humans its complexity is still challenging. Well-established models indicate that the posterior parietal cortex influences motor output indirectly, by means of connections to the premotor cortex, which in turn is directly connected to the motor cortex.ObjectiveThe possibility that the PPC could be at the origin of direct afferents to M1 has been suggested in humans but has never been confirmed directly. We aim to do so in the present study by using the novel technique of paired intraoperative cortical stimulation.MethodsIn the present cross-sectional study, we assessed during intraoperative monitoring of the corticospinal tract in brain tumour patients the existence of short-latency effects of parietal stimulation on corticospinal excitability to the upper limb. MEPs were evoked by test stimuli over the motor cortex, which were preceded in some trials by conditioning stimuli on the PPC.ResultsWe identified two active cortical loci. One in the inferior parietal lobule exerted short-latency excitatory effects and one in the superior parietal lobule that drove short-latency inhibitory effects on cortical motor output. All active foci were distributed in the rostral portion of the PPC and on the postcentral sulcus.ConclusionsFor the first time in humans, the present data show direct evidence in favour of a distributed system of connections from the posterior parietal cortex to the ipsilateral primary motor cortex. In addition, we show that dual cortical stimulation is a novel and efficient technique to investigate intraoperative brain connectivity in the anaesthetized patient.  相似文献   

6.
PurposeIn past pediatric and adult cohort studies of moyamoya disease, the fetal posterior cerebral artery has received less attention. Its relationship with the clinical manifestations and collateral circulation of moyamoya disease or ipsilateral cerebral hemispheres remains unclear.MethodWe summarize the clinical features of patients with and without fetal posterior cerebral artery moyamoya disease from consecutive cases.We explored the relationship between fetal posterior cerebral arteries and collateral circulation in the ipsilateral cerebral hemispheres, as well as differences among different subgroups of patients.According to the morphology, the fetal posterior cerebral artery is divided into complete fetal posterior cerebral artery and partial fetal posterior cerebral artery. Clinical features were classified as: infarction,hemorrhage,and non-stroke in unilateral/bilateral cerebral hemispheres. Collateral circulation is divided into extracranial vascular compensation and leptomeningeal collateral circulation. Digital subtraction angiography and CT/MR were used to evaluate the blood flow status and clinical characteristics of patients with moyamoya disease.ResultA total of 960 cerebral hemispheres from 142 pediatric patients and 338 adult patients were included in the study. A total of 273 (56.9%) patients had 399 cerebral hemispheres (41.6%) with fetal posterior cerebral arteries. Adults with fetal posterior cerebral arteries had lower rates of infarction (24.6%vs37.3%, P =0.005) and were less likely to have bilateral stroke (8.4%vs11.5%, P =0.038). Cerebral hemispheres with fetal posterior cerebral artery were more likely to have anterior cerebral artery and middle cerebral artery stenosis and less likely to have occlusion (P =0.002, 0.001), and less likely to involve the posterior circulation (P < 0.001). The cerebral hemispheres of the fetal posterior cerebral artery had higher leptomeningeal collateral circulation scores. There are significant differences in extracranial vascular compensation between cerebral hemispheres with and without fetal posterior cerebral artery. Adult patients with fetal posterior cerebral artery were more advanced in Suzuki stage (P =0.017).ConclusionsOur results suggest that fetal posterior cerebral artery is associated with infarct manifestations in pediatric and adult moyamoya disease. In the cerebral hemispheres, the fetal posterior cerebral artery is associated with ipsilateral hemispheric anterior and posterior circulation artery injury, extracranial vascular compensation, leptomeningeal collateral circulation compensation, and infarction. Adult patients with fetal posterior cerebral artery were more advanced in Suzuki stage.  相似文献   

7.

Objective

To check whether bilateral sequential stimulation (BSS) of M1 with theta burst stimulation (TBS), using facilitatory protocol over non-dominant M1 followed by inhibitory one over dominant M1, can improve skilled task performance with non-dominant hand more than either of the unilateral stimulations do. Both, direct motor cortex (M1) facilitatory non-invasive brain stimulation (NIBS) and contralateral M1 inhibitory NIBS were shown to improve motor learning.

Methods

Forty right-handed healthy subjects were divided into 4 matched groups which received either ipsilateral facilitatory (intermittent TBS [iTBS] over non-dominant M1), contralateral inhibitory (continuous TBS [cTBS] over dominant M1), bilateral sequential (contralateral cTBS followed by ipsilateral iTBS), or placebo stimulation. Performance was evaluated by Purdue peg-board test (PPT), before (T0), immediately after (T1), and 30 min after (T2) an intervention.

Results

In all groups and for both hands, the PPT scores increased at T1 and T2 in comparison to T0, showing clear learning effect. However, for the target non-dominant hand only, immediately after BSS (at T1) the PPT scores improved significantly more than after either of unilateral interventions or placebo.

Conclusion

M1 BSS TBS is an effective intervention for improving motor performance.

Significance

M1 BSS TBS seems as a promising tool for motor learning improvement with potential uses in neurorehabilitation.  相似文献   

8.
《Neuromodulation》2023,26(5):999-1008
ObjectivesAlthough primary motor cortex (M1) transcranial direct current stimulation (tDCS) has an analgesic effect in fibromyalgia (FM), its neural mechanism remains elusive. We investigated whether M1-tDCS modulates a regional temporal variability of blood-oxygenation-level-dependent (BOLD) signals, an indicator of the brain's flexibility and efficiency and if this change is associated with pain improvement.Materials and MethodsIn a within-subjects cross-over design, 12 female FM patients underwent sham and active tDCS on five consecutive days, respectively. Each session was performed with an anode placed on the left M1 and a cathode on the contralateral supraorbital region. The subjects also participated in resting-state functional magnetic resonance imaging (fMRI) at baseline and after sham and active tDCS. We compared the BOLD signal variability (SDBOLD), defined as the standard deviation of the BOLD time-series, between the tDCS conditions. Baseline SDBOLD was compared to 15 healthy female controls.ResultsAt baseline, FM patients showed reduced SDBOLD in the ventromedial prefrontal cortex (vmPFC), lateral PFC, and anterior insula and increased SDBOLD in the posterior insula compared to healthy controls. After active tDCS, compared to sham, we found an increased SDBOLD in the left rostral anterior cingulate cortex (rACC), lateral PFC, and thalamus. After sham tDCS, compared to baseline, we found a decreased SDBOLD in the dorsomedial PFC and posterior cingulate cortex/precuneus. Interestingly, after active tDCS compared to sham, pain reduction was correlated with an increased SDBOLD in the rACC/vmPFC but with a decreased SDBOLD in the posterior insula.ConclusionOur findings suggest that M1-tDCS might revert temporal variability of fMRI signals in the rACC/vmPFC and posterior insula linked to FM pain. Changes in neural variability would be part of the mechanisms underlying repetitive M1-tDCS analgesia in FM.  相似文献   

9.
《Brain stimulation》2020,13(2):310-317
BackgroundThe ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value.ObjectiveTo investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects.MethodsQPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS).ResultsQPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions.ConclusionsQPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL.  相似文献   

10.
The motor consequences of excitotoxic striatal damage have been evaluated extensively in the rat, using tests of whole body motor asymmetry and of deficits in skilled paw and limb movements. However conflicting results of both the type and extent of behavioural deficits have been reported, particularly in the direction of rotation observed in response to the dopamine receptor agonist, apomorphine. The present study investigated the effect of unilateral ibotenic acid lesions in the dorsal striatum of the adult rat, placed at either anterior, posterior, medial, or lateral loci, on rotation in response to both amphetamine and apomorphine, and in the “staircase test” of skilled forelimb use. In a 2 × 2 matrix design experiment, adult female albino rats received a double unilateral lesion of 0.5 μl 0.06 M ibotenic acid injected at each of two sites either anterior (medial and lateral), posterior (medial and lateral), medial (anterior and posterior), or lateral (anterior and posterior). Rats that received posterior lesions showed a marked ipsilateral rotation in response to both amphetamine and apomorphine, while animals receiving anterior lesions showed little ipsilateral or a slight contralateral bias. Rats receiving lateral lesions showed a marked impairment of contralateral paw use on the “staircase test,” while animals with medial lesions showed no significant difference to control unoperated animals. These results confirm the somatotopic organisation of the dorsal striatum in its control of motor functions, and indicate the need to take into account the locus of an excitotoxic lesion in the design of lesion and transplantation studies if we are to achieve reliable tests of the behavioural deficits and recovery. Copyright © 1996 Elsevier Science Inc.  相似文献   

11.
ObjectiveTo compare corticospinal excitability and transcallosal inhibition between contralesional primary motor cortex (M1) and ipsilesional M1. We also investigated the correlation between transcallosal inhibition and upper extremity motor behavior.Materials and methods19 individuals with unilateral ischemic subacute stroke who had severe upper extremity impairment participated in this study. Corticospinal excitability was assessed by measuring the resting motor threshold, active motor threshold and motor evoked potential amplitude. Transcallosal inhibition was investigated by measuring the duration and depth of the ipsilateral silent period (ISP). The data from the two hemispheres were compared and the relationships of transcallosal inhibition with upper extremity motor impairment, grip strength and pinch strength were analyzed.ResultsResting motor threshold (p = 0.001) and active motor threshold (p = 0.001) were lower and motor evoked potential amplitude was higher (p = 0.001) in the contralesional M1 compared to the ipsilesional M1. However, there were no differences between the two M1s in ISP duration (p = 0.297) or ISP depth (p =0. 229). Transcallosal inhibition from the contralesional M1 was positively associated with motor impairment (ISP duration, p = 0.003; ISP depth, p = 0.017) and grip strength (ISP duration, p = 0.016; ISP depth, p = 0.045).ConclusionsSymmetric transcallosal inhibition between hemispheres and positive association of transcallosal inhibition from contralesional M1 with upper extremity motor behavior indicate that recruitment of contralesional M1 may be necessary for recovery in patients with severe upper extremity impairment after subacute ischemic stroke.  相似文献   

12.
The present study describes the pattern of connections of the ventral premotor cortex (PMv) with various cortical regions of the ipsilateral hemisphere in adult squirrel monkeys. Particularly, we 1) quantified the proportion of inputs and outputs that the PMv distal forelimb representation shares with other areas in the ipsilateral cortex and 2) defined the pattern of PMv connections with respect to the location of the distal forelimb representation in primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary motor area (SMA). Intracortical microstimulation techniques (ICMS) were used in four experimentally naïve monkeys to identify M1, PMv, and SMA forelimb movement representations. Multiunit recording techniques and myelin staining were used to identify the S1 hand representation. Then, biotinylated dextran amine (BDA; 10,000 MW) was injected in the center of the PMv distal forelimb representation. After tangential sectioning, the distribution of BDA‐labeled cell bodies and terminal boutons was documented. In M1, labeling followed a rostrolateral pattern, largely leaving the caudomedial M1 unlabeled. Quantification of somata and terminals showed that two areas share major connections with PMv: M1 and frontal areas immediately rostral to PMv, designated as frontal rostral area (FR). Connections with this latter region have not been described previously. Moderate connections were found with PMd, SMA, anterior operculum, and posterior operculum/inferior parietal area. Minor connections were found with diverse areas of the precentral and parietal cortex, including S1. No statistical difference between the proportions of inputs and outputs for any location was observed, supporting the reciprocity of PMv intracortical connections. J. Comp. Neurol. 495:374–390, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

13.
The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and neurofilament protein content. Thus, although the neurons that provide the anterior and posterior cingulate motor projections to area M1 differ morphologically and in laminar origin, their neurochemical profiles are similar with respect to neurofilament protein. This suggests that neurochemical phenotype may be a more important unifying feature for corticocortical projections than morphology. © 1996 Wiley-Liss, Inc.  相似文献   

14.
This study describes the pattern of interhemispheric connections of the ventral premotor cortex (PMv) distal forelimb representation (DFL) in squirrel monkeys. Our objectives were to describe qualitatively and quantitatively the connections of PMv with contralateral cortical areas. Intracortical microstimulation techniques (ICMS) guided the injection of the neuronal tract tracers biotinylated dextran amine or Fast blue into PMv DFL. We classified the interhemispheric connections of PMv into three groups. Major connections were found in the contralateral PMv and supplementary motor area (SMA). Intermediate interhemispheric connections were found in the rostral portion of the primary motor cortex, the frontal area immediately rostral and ventral to PMv (FR), cingulate motor areas (CMAs), and dorsal premotor cortex (PMd). Minor connections were found inconsistently across cases in the anterior operculum (AO), posterior operculum/inferior parietal cortex (PO/IP), and posterior parietal cortex (PP), areas that consistently show connections with PMv in the ipsilateral hemisphere. Within-case comparisons revealed that the percentage of PMv connections with contralateral SMA and PMd are higher than the percentage of PMv connections with these areas in the ipsilateral hemisphere; percentages of PMv connections with contralateral M1 rostral, FR, AO, and the primary somatosensory cortex are lower than percentages of PMv connections with these areas in the ipsilateral hemisphere. These studies increase our knowledge of the pattern of interhemispheric connection of PMv. They help to provide an anatomical foundation for understanding PMv's role in motor control of the hand and interhemispheric interactions that may underlie the coordination of bimanual movements.  相似文献   

15.
Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal‐directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole‐brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.  相似文献   

16.
BackgroundPrevious studies of response inhibition in patients with schizophrenia have focused on reactive inhibition tasks (e.g., stop-signal, go/no-go), primarily observing lateral prefrontal cortex abnormalities. However, recent studies suggest that purposeful and sustained (i.e., proactive) inhibition may also be affected in these patients.MethodsPatients with chronic schizophrenia and healthy controls underwent fMRI while inhibiting motor responses during multisensory (audiovisual) stimulation. Resting state data were also collected.ResultsWe included 37 patients with schizophrenia and 37 healthy controls in our study. Both controls and patients with schizophrenia successfully inhibited the majority of overt motor responses. Functional results indicated basic inhibitory failure in the lateral premotor and sensorimotor cortex, with opposing patterns of positive (schizophrenia) versus negative (control) activation. Abnormal activity was associated with independently assessed signs of psychomotor retardation. Patients with schizophrenia also exhibited unique activation of the pre–supplementary motor area (pre-SMA)/SMA and precuneus relative to baseline as well as a failure to deactivate anterior nodes of the default mode network. Independent resting-state connectivity analysis indicated reduced connectivity between anterior (task results) and posterior regions of the sensorimotor cortex for patients as well as abnormal connectivity between other regions (cerebellum, thalamus, posterior cingulate gyrus and visual cortex).LimitationsAside from rates of false-positive responses, true proactive response inhibition tasks do not provide behavioural metrics that can be independently used to quantify task performance.ConclusionOur results suggest that basic cortico-cortico and intracortical connections between the sensorimotor cortex and adjoining regions are impaired in patients with schizophrenia and that these impaired connections contribute to inhibitory failures (i.e., a positive rather than negative hemodynamic response).  相似文献   

17.
《Brain stimulation》2020,13(6):1824-1833
BackgroundTheta burst stimulation (TBS) and quadripulse stimulation (QPS) are known to induce synaptic plasticity in humans. There have been no head-to-head comparisons of the efficacy and variability between TBS and QPS.ObjectiveTo compare the efficacy and interindividual variability between the original TBS and QPS protocols. We hypothesized that QPS would be more effective and less variable than TBS.MethodsForty-six healthy subjects participated in this study. Thirty subjects participated in the main comparison experiment, and the other sixteen subjects participated in the experiment to obtain natural variation in motor-evoked potentials. The facilitatory effects were compared between intermittent TBS (iTBS) and QPS5, and the inhibitory effects were compared between continuous TBS (cTBS) and QPS50. The motor-evoked potential amplitudes elicited by transcranial magnetic stimulation over the primary motor cortex were measured before the intervention and every 5 min after the intervention for 1 h. To investigate the interindividual variability, the responder/nonresponder/opposite-responder rates were also analyzed.ResultsThe facilitatory effects of QPS5 were greater than those of iTBS, and the inhibitory effects of QPS50 were much stronger than those of cTBS. The responder rate of QPS was significantly higher than that of TBS. QPS had a smaller number of opposite responders than TBS.ConclusionQPS is more effective and stable for synaptic plasticity induction than TBS.  相似文献   

18.
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements.  相似文献   

19.
BackgroundNon-invasive neuromodulation may provide treatment strategies for neurological deficits affecting movement, such as stroke. For example, weak electrical stimulation applied to the hand by wearing a “mesh glove” (MGS) can transiently increase primary motor cortex (M1) excitability. Conversely, transcranial direct current stimulation with the cathode over M1 (c-tDCS) can decrease corticomotor excitability.Objective/Hypothesis: We applied M1 c-tDCS as a priming adjuvant to MGS and hypothesised metaplastic effects would be apparent in improved motor performance and modulation of M1 inhibitory and facilitatory circuits.MethodsSixteen right-handed neurologically healthy individuals participated in a repeated measures cross-over study; nine minutes of sham- or c-tDCS followed by 30 min of suprasensory threshold MGS. Dexterity of the non-dominant (left) hand was assessed using the grooved pegboard task, and measures of corticomotor excitability, intracortical facilitation, short-latency afferent inhibition (SAI), short-interval intracortical inhibition (SICI), and SAI in the presence of SICI (SAIxSICI), were obtained at baseline, post-tDCS, and 0, 30 and 60 min post-MGS.ResultsThere was a greater improvement in grooved pegboard completion times with c-tDCS primed MGS than sham + MGS. There was also more pronounced disinhibition of SAI. However, disinhibition of SAI in the presence of SICI was less and rest motor threshold higher compared to sham + MGS.ConclusionsThe results indicate a metaplastic modulation of corticomotor excitability with c-tDCS primed MGS. Further studies are warranted to determine how various stimulation approaches can induce metaplastic effects on M1 neuronal circuits to boost functional gains obtained with motor practice.  相似文献   

20.
《Clinical neurophysiology》2021,132(5):1185-1193
ObjectivePerinatal arterial ischemic stroke (PAIS) is associated with epileptic spasms of West syndrome (WS) and long term Focal epilepsy (FE). The mechanism of epileptogenic network generation causing hypsarrhythmia of WS is unknown. We hypothesized that Modulation index (MI) [strength of phase-amplitude coupling] and Synchronization likelihood (SL) [degree of connectivity] could interrogate the epileptogenic network in hypsarrhythmia of WS secondary to PAIS.MethodsWe analyzed interictal scalp electroencephalography (EEG) in 10 WS and 11 FE patients with unilateral PAIS. MI between gamma (30–70 Hz) and slow waves (3–4 Hz) was calculated to measure phase-amplitude coupling. SL between electrode pairs was analyzed in 9-frequency bands (5-delta, theta, alpha, beta, gamma) to examine inter- and intra-hemispheric connectivity.ResultsMI was higher in affected hemispheres in WS (p = 0.006); no differences observed in FE. Inter-hemispheric SL of 3-delta, theta, alpha, beta, gamma bands was significantly higher in WS (p < 0.001). In WS, modified Z-Score of intra-hemispheric SL values in 3-delta, theta, alpha, beta and gamma in the affected hemispheres were significantly higher than those in the unaffected hemispheres (p < 0.001) as well as 0.5–4 Hz (p = 0.004).ConclusionsThe significantly higher modulation in affected hemisphere and stronger inter- and intra-hemispheric connectivity generate hypsarrhythmia of WS secondary to PAIS.SignificanceEpileptogenic cortical-subcortical transcallosal networks from affected hemisphere post-PAIS provokes infantile spasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号