首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to trace the formative process of primo vascular system (PVS) research over the past decade and to describe the characteristics of the Korean scientific community. By publishing approximately 30 papers in journals ranking in the Science Citation Index (Expanded), the PVS research team actively convinced domestic and international scientists of the anatomical existence of the PVS and its possible application to Korean and Western medicine. In addition, by sharing the PVS observation technique, the team promoted the dissemination and further pursuit of the research. In 2012, however, PVS researchers performed smaller scale research without advancing to a higher level as compared to the early days. The main reasons were found to be the Korean Research and Development policy of supporting creative, small-scale basic research and applied research of Western scientific fields that promised potentially greater success on an extensive scale; the indifference concerning, and the disbelief in, the existence of a new circulatory system were shown by the Western medical community. In addition, the Oriental medical community was apathetic about working with the PVS team. Professors Kwang-Sup Soh and Byung-Cheon Lee were the prime movers of PVS research under difficult conditions. Spurred by their belief in the existence and significance of the PVS, they continued with their research despite insufficient experimental data. The Korean scientific community is not ready to promote the Korea-oriented creative field of the PVS team.  相似文献   

2.
The Bonghan system is a newly-discovered circulatory system, which corresponds to classical acupuncture meridians and was discovered in the early 1960s by Bonghan Kim. Despite its potential importance in biology and medicine, it has been ignored or forgotten for a long time. Only recently have most of its significant parts, such as the Bonghan system (BHS) inside blood or lymph vessels, on the surfaces of internal organs, and in brain ventricles, been confirmed. For this, novel methods using modern technology were necessary because Bonghan Kim did not describe his methods. For example, Among other methods, the discovery of a BHS-specific dye, trypan blue, was one of the most important original contributions that made BHS observation possible. With this technique, the BHS in adipose tissue became traceable, and the BHS was discovered on the fascia surrounding tumor tissues, a finding which may have great significance in relation to serious health problems in modern society, namely, obesity and cancer.  相似文献   

3.
Two periods of primo vascular system (PVS) discovery exist. The first one includes the five reports of B. H. Kim made from 1962 to 1965. The second one is from 2002 until the present time and includes reports made mainly by the Seoul National University group using modern methods. The purpose of this article is to describe the claims in B. H. Kim's reports, to comment on the most important points of his claims, and to offer hypotheses for the morphological architecture and the function of the PVS. The PVS integrated the cardiovascular, nervous, and hormonal systems. Thus, the particularities of the various body systems are combined in the PVS. The PVS is not a simple circulatory system like the cardiovascular system. Its influence on all body systems is a combination of not only substances and signals but also energy and information. The primordial PVS is like a matrix for the vascular and the nervous systems, which are formed around the PVS. The PVS is duplicated by the vascular and the nervous systems in the very early stage of body development. This is the reason why the PVS combines the features of the vascular, the nervous, and the hormonal systems. Subsequently, all embryonic body systems have developed, the primordial PVS remains connected to them, but dominates and controls them as the primeval functional system.  相似文献   

4.
BonIghan系统(BHS)是一个新发现的循环系统,与传统经络相吻合.BH系统在血管、淋巴管、器官表而与内部、脑室中的存在得到证实.为进一步证实该理论,本文融入现代技术的新方法,发现BH系统特异性染料锥虫蓝,可清楚观察到BH系统.采用此技术,可追踪脂肪组织中的BH系统,发现肿瘤筋膜上的BH系统,这对肥胖、癌症等问题的解决密切相关.  相似文献   

5.
Bonghan Kim claimed that the primo-vessel (Bonghan duct) and the primo-node (Bonghan corpuscle) are anatomical structures corresponding to acupuncture meridians and acupoints, respectively, but this claim has not been confirmed. Recently we found that Trypan blue preferentially stained primo-vessels and primo-nodes on the surfaces of internal organs, not staining other structures like blood or lymph vessels or nerves. In this work, we applied Trypan blue to visualize the putative acupuncture meridian along skin skeletal muscles in the hypodermal layer of a rat. The Trypan blue stained-structures are morphologically similar to the meridian primo-vessels, as claimed by Bonghan Kim. Further study is needed to investigate the network of these Trypan blue-stained structures in order to establish them as acupuncture meridians.  相似文献   

6.
7.
Bonghan structures composed of corpuscles and ducts have been observed in numerous animal experiments. The structure has been suggested to be the physical substrate for acupuncture points and meridians used in traditional Chinese medicine. The corpuscle-duct structure on the organ surface has been extensively studied. However, it was only observed after the abdomen of a rat was fully exposed. It may be desirable to observe these structures under minimally invasive conditions. Our laparoscope is specifically designed for in situ, in vivo observation of the Bonghan structure on the surface of internal organs in rats. We made a laparoscope consisting of a borescope combined with an illumination module and an imaging data acquisition part. The Bonghan structure is transparent and is hard to see, even with the borescope. Spraying a specific dye, trypan blue and washing with saline is a necessary process to visualize the structure. For this reason, we devised a staining and washing system attached in parallel with the borescope in the laparoscopic system. The system operated successfully to reveal a Bonghan structure without surgery. This tool opens a host of possible applications such as observation of flow of stained liquid or drug in the Bonghan duct flowing from the skin to internal organs, and long-term observation of the physiological changes in Bonghan corpuscles.  相似文献   

8.
Molecular-level understanding of the structure and the functions of the lymphatic system has greatly enhanced the importance of this second circulation system, especially in connection with cancer metastasis and inflammation. Recently, a third circulatory system, the primo vascular system (PVS) was found in various parts of an animal's body, especially as threadlike structures floating in the lymphatic flow in lymph vessels. Although the medical significance of this emerging system will require much work in the future, at present, several important suggestions in connection with immune cells, stem cells, and cancer metastasis have already appeared. Experiments to observe the PVS in the lymph vessels near the caudal vena cava of rabbits and rats have been performed by several independent teams, but reproduction requires considerable skill and technical know-how. In this article, we provide a detailed protocol to detect the PVS inside the lymph vessels of a rabbit. Detection and isolation are the first steps in unraveling the physiological functions of the PVS, which awaits intensive research.  相似文献   

9.
Because of the potential roles of the primo vascular system (PVS) in cancer metastasis, immune function, and regeneration, understanding the molecular biology of the PVS is desirable. The current state of PVS research is comparable to that of lymph research prior to the advent of Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). There is very little knowledge of the molecular biology of the PVS due to difficulties in identifying and isolating primo endothelial cells. Present investigations rely on the morphology and the use of differential staining procedures to identify the PVS within tissues, making detailed molecular studies all but impossible. To overcome such difficulties, one may emulate the explosive development of lymph molecular biology. For this purpose, there is a need for a reliable method to obtain PVS specimens to initiate the molecular investigation. One of the most reliable methods is to detect the primo vessels and primo nodes afloat in the lymph flow. The protocols for observation of the PVS in the large lymph ducts in the abdominal cavity and the thoracic cavity were reported earlier. These methods require a laparectomy and skillful techniques. In this work, we present a protocol to identify and harvest PVS specimens from the lymph ducts connecting the inguinal and the axillary nodes, which are located entirely in the skin. Thus, the PVS specimen is more easily obtainable. This method is a stepping-stone toward development of a system to monitor migration of cancer cells in metastasis from a breast tumor to the axillary nodes, where cancer cells use the PVS as a survival rope in hostile lymph flow.  相似文献   

10.
Bonghan theory was proposed by Bonghan Kim to illustrate the anatomy and physiology of the acupuncture meridian system. One of his astonishing claims was the physical presence of the nerve primo-vessel, which can be involved with a regenerating system of nerves. Our previous work has shown that there is a nerve primo-vessel in brain ventricles and the central canal of the spine of a rabbit. In this study, confocal laser scanning microscopy, transmission electron microscopy, and high voltage electron microscopy demonstrated that a nerve primo-vessel comprised DNA particles, other microparticles, and rod-shaped nuclei encircled by helix-shaped actins. The nerve primo-vessel had acridine orange-stained DNA particles that varied in size and were in parallel. These characteristics of the nerve primo-vessel are crucial for a comprehensive understanding of their function in the central nervous system, which may be associated with nerve regeneration.  相似文献   

11.
Traditional Eastern medicine has had a successful existence for a long time and has provided functional paths for curing disease. However, some scientists do not accept acupuncture, primarily because the meridian system lacks a physical anatomical basis. To date, scientific theories have not been able to explain the functional paths used by traditional Eastern medicine to cure disease. According to Western medicine, no known anatomical foundation exists for the meridians and unknown nervous, circulatory, endocrine, and immune mechanisms mediate the effects of acupuncture. In the early 1960s, only one hypothesis was proposed to explain the anatomical basis of the meridians. By using different experimental approaches during the past 10 years, the number of scientific papers that report the discovery of different anatomical and physiological evidence confirming the existence of an anatomical basis for the meridian system has increased. Morphological science is greatly challenged to offer a new biomedical theory that explains the possible existence of new bodily systems such as the primo vascular system (PVS). The PVS is a previously unknown system that integrates the features of the cardiovascular, nervous, immune, and hormonal systems. It also provides a physical substrate for the acupuncture points and meridians. Announcements of the morphological architectonics and the function of the PVS fundamentally changed the basic understanding of biology and medicine because the PVS is involved in the development and the functions of living organisms. We propose a new vision of the anatomical basis for the PVS and the vital energy—called “Qi”—as an electromagnetic wave that is involved very closely with the DNA in the PVS. DNA provides genetic information and it functions as a store of information that can be obtained from the electromagnetic fields of the environment. The PVS is the communication system between living organisms and the environment, and it lies at the lowest level of life. The theory of the PVS could be a good basis for forming a new point of view of Darwin's evolutionary theory. Discoveries in morphological theory—such as discoveries with respect to the PVS—have not been made since the 18th century. For that reason, the PVS needs more attention.  相似文献   

12.
Novel threadlike structures of 20 to 40 μm in diameter were observed running afloat in the cerebrospinal fluid of the brain ventricles and the spinal central canal of a rabbit. We developed an effective in situ staining technique using hematoxylin to visualize the threadlike structure. The presence of the rod-shaped nuclei in the threadlike structure was confirmed by various nucleus specific staining dyes such as 4′,6′-diamidino-2-phenylindole, propidium iodide and yoyo-1. The threadlike structure was surrounded by a cellular membrane, whose presence was visualized by using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate staining. The location, diameter, optical transparency and the presence of rod-shaped nuclei in and the surrounding membranes of the threadlike structure were consistent with a nerve Bonghan duct. The Bonghan duct was claimed to be the extension of the physical substance of acupuncture meridians and to be a distinct type of circulatory system present in mammals. Although Bonghan theory has not been reproduced for a long time, recently, some portions of the Bonghan duct network were confirmed in various organs in mammals including blood vessels, lymphatic vessels and enteric organs. The novel threadlike structure in the central nervous system, more specifically in brain ventricles, is one in a series of findings in an attempt to rediscover the Bonghan duct network.  相似文献   

13.
Li Q 《中国针灸》2011,31(3):263-268
1963年,朝鲜学者金凤汉宣布发现了与腧穴和经络相对应的解剖结构,即"凤汉小体"和"凤汉管".由于各国研究家进行的追溯性实验没能正式地发现此类结构,"凤汉学说"被作为伪科学事件成了历史的尘封.本文立足于历史文献回顾的角度,综述了金凤汉研究团队40余年以前发表的系列论文,介绍了日本学者藤原知和韩国学者苏光燮研究团队所作的认证研究,指出了"凤汉学说"之始末给予经络研究的启示.  相似文献   

14.
A new technique for visualizing Bonghan ducts (BHDs) and Bonghan corpuscles (BHCs) was developed by using a vivi-staining dye, Trypan blue. The dye stains BHDs and BHCs preferentially to adipocytes so that tracking a BHD and a BHC, even inside adipose tissues, is possible. Concerning the functions of the BHD and the BHC in adipose tissues, we propose conjectures: the Bonghan system may be niches for mesenchymal stem cells, which can differentiate into adipocytes, and pathways for macrophages involved in adipogenesis.  相似文献   

15.
The primo vascular systems (PVS) observed in the central nervous system have been limited to the ones floating in the cerebrospinal fluid. In those experiments, it was difficult to obtain the same results because the PVS was not fixed in a given anatomical position. In the current work, we report a finding of a PVS in a well-defined location, namely, underneath the superior sagittal sinus in the sagittal fissure, so that repetition of the experiments is possible. This provides a cornerstone for PVS research because the lack of reproducible sample-taking hindered a deeper study of the PVS, such as RNA sequencing or RNA microarray. This obstacle can be overcome through the discovery in the current work. This PVS showed characteristics of the PVS observed in other organs. It showed the bundle structure of subvessels, the parallel distributions of F-actins, and the rod-shaped nuclei. Furthermore, it had a primo node in front of the confluence of sinuses above the pineal body. It had branches shooting off from the main primo vessel in the subarachnoid space toward the cerebral hemispheres. The results indicate that this PVS underneath superior sagittal sinus has proper features to function as a flowing channel.  相似文献   

16.
BackgroundThe primo vascular system (PVS) has been difficult to detect due to its small diameter and translucent features of the threadlike network. Thus, contrast-enhancing dyes including Alcian blue, Trypan blue and Janus green B had to be used for finding and taking out PVS from rat and mouse.ObjectiveGeneration of monoclonal antibodies (mAbs) against PVS of rat was intended to use as a detector for PVS and a biological tool for functional study of PVS.Materials and methodsPrimo vessel (PV) and Primo node (PN) were isolated from organ surfaces of rat and then their proteins were isolated and injected into mouse as an immunogen. The classical traditional method was applied for production of mAbs against PVS. The various techniques, such as cell fusion, screening of hybridoma, ELISA, Western blotting (WB), immunofluorescence microscopy (IF), and limiting dilution, were used to generate mAbs against PVS.ResultsAmong 16 mAbs generated, 4 representative mAbs were characterized with their specificities in ELISA, WB, and IF. α-rPVS-m1-1 and α-rPVS-m4-6 had strong binding affinities to PVS in both ELISA and WB but did not show specificities in IF at all. On the contrary, α-rPVS-m3-2 and α-rPVS-m3-4 almost did not respond in WB but had strong binding affinities in ELISA and specificities in IF. Two mAbs stained predominantly at extra cellular matrix and cell membrane of PVS of rat in IF, and they were able to discriminate PVS from blood vessel (BV) and lymphatic vessel (LV).Conclusions4 representative mAbs against PVS of rat were characterized by ELISA, WB, and IF. α-rPVS-m3-2 and α-rPVS-m3-4, which had strong specificities in IF, can be used as a tool in discriminating PVS from other similar tissues and in elucidate biological function of PVS.  相似文献   

17.
The primo vascular system (PVS) has been observed in various animals such as mice, rats, rabbits, dogs, swine, and cow, but not in humans. In this work, we report on the observation of a human PVS on both the epithelial fascia and inside the blood vessels of the umbilical cord (UC). The main morphological characteristics of the primo vessels (PVs) and primo nodes (PNs) from the human UC were in agreement with those of the PVS in various animal organs, including the thicknesses and the transparency of the PVs, the sizes of the PNs, the broken-line arrangement of the rod-shaped nuclei, the sparse distribution of nuclei, and the presence of hollow lumens in the central inner parts of the PNs. It was rather surprising that the human PV was not thicker than the PVs from small animals. The difference between the PVS and blood/lymph vessels was confirmed using immunofluorescence staining of von Willebrand factor, CD31, LYVE-1, and D2-40. The positive expression of the PVS to proliferating cell nuclear antigen, a cell-proliferation marker, was consistent with the recent finding of very small embryonic-like stem cells in the PVS of mice.  相似文献   

18.
The purpose of this review is to describe the methodology, instruments, and subject animals used until now for studies of the meridian (Kyungrak) system and the primo vascular system (PVS). The PVS is observed as an anatomical system distributed in cavities, organs, and tissues throughout the body. We analyzed the most important points of the PVS based on the results obtained until the present. Our main effort has been directed to describing the main thesis relating to the morphological structures and their topography, the functional mechanisms of the PVS, and possible roles of the PVS in pathological processes. The substance of the PVS in all its aspects is as a system covering the whole body and regulating and coordinating the biological processes that are the basis for life. In conclusion, we suggest that the finding of the PVS represents the discovery of a new integrated morphological-functional system.  相似文献   

19.
The primo vascular system (PVS) is a very important topic of study nowadays because of their role in transport and regeneration of tissue and in cell migration and cancer metastasis. The PVS was detected in different organs of the rabbit but not in the placenta. In this work, we observe the PVS inside the blood vessels of the placenta for the first time. The main characteristic features of the primo vessels (PVs) from the rabbit placenta were in agreement with the PVS in different organs of animals, including the rod-shaped nuclei and their arrangement.  相似文献   

20.
An epoch-making development in the gross anatomy of the lymph system has emerged: the observation of the primo vascular system (PVS), which is a threadlike structure floating in lymph ducts. The PVS, which was proposed as the conduit for the acupuncture Qi, is a complex network distributed throughout an animal's body. The lymph-PVS, which is a subsystem of the PVS, is one of the most convincing visual demonstrations of the PVS. Because its existence is not easily demonstrated, even with a microscope, due to its transparency, in current anatomy its existence is largely unknown despite its potential significance in physiology and medicine. The lymph-PVS has been observed in rabbits, rats, and mice by several independent teams. Because the involved techniques are rather complicated, we provide detailed protocols for surgery, for injection of the staining dye, and for detection, extraction, and identification of the PVS in a rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号