首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large body of experimental evidence supports a role for oxidative stress as a mediator of nerve cell death in Parkinson's disease. To better understand the cellular insult of oxidative stress on dopaminergic neurons, we studied the cytotoxic effect of the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) metabolite, 1-methyl-4-phenyl pyridium (MPP(+)), on several parameters of cell distress using neuronal PC12 cells. We also measured the level of protein expression for the dopamine transporter and the estrogen receptors alpha and beta. Since estrogens have been reported to prevent neuronal degeneration caused by increased oxidative burden, we investigated the ability of 17beta-estradiol, the stereoisomer 17alpha-estradiol, and several phytoestrogens to rescue neuronal PC12 cells submitted to MPP(+)-induced cytotoxicity. Our results consistently show a protective effect of 17alpha-estradiol, 17beta-estradiol and certain phytoestrogens such as quercetin and resveratrol, in neuronal PC12 cells treated with MPP(+). In our cellular paradigm, phytoestrogens coumestrol, genistein, and kaempferol did not revert MPP(+)-induced cellular death. By Western blot, we demonstrated that administration of MPP(+) alone decrease dopamine transporter expression, while treatments with MPP(+) together with 17alpha-estradiol, 17beta-estradiol, quercetin, or resveratrol could restore dopamine transporter protein expression to control levels. Moreover, the same treatments did not modulate alpha estrogen receptor or beta estrogen receptor expression. By these studies, we aim to provide more evidence for the involvement of phytoestrogens in the process of neuroprotection and to test our hypothesis that some of these compounds may act as neuroprotective molecules and have a lesser hormonal effect than estrogens.  相似文献   

2.
We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP+ toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP+ uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP+ (0.03 to 3.0 mM), and the neurotoxic effects of MPP+ were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3-fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP+ in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.  相似文献   

3.
Dopaminergic signaling pathways are conserved between mammals and Drosophila and D2 receptors have been identified in Drosophila. However, it has not been demonstrated whether Drosophila D2 receptors function as autoreceptors and regulate the release of dopamine. The goal of this study was to determine if Drosophila D2 receptors act as autoreceptors by probing the extent to which D2 agonists and antagonists affect evoked dopamine release. Fast-scan cyclic voltammetry was used to measure stimulated dopamine release at a carbon-fiber microelectrode implanted in an intact, larval Drosophila nervous system. Dopamine release was evoked using 5-second blue light stimulations that open Channelrhodopsin-2, a blue light activated cation channel that was specifically expressed in dopaminergic neurons. In mammals, administration of a D2 agonist decreases evoked dopamine release by increasing autoreceptor feedback. Similarly, we found that the D2 agonists bromocriptine and quinpirole decreased stimulated dopamine release in Drosophila. D2 antagonists were expected to increase dopamine release and the D2 antagonists flupenthixol, butaclamol, and haloperidol did increase stimulated release. Agonists did not significantly modulate dopamine uptake although the modulatory effects of D2 drugs on release were affected by prior administration of the uptake inhibitor nisoxetine. These results demonstrate that the D2 receptor functions as an autoreceptor in Drosophila. The similarities in dopamine regulation validate Drosophila as a model system for studying the basic neurobiology of dopaminergic signaling.  相似文献   

4.
Excessive methylation has been proposed to be involved in the pathogenesis of Parkinson's disease (PD), via mechanisms that involve phospholipid methylation. Meanwhile, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was found to stimulate phospholipid methylation via the oxidized metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), in the rat brain and liver tissues. In the present study, we investigated the effect of MPP+ on phosphatidylethanolamine N-methyltransferases (PENMT) and the potential role of this pathway in MPP(+)-induced neurotoxicity using PC12 cells. The results obtained indicate that MPP+ stimulated phosphatidylethanolamine (PTE) methylation to phosphatidylcholine (PTC) and correspondingly increased the formation of lysophosphatidylcholine (lyso-PTC). Moreover, the addition of S-adenosylmethionine (SAM) to the cell culture medium increases MPP(+)-induced cytotoxicity. The incubation of 1mM MPP+ and various concentrations of SAM (0-4 mM) decreased the viability of PC12 cells from 80% with MPP+ alone to 38% viability with 4 mM SAM for 4 days incubation. The data also revealed that the addition of S-adenosylhomocysteine (SAH), a methylation inhibitor, offered significant protection against MPP(+)-induced cytotoxicity, indicating that methylation plays a role in MPP(+)-induced cytotoxicity. Interestingly, lyso-PTC showed similar actions to MPP+ in causing many cytotoxic changes with at least 10 times higher potency. Lyso-PTC induced dopamine release and inhibited dopamine uptake in PC12 cells. Lyso-PTC also caused the inhibition of mitochondrial potential and increased the formation of reactive oxygen species in PC12 cells. These results indicate that phospholipid methylation pathway might be involved in MPP+ neurotoxicity and lyso-PTC might play a role in MPP(+)-induced neurotoxicity.  相似文献   

5.
Glutamate, one of the excitatory neurotransmitters, contributes to the neuronal death associated with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and with ischemia. In Alzheimer's disease brains, there is a decreased number of dopamine D2 receptors, which might cause neuronal dysfunction or death. In the present study, bromocriptine exerted a protective effect against glutamate-induced cytotoxicity in rat cortical neurons. This neuroprotective effect was mediated via D2 receptors, because it was attenuated by domperidone, a D2 dopaminergic receptor antagonist. Another dopamine D2 agonist, quinpirole, also protected cells against glutamate toxicity. D2 agonists protected cells from calcium influx, nitric oxide, and peroxynitrite toxicity, which are thought to be the mediators of glutamate toxicity. The phosphatidylinositol 3 kinase (PI3K) inhibitor (LY294002) inhibited this neuroprotective effect of bromocriptine, in contrast to the mitogen-activated protein kinase kinase (MAPKK) inhibitor (PD98059), which did not counter the protective effect. Furthermore, Akt protein kinase, which is an effector of PI3K, was activated by bromocriptine, and the antiapoptotic protein Bcl-2 was up-regulated by bromocriptine treatment. These results suggest that D2 dopaminergic receptor activation plays an important role in neuroprotection against glutamate cytotoxicity and that the up-regulation of Bcl-2 expression via the PI3K cascade is, at least partially, involved in this effect.  相似文献   

6.
目的 研究14—3—3蛋白过表达对1-甲基-4苯基吡啶离子(MPP^+诱导的PC12细胞死亡的影响作用及其可能的机制。方法 构建pcDNA3.1(+)-14—3—3真核表达质粒,用脂质体2000转染PCI2细胞;Westernn blot技术检测PC12细胞中14—3—3蛋白、Bcl-2蛋白,和BAD蛋白的表达;然后分别用MTT法、酶标仪及流式细胞仪检测PC12细胞的活力、caspase的活性及PC12细胞的凋亡率。结果 (1)将pcDNA3.1(+)-14—3—3质粒转染PCI2细胞3周后,14—3—3蛋白的表达显著增加;(2)MPP^+诱导PC12细胞存活率的下降是剂量依赖性的,当MPP^+的浓度达100μmol/L时,PC12细胞的存活率丧失约50%;(3)caspase的活性随着MPP^+浓度的增加而增高,当MPP^+浓度到达100μmol/L时caspase的活性也到达最大值,而当MPP^+浓度超过100μmol/L时,caspase的活性急剧下降;(4)用100μmol/L的MPP^+处理PC12细胞24h后,PC12细胞的凋亡率为26.5%,14—3—3蛋白的过表达使PC12细胞的凋亡率下降到8.6%;(5)用100μmol/LMPP^+处理PC12细胞后,Bcl-2蛋白的表达趋于下调而BAD蛋白的表达上调,14—3-3蛋白的过表达能显著的增加Bcl-2蛋白的表达而使BAD蛋白的表达下调。结论 14—3—3蛋白过表达通过上调Bcl-2蛋白的表达并下调BAD蛋白的表达,减少了MPP^+诱导的PC12细胞的凋亡,从而发挥对PC12细胞的保护作用。这些结果可能为PD的治疗提供新的药物靶点。  相似文献   

7.
Summary The dopamine (DA) D2 agonist bromocriptine produced dose-dependent locomotor depression in mice with intact stores of DA, as measured in automated activity cages. The DA D1 agonist CY208-243, reversed the bromocriptine-induced depression. Using direct observational analysis, another selective DA D2 agonist, quinpirole, induced dose-dependent depression and this was reversed by the D1 agonist SKF38393. The effect of SKF38393 could be blocked by prior pretreatment with SCH23390. It is concluded that DA D2 agonist-induced locomotor depression is mediated via a DA D2 autoreceptor-mediated inhibition of DA release onto postsynaptic DA receptors. This reduction in release probably deprives postsynaptic D1 and D2 receptors of endogenous DA. However, since bromocriptine (and probably quinpirole) in all likelihood occupies both pre- and postsynaptic D2 receptors immediately on injection, and since CY208-243 and SKF38393 (respectively) could reverse the depression, the depression seems to be due specifically to a deprivation of DA at postsynaptic D1 receptors.  相似文献   

8.
Li R  Peng N  Li XP  Le WD 《Brain research》2006,1097(1):85-89
Dopamine transporter (DAT) provides not only an integral component of dopaminergic neurotransmission but also a molecular gateway for the accumulation of some neurotoxins such as 1-methyl-4-phenylpyridinium (MPP(+)), a metabolite of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Previous study reported that the neuroprotective effects of green tea polyphenols against MPP(+)-induced neurotoxicity were related to its inhibitory effect on MPP(+) uptake via DAT in dopaminergic cells. To extend the study, we investigated (-)-epigallocatechin gallate (EGCG), a monomer of green tea polyphenols, on DAT internalization in DAT-overexpressed PC12 cells. We found that EGCG (1-100 microM) can induce a dose-dependent inhibition of dopamine uptake in DAT-PC12 cells. In parallel, treatment of EGCG decreased membrane-bound DAT by 15% to 60%. Furthermore, protein kinase C (PKC) inhibitor GF109203X at 2 microM can markedly diminish the inhibitory effects of EGCG on dopamine uptake and reverse the EGCG-induced internalization of DAT. In addition, semiquantitative RT-PCR analysis indicated that EGCG did not affect DAT mRNA expression in the PC12 cells. These data suggest that EGCG exerts its inhibitory effect on DAT by modulating DAT internalization, in which PKC activation may be involved.  相似文献   

9.
胰岛素可抵抗MPP^+诱导的PC12细胞的凋亡   总被引:13,自引:2,他引:11  
目的观察胰岛素在MPP+诱导PC12细胞凋亡中的干预作用.方法应用MTT法研究细胞活性的改变,应用HOECHST33258染色结合荧光显微镜技术及流式细胞技术检测不同药物对PC12细胞的凋亡诱导作用,应用半定量逆转录聚合酶链式反应(RT-PCR)测定胰岛素受体(insulin receptor,IR)mRNA的改变.结果①MPP+诱导PC12细胞凋亡,胰岛素可以抵抗此凋亡作用;②以上两种处理,均未见到胰岛素受体mRNA的改变,推测胰岛素受体的自身磷酸化有改变.结论胰岛素可以抵抗MPP+诱导的PC12细胞的凋亡.  相似文献   

10.
目的探讨促红细胞生成素(erythropoietin,EPO)对1-甲基-4-苯基吡啶离子(MPP+)诱导的PC12细胞变性损伤的保护作用及机制。方法用MPP+处理PC12细胞制作帕金森病细胞模型,采用四甲基偶氮唑蓝法检测暴露于不同浓度EPO后细胞的活性;流式细胞术与DNA断端原位标记法(terminal deoxynucleotidyl transferase dUTPnick end labeling, TUNEL)检测各组的细胞凋亡率;免疫印迹法检测不同处理组PC12细胞Bcl-2和Bax的表达,并采用荧光法观察不同处理组PC12细胞活性氧(reactive oxygen species,ROS)与线粒体膜电位水平以及caspase-3活性的变化。结果 MPP+可以使PC12细胞存活率下降,凋亡率增高;同时PC12细胞内ROS增多,线粒体膜电位下降。MPP+还可以明显地提高Bax/Bcl-2比值并激活caspase-3。而EPO可以抑制这些由MPP+引发的改变,并在1 U/mL时发挥最大保护作用。结论 EPO可抑制MPP+诱导的PC12细胞死亡,其作用机制可能与其自身抗氧化和抗凋亡的特性有关。  相似文献   

11.
We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoly-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP (0.03 to 3.0 mM), and the neurotoxic effects of MPP were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3- fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.  相似文献   

12.
Exposure of cerebellar granule cells to 1-methyl-4-phenylpiridinium (MPP(+)) results in cell death. We have studied the implication of various membrane transporter systems on MPP(+) neurotoxicity, including the dopamine transporter system (DAT) and cationic amino acid transporters (CAT). We have showed a partial protection against MPP(+) toxicity when the dopamine transporter is inhibited by 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]4-(3-phenylpropyl)piperazinedihydrochloride (GBR-12909). However, almost full protection is only achieved by the simultaneous addition of GBR-12909 and cationic amino acids. These results suggest two ways system of MPP(+) entrance into cerebellar granule cells: the DAT with high activity and the CAT with low activity. We also demonstrated that 5,7-dichlorokynurenic acid (MK-801) failed to protect against MPP(+) exposure, evidencing that N-methyl-D-aspartate (NMDA) receptor is not involved in the MPP(+)-induced cell death.  相似文献   

13.
The role of dopamine D1 and D2 receptor subtypes in the regulation, in vivo, of the somatostatin (SRIF) receptor-effector system in rat frontoparietal cortex was investigated. The D1-receptor agonist SKF 38393 (4 mg/kg) or the D2-receptor agonist bromocriptine (2 mg/kg), administered intraperitoneally to rats, increased the number of SRIF receptors without altering the affinity constant, an effect antagonized by both SCH 23390 (0.25 mg/kg) and raclopride (5 mg/kg), D1 and D2 receptor antagonists, respectively. These antagonists alone had no effect on [(125)I]Tyr(3) octreotide binding to its receptors. No change in binding was detected when the dopamine agonists were added in vitro. Basal adenylyl cyclase (AC) activity was increased by SKF 38393 treatment and decreased by bromocriptine. Octreotide (SMS 201-995)-mediated inhibition of basal and forskolin-stimulated AC was increased by SKF 38393 or bromocriptine treatment. In frontoparietal cortical slices, basal inositol-1,4, 5-triphosphate (IP(3)) levels were decreased by bromocriptine treatment but were unaffected by SKF 38393. SMS 201-995 increased the IP(3) accumulation in control, SKF 38393-, and bromocriptine-treated rats. Insofar as SRIF and dopamine appear to be involved in motor regulation and could well modulate somatosensory functions in frontal and parietal cortex, respectively, heterologous receptor regulation may have important repercussions regarding the control exerted by these neurotransmitters on frontal and parietal cortical function in the intact animal.  相似文献   

14.
This study introduces Cryptotis parva (the least shrew) as a new dopaminergic animal model of emesis. The potential emetogenic effects of a nonselective dopamine agonist [apomorphine], two D1 agonists [SKF-38393 and SKF-82958], a D2 preferring agonist [quinpirole], and two D3-preferring agonists [7-(OH) DPAT and PD 128, 907] were investigated. Intraperitoneal administration of D1 agonists failed to induce emesis. However, other agonists caused a dose-dependent increase in the percentage of animals vomiting as well as potentiating the mean frequency of emesis with the following ED50, potency order: 7-(OH) DPAT < apomorphine < quinpirole < PD 128, 907. For antagonist studies a 2 mg/kg dose of these agonists were used to induce emesis. Thus, the inhibitory dose-response effects of a D2-preferring [sulpride], a D3-preferring [U 99194A] and combination of varying doses of these antagonists [sulpride + U 99194A] were evaluated on the ability of the cited agonists to produce vomiting. Sulpride decreased the number of shrews vomiting and the mean vomiting frequency produced by the cited agonists in a dose-dependent fashion with the following ID50 order [apomorphine < PD 128, 907 < 7-(OH) DPAT < quinpirole]. By itself, U 99194A failed to significantly alter the emesis produced by any of the cited agonists, however, it potentiated (3-8 times) the antiemetic effects of sulpride both in reducing the number of shrews vomiting as well as decreasing the mean vomiting frequency with the following ID50 order: PD 128, 907 < 7-(OH) DPAT < quinpirole. However, U 99194A attenuated the potent antiemetic effect of sulpride on the apomorphine-induced emesis. The results suggest that the tested agonists primarily activate dopamine D2 receptors to induce emesis in the least shrew whereas activation of D3 sites potentiate the vomiting action of D2 dopamine receptors.  相似文献   

15.
1. The conditioned place preference paradigm was used to examine the role of the D2 receptor in mediating the reinforcing effects of dopamine (DA) agonists. 2. During the 3-day pre-exposure phase, rats explored two distinctive end compartments which were adjoined by a small tunnel. During the 8-day conditioning phase, groups of rats were treated with the selective D2 receptor agonists, quinpirole (0.01, 0.025, 0.05, 0.10, 0.25, 1.0 and 5.0 mg/kg IP) or bromocriptine (0, 0.01, 0.1, 0.5, 1.0, 5.0 and 10.0 mg/kg IP) and confined to one compartment for 30 min. On alternate days, rats received vehicle injections and were placed in the opposite compartment. Test days occurred over the remaining 3 days during which untreated animals explored both compartments. 3. Rats conditioned with quinpirole or bromocriptine showed significant increases in time spent in the drug-paired environment from pre-exposure to test indicating the establishment of conditioned place preferences. 4. This suggests a functional role for the D2 receptor in mediating the rewarding effects of DA agonists.  相似文献   

16.
In urethane anesthetized rats, the iontophoretic administration of dopamine (DA) induced an inhibition of flash-evoked activity in the majority of geniculate cells investigated. Excitatory effects of DA also were found in some neurons of the dorsal lateral geniculate nucleus. The observed excitatory effects of DA were blocked selectively by D2 receptor antagonists, and the majority of inhibitory effects could be blocked by D1 receptor antagonists. In some neurons, the D2 receptor antagonist also blocked the DA-induced inhibition. Nine of 33 neurons tested responded differently to DA according to the amount ejected: with lower iontophoretic currents they increased their rates of discharge, whereas higher DA ejecting currents resulted in a suppression of their activity. Iontophoretic administration of a D1 agonist (SKF 38393) for the most part induced a decrease in baseline activity, whereas the D2 agonist (quinpirole) frequently induced an increase. These effects of agonists were dose-dependent and reproducible. Effects of the D1 and D2 agonists could be reversed by the receptor-specific dopamine antagonists. Presumed local circuit interneurons appeared to be involved in mediation of some inhibitory effects of DA, since the D2-induced inhibitions could be abolished by the GABAA antagonist, bicuculline. The majority of cells also was affected by DA antagonists given alone; these cells' responses to light usually were of an inhibitory nature. The results show that like other monoamines, DA also is involved in certain aspects of visual processing at the level of the thalamus. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Phencyclidine (PCP) has recently been shown to induce apoptosis of a subpopulation of striatopallidal neurons which lie in the dorsomedial caudate-putamen. The pharmacological mechanisms underlying this PCP-induced striatal death were investigated in a series of small experiments. Striatal silver-methenamine-stained sections from rats injected acutely with dizocilpine (MK-801; 1.5-5 mg/kg, i.p.) were analysed to determine whether other non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists could induce apoptotic-like changes in striatal cells. The effects of amphetamine (3-12 mg/kg, i.p.) were similarly investigated as PCP can elevate extracellular dopamine levels and dopamine has the potential to be neurotoxic. The potential involvement of dopamine transmission in PCP-induced striatal apoptosis was also tested by determining the effect of co-administering SCH23390 (D1 dopamine receptor antagonist) and quinpirole (D2 dopamine receptor agonist) on PCP (80 mg/kg, s.c.)-induced striatal apoptotic-like cell death. Equivalent experiments were performed using scopolamine (cholinergic antagonist) as this drug blocks PCP-induced damage of the retrosplenial cortex and RU38486 (corticosteroid receptor antagonist) as a similar subpopulation of striatal neurons undergoes apoptosis following dexamethasone administration. Injection of neither MK-801 nor amphetamine induced elevations of apoptotic-like cells in the striatum nor did co-administration of SCH23390 or scopolamine affect the levels of PCP-induced striatal cell death. In contrast, quinpirole elevated the levels of PCP-induced apoptotic-like striatal cell death and RU38486 markedly reduced it. Within the retrosplenial cortex, scopolamine lowered PCP-induced apoptotic-like cell death whereas RU38486 was without effect. These results suggest that PCP-induced striatal apoptosis results from a corticosteroid-dependent mechanism. The results further demonstrate that different pathological mechanisms underlie PCP-induced neuronal damage in the striatum and the retrosplenial cortex.  相似文献   

18.
Defects in proteasome function have been suggested to be involved in the pathogenesis of neurodegenerative diseases. We examined the effect of calmodulin antagonists on proteasome inhibitor-induced mitochondrial dysfunction and cell viability loss in undifferentiated PC12 cells. Caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants attenuated cell death and decrease in GSH contents in PC12 cells treated with 20 microM MG132, a proteasome inhibitor. Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) had a differential inhibitory effect on the MG132-induced cell death and GSH depletion depending on concentration with a maximal inhibitory effect at 0.5-1 microM. Addition of trifluoperazine and W-7 reduced the MG132-induced nuclear damage, loss of the mitochondrial transmembrane potential followed by cytochrome c release, formation of reactive oxygen species and elevation of intracellular Ca(2+) levels in PC12 cells. Calmodulin antagonists at 5 microM exhibited a cytotoxic effect on PC12 cells but attenuated the cytotoxicity of MG132. The results suggest that the toxicity of MG132 on PC12 cells is mediated by activation of caspase-8, -9 and -3. Trifluoperazine and W-7 at the concentrations of 0.5-1 microM may attenuate the MG132-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability and by lowering of the intracellular Ca(2+) levels as well as calmodulin inhibition.  相似文献   

19.
To further characterize MPP(+)-induced cell death and to explore the role of Bcl-2-related proteins in this death paradigm, we utilized a mesencephalon-derived dopaminergic neuronal cell line (MN9D) stably transfected with human bcl-2 (MN9D/Bcl-2), its C-terminal deletion mutant (MN9D/Bcl-2Delta22), murine bax (MN9D/Bax), or a control vector (MN9D/Neo). As determined by electron microscopy and TUNEL assay, MN9D/Neo cells exposed to MPP(+) underwent a cell death that was characterized by mitochondrial swelling and irregularly scattered heterochromatin without accompanying DNA fragmentation. However, cell swelling typically seen in necrosis did not appear. To examine the biochemical events associated with MPP(+)-induced cell death, various analyses were conducted. Addition of a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (50-400 microM) or Boc-aspartyl(OMe)-fluoromethylketone (50-200 microM) did not attenuate MPP(+)-induced cell death while the same treatment protected MN9D/Neo cells against staurosporine-induced apoptotic cell death. Concurrent treatment with an inhibitor of macromolecule synthesis such as cycloheximide, emetine, or actinomycin D blocked MPP(+)-induced cell death, suggesting that new protein synthesis is required as demonstrated in many apoptotic cell death. The level of cytosolic calcium in MN9D/Neo cells was unchanged over 24 h following MPP(+) treatment, as monitored by means of the fluorescent probe Fura-2. Western blot analysis indicated that expression level of proapoptotic protein, Bax was not significantly altered after MPP(+) treatment. In this death paradigm, overexpression of Bcl-2 but not its C-terminal deletion mutant attenuated MPP(+)-induced cell death whereas overexpression of Bax had no effect. Taken together, these data indicate that (i) MPP(+) induces a distinct form of cell death which resembles both apoptosis and necrosis; and (ii) full-length Bcl-2 counters MPP(+)-induced morphological changes and cell death via a mechanism that is dependent on de novo protein synthesis but independent of cytosolic calcium changes, Bax expression, and/or activation of caspase(s) in MN9D cells.  相似文献   

20.
Chronic exposure to mild unpredictable stress (CMS) has previously been found to cause an antidepressant-reversible decrease in the consumption of palatable sweet solutions. There is evidence that the effect of antidepressants in this model is mediated by an increase in transmission at dopamine (DA) synpases. The present study investigated whether another treatment known to increase the functional responsiveness of DA systems, intermittent administration of DA agonists, would have antidepressant-like effects. In three experiments in rats, CMS-induced decreases in sucrose consumption were reversed by three to four twice-weekly injections of quinpirole (100-200 micrograms/kg) or bromocriptine (2.5 mg/kg). The effects lasted for several weeks, and when they waned, could be reinstated by a single additional injection of quinpirole. As with tricyclic antidepressants, the effect of quinpirole was reversed by raclopride, administered acutely immediately prior to a sucrose consumption test; there were no changes in sucrose intake in nonstressed control animals. The results suggest that intermittent administration of DA agonists merits investigation as a novel strategy for the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号