首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Paraoxonase 1 (PON1) is an enzyme that detoxifies activated organophosphorus pesticides (OPs) and is also involved in oxidative stress pathways.

Objectives

PON1 activity in newborns is lower than in adults, but the ontogeny of PON1 activity is poorly characterized in young children. We examined the effects of age and PON1 genotype on enzyme activity in a birth cohort of Mexican-American children.

Methods

We determined three substrate-specific measures of PON1 activity in 1,143 plasma samples collected longitudinally from 458 children at five time points from birth through 7 years of age, and genotyped PON1 polymorphisms at positions 192 and –108 in these children.

Results

Contrary to previous reports that PON1 activities plateau by 2 years of age, we observed an age-dependent increase in all three PON1 measures from birth through 7 years of age (p < 0.0001). The PON1192 genotype significantly modified the effect of age on paraoxonase (POase) activity (p < 0.0001) such that increases in enzyme activity with age were influenced by the number of R alleles in a dose-dependent manner. Children with the PON1-108CC192RR diplotype had significantly higher mean PON1 activities and also experienced steeper increases of POase activity over time compared with children with the PON1-108TT192QQ diplotype.

Conclusions

Lower levels of the PON1 enzyme, which is involved in protection against OPs and oxidative stress, persist in young children past 2 years of age through at least 7 years of age. Future policies addressing pesticide exposure in children should take into account that the window of vulnerability to OPs in young children may last beyond infancy.  相似文献   

2.

Background

Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP), is metabolized to CPF-oxon, a potent cholinesterase (ChE) inhibitor, and trichloro-2-pyridinol (TCPy). Urinary TCPy is often used as a biomarker for CPF exposure, whereas blood ChE activity is considered an indicator of CPF toxicity. However, whether these biomarkers are dose related has not been studied extensively in populations with repeated daily OP exposures.

Objective

We sought to determine the relationship between blood ChE and urinary TCPy during repeated occupational exposures to CPF.

Methods

Daily urine samples and weekly blood samples were collected from pesticide workers (n = 38) in Menoufia Governorate, Egypt, before, during, and after 9–17 consecutive days of CPF application to cotton fields. We compared blood butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities with the respective urinary TCPy concentrations in each worker.

Results

Average TCPy levels during the middle of a 1- to 2-week CPF application period were significantly higher in pesticide applicators (6,437 μg/g creatinine) than in technicians (184 μg/g) and engineers (157 μg/g), both of whom are involved in supervising the application process. We observed a statistically significant inverse correlation between urinary TCPy and blood BuChE and AChE activities. The no-effect level (or inflection point) of the exposure–effect relationships has an average urinary TCPy level of 114 μg/g creatinine for BuChE and 3,161 μg/g creatinine for AChE.

Conclusions

Our findings demonstrate a dose–effect relationship between urinary TCPy and both plasma BuChE and red blood cell AChE in humans exposed occupationally to CPF. These findings will contribute to future risk assessment efforts for CPF exposure.  相似文献   

3.

Background

Paraoxonase 1 (PON1) detoxifies oxon derivatives of some organophosphate (OP) pesticides, and its genetic polymorphisms influence enzyme activity and quantity. We previously reported that maternal urinary concentrations of dialkyl phosphate (DAP) metabolites, a marker of OP pesticide exposure, were related to poorer mental development and maternally reported symptoms consistent with pervasive developmental disorder (PDD) in 2-year-olds participating in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study.

Objective

We determined whether PON1 genotypes and enzyme measurements were associated with child neurobehavioral development and whether PON1 modified the association of in utero exposure to OPs (as assessed by maternal DAPs) and neurobehavior.

Methods

We measured DAP concentrations in maternal urine during pregnancy, PON1192 and PON1−108 genotypes in mothers and children, and arylesterase (ARYase) and paraoxonase (POase) in maternal, cord, and 2-year-olds’ blood. We assessed 353 2-year-olds on the Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development and queried their mothers on the Child Behavior Checklist to obtain a score for PDD.

Results

Children with the PON1−108T allele had poorer MDI scores and somewhat poorer PDI scores. Children were less likely to display PDD when they or their mothers had higher ARYase activity and when their mothers had higher POase activity. The association between DAPs and MDI scores was strongest in children with PON1−108T allele, but this and other interactions between DAPs and PON1 polymorphisms or enzymes were not significant.

Conclusion

PON1 was associated with child neurobehavioral development, but additional research is needed to confirm whether it modifies the relation with in utero OP exposure.  相似文献   

4.

Background

The southern United States (excluding Florida) has the highest age-adjusted rate of cardiovascular disease (CVD) in the country, with African Americans having a higher prevalence of CVD than Caucasians. Paraoxonase-1 (PON1), an enzyme associated with high-density lipoprotein particles, participates both in the hydrolysis of oxidized lipids (thus protecting against atherosclerosis) and in the hydrolysis of organophosphates. Higher paraoxonase activity has been associated with lower risk of atherosclerosis.

Objectives

In this study we characterized the distribution of the functional PON1Q192R polymorphisms (PON status as assessed by diazoxonase to paraoxonase ratios) and the PON1 activity levels in 200 adult males and females of both races (50 in each race/sex class) from the southern United States from commercially obtained blood bank serum samples.

Methods

We used spectrophotometric methods with serum to determine PON1 status, arylesterase activities (phenyl acetate hydrolysis), and levels of cotinine and C-reactive protein (CRP).

Results

African Americans had higher paraoxonase activities but lower diazoxonase activities than did Caucasians, consistent with African Americans having a lower proportion of the functional genotype QQ (QQ 15%, QR 34%, RR 44%, 7% indeterminate), than did Caucasians (QQ 60%, QR 31%, RR 7%, 2% indeterminate). Cotinine levels indicated that all samples came from non-smokers and that CRP levels were higher in African Americans than in Caucasians and higher in females than in males. CRP levels showed no association with paraoxonase activities.

Conclusions

These data present initial observations for use in characterizing the poorer cardiovascular health status of the population in the southern United States and more specifically southern African Americans.  相似文献   

5.

Background

Organophosphate pesticides act as cholinesterase inhibitors. For those with agricultural exposure to these chemicals, risk of potential exposure-related health effects may be modified by genetic variability in cholinesterase metabolism. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To understand fully the links between pesticide exposure and potential human disease, analyses must be able to consider genetic variability in pesticide metabolism.

Objectives

We studied participants in the Community Participatory Approach to Measuring Farmworker Pesticide Exposure (PACE3) study to determine whether cholinesterase levels are associated with single-nucleotide polymorphisms (SNPs) involved in pesticide metabolism.

Methods

Cholinesterase levels were measured from blood samples taken from 287 PACE3 participants at up to four time points during the 2007 growing season. We performed association tests of cholinesterase levels and 256 SNPs in 30 candidate genes potentially involved in pesticide metabolism. A false discovery rate (FDR) p-value was used to account for multiple testing.

Results

Thirty-five SNPs were associated (unadjusted p < 0.05) based on at least one of the genetic models tested (general, additive, dominant, and recessive). The strongest evidence of association with cholinesterase levels was observed with two SNPs, rs2668207 and rs2048493, in the butyrylcholinesterase (BCHE) gene (FDR adjusted p = 0.15 for both; unadjusted p = 0.00098 and 0.00068, respectively). In participants with at least one minor allele, cholinesterase levels were lower by 4.3–9.5% at all time points, consistent with an effect that is independent of pesticide exposure.

Conclusions

Common genetic variation in the BCHE gene may contribute to subtle changes in cholinesterase levels.  相似文献   

6.

Background

Women living in agricultural areas may experience high pesticide exposures compared with women in urban or suburban areas because of their proximity to farm activities.

Objective

Our objective was to review the evidence in the published literature for the contribution of nonoccupational pathways of pesticide exposure in women living in North American agricultural areas.

Methods

We evaluated the following nonoccupational exposure pathways: paraoccupational (i.e., take-home or bystander exposure), agricultural drift, residential pesticide use, and dietary ingestion. We also evaluated the role of hygiene factors (e.g., house cleaning, shoe removal).

Results

Among 35 publications identified (published 1995–2013), several reported significant or suggestive (p < 0.1) associations between paraoccupational (n = 19) and agricultural drift (n = 10) pathways and pesticide dust or biomarker levels, and 3 observed that residential use was associated with pesticide concentrations in dust. The 4 studies related to ingestion reported low detection rates of most pesticides in water; additional studies are needed to draw conclusions about the importance of this pathway. Hygiene factors were not consistently linked to exposure among the 18 relevant publications identified.

Conclusions

Evidence supported the importance of paraoccupational, drift, and residential use pathways. Disentangling exposure pathways was difficult because agricultural populations are concurrently exposed to pesticides via multiple pathways. Most evidence was based on measurements of pesticides in residential dust, which are applicable to any household member and are not specific to women. An improved understanding of nonoccupational pesticide exposure pathways in women living in agricultural areas is critical for studying health effects in women and for designing effective exposure-reduction strategies.

Citation

Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Beane Freeman LE. 2015. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect 123:515–524; http://dx.doi.org/10.1289/ehp.1408273  相似文献   

7.

Background

Research suggests that independent and joint effects of genetic variability in the dopamine transporter (DAT) locus and pesticides may influence Parkinson’s disease (PD) risk.

Materials

Methods: In 324 incident PD patients and 334 population controls from our rural California case–control study, we genotyped rs2652510, rs2550956 (for the DAT 5′ clades), and the 3′ variable number of tandem repeats (VNTR). Using geographic information system methods, we determined residential exposure to agricultural maneb and paraquat applications. We also collected occupational pesticide use data. Employing logistic regression, we calculated odds ratios (ORs) for clade diplotypes, VNTR genotype, and number of susceptibility (A clade and 9-repeat) alleles and assessed susceptibility allele–pesticide interactions.

Results

PD risk was increased separately in DAT A clade diplotype carriers [AA vs. BB: OR = 1.66; 95% confidence interval (CI), 1.08–2.57] and 3′ VNTR 9/9 carriers (9/9 vs. 10/10: OR = 1.8; 95% CI, 0.96–3.57), and our data suggest a gene dosing effect. Importantly, high exposure to paraquat and maneb in carriers of one susceptibility allele increased PD risk 3-fold (OR = 2.99; 95% CI, 0.88–10.2), and in carriers of two or more alleles more than 4-fold (OR = 4.53; 95% CI, 1.70–12.1). We obtained similar results for occupational pesticide measures.

Discussion

Using two independent pesticide measures, we a) replicated previously reported gene–environment interactions between DAT genetic variants and occupational pesticide exposure in men and b) overcame previous limitations of nonspecific pesticide measures and potential recall bias by employing state records and computer models to estimate residential pesticide exposure.

Conclusion

Our results suggest that DAT genetic variability and pesticide exposure interact to increase PD risk.  相似文献   

8.

Background

Permethrin is a synthetic pyrethroid insecticide widely used in agriculture, in public health, and in many U.S. homes and gardens.

Objective

In this study we evaluated the incidence of cancer among pesticide applicators exposed to permethrin in the Agricultural Health Study (AHS).

Methods

A total of 49,093 pesticide applicators were included in this analysis of the AHS, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide exposure and lifestyle factors was obtained from self-administered questionnaires completed in 1993–1997. Average length of follow-up since applicator enrollment in the cohort was 9.14 years. We used two permethrin exposure metrics: a) lifetime days applicators personally mixed or applied permethrin and b) intensity-weighted lifetime days (lifetime days weighted by estimated intensity of exposure). We used Poisson regression analysis to estimate relative risks (RRs) and 95% confidence intervals (CIs) for malignancies by tertiles of exposure.

Results

We found no associations between permethrin and all malignant neoplasms combined, or between permethrin and melanoma, non-Hodgkin lymphoma, leukemia, or cancers of the colon, rectum, lung, or prostate. We found elevated and statistically significant risks for multiple myeloma in the highest tertiles of both lifetime exposure-days (RR = 5.72; 95% CI, 2.76–11.87) and intensity-weighted lifetime exposure-days (RR = 5.01; 95% CI, 2.41–10.42), compared with applicators reporting they never used permethrin; these results are based on only 15 exposed cases. These findings were similar across a variety of alternative exposure metrics, exposure categories, and reference groups.

Conclusions

This study found no association with most cancers analyzed. Although the suggested association with multiple myeloma was based on a small number of cases, it warrants further evaluation.  相似文献   

9.

Background

Perfluoroalkanoates, [e.g., perfluorooctanoate (PFOA)], are known peroxisome proliferators that induce hepatomegaly and hepatocarcinogenesis in rodents, and are classic non-genotoxic carcinogens that inhibit in vitro gap-junctional intercellular communication (GJIC). This inhibition of GJIC is known to be a function of perfluorinated carbon lengths ranging from 7 to 10.

Objectives

The aim of this study was to determine if the inhibition of GJIC by PFOA but not perfluoropentanoate (PFPeA) observed in F344 rat liver cells in vitro also occurs in F344 rats in vivo and to determine mechanisms of PFOA dysregulation of GJIC using in vitro assay systems.

Methods

We used an incision load/dye transfer technique to assess GJIC in livers of rats exposed to PFOA and PFPeA. We used in vitro assays with inhibitors of cell signaling enzymes and antioxidants known to regulate GJIC to identify which enzymes regulated PFOA-induced inhibition of GJIC.

Results

PFOA inhibited GJIC and induced hepatomegaly in rat livers, whereas PFPeA had no effect on either end point. Serum biochemistry of liver enzymes indicated no cytotoxic response to these compounds. In vitro analysis of mitogen-activated protein kinase (MAPK) indicated that PFOA, but not PFPeA, can activate the extracellular receptor kinase (ERK). Inhibition of GJIC, in vitro, by PFOA depended on the activation of both ERK and phosphatidylcholine-specific phospholipase C (PC-PLC) in the dysregulation of GJIC in an oxidative-dependent mechanism.

Conclusions

The in vitro analysis of GJIC, an epigenetic marker of tumor promoters, can also predict the in vivo activity of PFOA, which dysregulated GJIC via ERK and PC-PLC.  相似文献   

10.

Background

Contamination of natural waters by toxic cyanobacteria is a growing problem worldwide, resulting in serious water pollution and human health hazards. Microcystins (MCs) represent a group of > 80 cyclic heptapeptides, mediating cytotoxicity via specific protein phosphatase (PP) inhibition at equimolar concentrations (comparable toxicodynamics). Because of the structure and size of MCs, active uptake into cells occurs via organic anion-transporting polypeptides (OATP/Oatp), as confirmed for liver-specific human OATP1B1 and OATP1B3, mouse Oatp1b2 (mOatp1b2), skate Oatp1d1, and the more widely distributed OATP1A2 expressed, for example, at the blood–brain barrier. Tissue-specific and cell-type–specific expression of OATP/Oatp transporters and specific transport of MC congeners (toxicokinetics) therefore appear prerequisite for the reported toxic effects in humans and other species upon MC exposure. Beyond hepatotoxicity induced by the MC-LR congener, the effects of other MC congeners, especially neuronal uptake and toxicity, are unknown.

Objectives

In this study we examined the expression of mOatps and the uptake of congeners MC-LR, MC-LW, and MC-LF in primary murine neurons.

Methods

Intracellular MC accumulation was indicated indirectly via uptake inhibition experiments and directly confirmed by Western blot analysis and a PP inhibition assay. Neuronal mOatp expression was verified at the mRNA and protein level.

Results

MCs can cross neuronal cell membranes, with a subsequent decrease of PP activity. Of 15 mOatps, 12 were expressed at the mRNA level, but we found detectable protein levels for only two: mOatp1a5 (Slco1a5) and the known MC-LR transporter mOatp1b2 (Slco1b2).

Conclusions

These data suggest mOatp-mediated uptake of MC congeners into neurons, thus corroborating earlier assumptions of the neurotoxic potential of MCs.  相似文献   

11.

Background

Cockroaches and mice, which are common in urban homes, are sources of allergens capable of triggering asthma symptoms. Traditional pest control involves the use of scheduled applications of pesticides by professionals as well as pesticide use by residents. In contrast, integrated pest management (IPM) involves sanitation, building maintenance, and limited use of least toxic pesticides.

Objectives

We implemented and evaluated IPM compared with traditional practice for its impact on pests, allergens, pesticide use, and resident satisfaction in a large urban public housing authority.

Methods

We assigned IPM or control status to 13 buildings in five housing developments, and evaluated conditions at baseline, 3 months, and 6 months in 280 apartments in Brooklyn and Manhattan, in New York City (New York). We measured cockroach and mouse populations, collected cockroach and mouse urinary protein allergens in dust, and interviewed residents. All statistical models controlled for baseline levels of pests or allergens.

Results

Compared with controls, apartments receiving IPM had significantly lower counts of cockroaches at 3 months and greater success in reducing or sustaining low counts of cockroaches at both 3 and 6 months. IPM was associated with lower cockroach allergen levels in kitchens at 3 months and in beds and kitchens at 6 months. Pesticide use was reduced in IPM relative to control apartments. Residents of IPM apartments also rated building services more positively.

Conclusions

In contrast to previous IPM studies, which involved extensive cleaning, repeat visits, and often extensive resident education, we found that an easily replicable single IPM visit was more effective than the regular application of pesticides alone in managing pests and their consequences.  相似文献   

12.
13.

Background

Widespread residential pesticide use throughout the United States has resulted in ubiquitous, low-level pesticide exposure. The mix of active pesticide ingredients is changing in response to 2000–2001 regulations restricting use of the organophosphorus insecticides chlorpyrifos and diazinon.

Objectives

We aimed to determine the impact of U.S. Environmental Protection Agency regulations on pest infestation levels, pesticide use, and pesticides measured in indoor air samples. METHODOLOGY: 511 pregnant women from innercity New York were enrolled between 2000 and 2006. Permethrin, a pyrethroid insecticide; piperonyl butoxide (PBO), a pyrethroid synergist; chlorpyrifos; and diazinon were measured in 48-hr prenatal personal air samples. Data on pest infestation and pesticide use were collected via questionnaire.

Results

Eighty-eight percent of women reported using pesticides during pregnancy; 55% reported using higher-exposure pesticide applications (spray cans, pest bombs and/or professional pesticide applicators). Self-reported pest sightings and use of higher-exposure applications increased significantly after the regulations were implemented (p < 0.001). PBO, cis-, and trans-permethrin were detected in 75, 19, and 18% of personal air samples, respectively. Detection frequencies of PBO and cis- and trans-permethrin increased significantly over time (p < 0.05 controlling for potential confounders). Levels and/or detection frequencies of these compounds were significantly higher among mothers reporting use of high exposure pesticide applications (p ≤ 0.05). Chlorpyrifos and diazinon levels decreased significantly over time (p < 0.001).

Conclusion

In this cohort, pest infestations, use of pesticides, and use of permethrin appear to increase after the residential restriction of organophosphorus insecticides. This is one of the first studies to document widespread residential exposure to PBO.  相似文献   

14.

Background

An increasing number of studies have shown that several ubiquitous environmental contaminants possess thyroid hormone–disrupting capacities. Prenatal exposure to some of them, such as polychlorinated biphenyls (PCBs), has also been associated with adverse neurodevelopmental effects in infants.

Objectives

In this study we examined the relationship between exposure to potential thyroid hormone–disrupting toxicants and thyroid hormone status in pregnant Inuit women from Nunavik and their infants within the first year of life.

Methods

We measured thyroid hormone parameters [thyroid stimulating hormone (TSH), free thyroxine (fT4), total triiodothyronine (T3), thyroxine-binding globulin (TBG)] and concentrations of several contaminants [PCB-153, hydroxylated metabolites of PCBs (HO-PCBs), pentachlorophenol (PCP) and hexachlorobenzene (HCB)] in maternal plasma at delivery (n = 120), in umbilical cord plasma (n = 95), and in infant plasma at 7 months postpartum (n = 130).

Results

In pregnant women, we found a positive association between HO-PCBs and T3 concentrations (β = 0.57, p = 0.02). In umbilical cord blood, PCB-153 concentrations were negatively associated with TBG levels (β = −0.26, p = 0.01). In a subsample analysis, a negative relationship was also found between maternal PCP levels and cord fT4 concentrations in neonates (β = −0.59, p = 0.02). No association was observed between contaminants and thyroid hormones at 7 months of age.

Conclusion

Overall, there is little evidence that the environmental contaminants analyzed in this study affect thyroid hormone status in Inuit mothers and their infants. The possibility that PCP may decrease thyroxine levels in neonates requires further investigation.  相似文献   

15.

Background

Chemical carcinogens such as benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) may contribute to the etiology of human diet-associated cancer. Individually, these compounds are genotoxic, but the consequences of exposure to mixtures of these chemicals have not been systematically examined.

Objectives

We determined the mutagenic response to mixtures of BaP and PhIP at concentrations relevant to human exposure (micromolar to subnanomolar).

Methods

Human MCL-5 cells (metabolically competent) were exposed to BaP or PhIP individually or in mixtures. Mutagenicity was assessed at the thymidine kinase (TK) locus, CYP1A activity was determined by ethoxyresorufin-O-deethylase (EROD) activity and qRT-PCR, and cell cycle was measured by flow cytometry.

Results

Mixtures of BaP and PhIP produced dose responses different from those of the individual chemicals; we observed remarkably increased mutant frequency (MF) at lower concentrations of the mixtures (not mutagenic individually), and decreased MF at higher concentrations of the mixtures, than the calculated predicted additive MF of the individual chemicals. EROD activity and CYP1A1 mRNA levels were correlated with TK MF, supporting involvement of the CYP1A family in mutation. Moreover, a cell cycle G2/M phase block was observed at high-dose combinations, consistent with DNA damage sensing and repair.

Conclusions

Mixtures of these genotoxic chemicals produced mutation responses that differed from those expected for the additive effects of the individual chemicals. The increase in MF for certain combinations of chemicals at low concentrations that were not genotoxic for the individual chemicals, as well as the nonmonotonic dose response, may be important for understanding the mutagenic potential of food and the etiology of diet-associated cancers.

Citation

David R, Ebbels T, Gooderham N. 2016. Synergistic and antagonistic mutation responses of human MCL-5 cells to mixtures of benzo[a]pyrene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine: dose-related variation in the joint effects of common dietary carcinogens. Environ Health Perspect 124:88–96; http://dx.doi.org/10.1289/ehp.1409557  相似文献   

16.

Background

We evaluated the relationship between diagnosed depression and pesticide exposure using information from private pesticide applicators enrolled in the Agricultural Health Study between 1993 and 1997 in Iowa and North Carolina.

Methods

There were 534 cases who self-reported a physician-diagnosed depression and 17,051 controls who reported never having been diagnosed with depression and did not feel depressed more than once a week in the past year. Lifetime pesticide exposure was categorized in three mutually exclusive groups: low (< 226 days, the reference group), intermediate (226–752 days), and high (> 752 days). Two additional measures represented acute high-intensity pesticide exposures: an unusually high pesticide exposure event (HPEE) and physician-diagnosed pesticide poisoning. Logistic regression analyses were performed relating pesticide exposure to depression.

Results

After adjusting for state, age, education, marital status, doctor visits, alcohol use, smoking, solvent exposure, not currently having crops or animals, and ever working a job off the farm, pesticide poisoning was more strongly associated with depression [odds ratio (OR) = 2.57; 95% confidence interval (CI), 1.74–3.79] than intermediate (OR = 1.07; 95% CI, 0.87–1.31) or high (OR = 1.11; 95% CI, 0.87–1.42) cumulative exposure or an HPEE (OR = 1.65; 95% CI, 1.33–2.05). In analysis of a subgroup without a history of acute poisoning, high cumulative exposure was significantly associated with depression (OR = 1.54; 95% CI, 1.16–2.04).

Conclusion

These findings suggest that both acute high-intensity and cumulative pesticide exposure may contribute to depression in pesticide applicators. Our study is unique in reporting that depression is also associated with chronic pesticide exposure in the absence of a physician-diagnosed poisoning.  相似文献   

17.

Background

Air pollution has consistently been associated with increased morbidity and mortality due to respiratory and cardiovascular disease. Underlying biological mechanisms are not entirely clear, and hemostasis and inflammation are suggested to be involved.

Objectives

Our aim was to study the association of the variation in local concentrations of airborne particulate matter (PM) with aerodynamic diameter < 10 μm, carbon monoxide, nitrogen monoxide, nitrogen dioxide, and ozone with platelet aggregation, thrombin generation, fibrinogen, and C-reactive protein (CRP) levels in healthy individuals.

Methods

From 40 healthy volunteers, we collected 13 consecutive blood samples within a 1-year period and measured light-transmittance platelet aggregometry, thrombin generation, fibrinogen, and CRP. We performed regression analysis using generalized additive models to study the association between the hemostatic and inflammatory variables, and local environmental concentrations of air pollutants for time lags within 24 hr before blood sampling or 24–96 hr before blood sampling.

Results

In general, air pollutants were associated with platelet aggregation [average, +8% per interquartile range (IQR), p < 0.01] and thrombin generation (average, +1% per IQR, p < 0.05). Platelet aggregation was not affected by in vitro incubation of plasma with PM. We observed no relationship between any of the air pollutants and fibrinogen or CRP levels.

Conclusions

Air pollution increased platelet aggregation as well as coagulation activity but had no clear effect on systemic inflammation. These prothrombotic effects may partly explain the relationship between air pollution and the risk of ischemic cardiovascular disease.  相似文献   

18.

Background

Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pesticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries.

Objective

We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides.

Methods

We used European databases to select 134 candidate pesticides based on highest exposure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”).

Results

All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic.

Conclusions

Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans.  相似文献   

19.

Background

Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities.

Objectives

We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3–6 years of age, living in California urban and agricultural communities.

Methods

In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations.

Results

For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).

Conclusion

An organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children.

Citation

Bradman A, Quirós-Alcalá L, Castorina R, Aguilar Schall R, Camacho J, Holland NT, Barr DB, Eskenazi B. 2015. Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ Health Perspect 123:1086–1093; http://dx.doi.org/10.1289/ehp.1408660  相似文献   

20.

Background

Melanoma rates continue to increase; however, few risk factors other than sun sensitivity and ultraviolet radiation (including sun exposure) have been identified. Although studies of farmers have shown an excess risk of melanoma and other skin cancers, it is unclear how much of this is related to sun exposure compared with other agricultural exposures.

Methods

We examined dose–response relationships for 50 agricultural pesticides and cutaneous melanoma incidence in the Agricultural Health Study cohort of licensed pesticide applicators, along with ever use of older pesticides that contain arsenic. Logistic regression was used to examine odds ratios (ORs) and 95% confidence intervals (CIs) associated with pesticide exposure adjusted for age, sex, and other potential confounders.

Results

We found significant associations between cutaneous melanoma and maneb/mancozeb (63 exposure days: OR = 2.4; 95% CI, 1.2–4.9; trend p = 0.006), parathion (≥ 56 exposure days: OR = 2.4; 95% CI, 1.3–4.4; trend p = 0.003), and carbaryl (≥ 56 exposure days: OR = 1.7; 95% CI, 1.1–2.5; trend p = 0.013). Other associations with benomyl and ever use of arsenical pesticides were also suggested.

Conclusions

Most previous melanoma literature has focused on host factors and sun exposure. Our research shows an association between several pesticides and melanoma, providing support for the hypotheses that agricultural chemicals may be another important source of melanoma risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号