首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Locusts have two large collision-detecting neurons, the descending contralateral movement detectors (DCMDs) that signal object approach and trigger evasive glides during flight. We sought to investigate whether vision for action, when the locust is in an aroused state rather than a passive viewer, significantly alters visual processing in this collision-detecting pathway. To do this we used two different approaches to determine how the arousal state of a locust affects the prolonged periods of high-frequency spikes typical of the DCMD response to approaching objects that trigger evasive glides. First, we manipulated arousal state in the locust by applying a brief mechanical stimulation to the hind leg; this type of change of state occurs when gregarious locusts accumulate in high-density swarms. Second, we examined DCMD responses during flight because flight produces a heightened physiological state of arousal in locusts. When arousal was induced by either method we found that the DCMD response recovered from a previously habituated state; that it followed object motion throughout approach; and--most important--that it was significantly more likely to generate the maintained spike frequencies capable of evoking gliding dives even with extremely short intervals (1.8 s) between approaches. Overall, tethered flying locusts responded to 41% of simulated approaching objects (sets of 6 with 1.8 s ISI). When we injected epinastine, the neuronal octopamine receptor antagonist, into the hemolymph responsiveness declined to 12%, suggesting that octopamine plays a significant role in maintaining responsiveness of the DCMD and the locust to visual stimuli during flight.  相似文献   

2.
The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation to repeated stimuli suggest that this pathway should be sensitive to approaches of individual objects within a complex visual scene. We presented locusts with compound looming objects while recording from the DCMD to test the effects of nonuniform edge expansion on looming responses. We also presented paired objects approaching from different regions of the visual field at nonoverlapping, closely timed and simultaneous approach intervals to study DCMD responses to multiple looming stimuli. We found that looming compound objects evoked characteristic responses in the DCMD and that the time of peak firing was consistent with predicted values based on a weighted ratio of the half size of each distinct object edge and the absolute approach velocity. We also found that the azimuthal position and interval of paired approaches affected DCMD firing properties and that DCMDs responded to individual objects approaching within 106 ms of each other. Moreover, comparisons between individual and paired approaches revealed that overlapping approaches are processed in a strongly sublinear manner. These findings are consistent with biophysical mechanisms that produce nonlinear integration of excitatory and feed-forward inhibitory inputs onto the LGMD that have been shown to underlie responses to looming stimuli.  相似文献   

3.
Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the approach of paired objects and approaches at different time intervals (Guest BB, Gray JR. J Neurophysiol 95: 1428-1441, 2006) suggest that this pathway may also be affected by more complicated movements in the locust's visual environment. To test this possibility we presented stationary locusts with disks traveling along combinations of colliding (looming), noncolliding (translatory), and near-miss trajectories. Distinctly different responses to different trajectories and trajectory changes demonstrate that DCMD responds to complex aspects of local visual motion. DCMD peak firing rates associated with the time of collision remained relatively invariant after a trajectory change from translation to looming. Translatory motion initiated in the frontal visual field generated a larger peak firing rate relative to object motion initiated in the posterior visual field, and the peak varied with simulated distance from the eye. Transition from translation to looming produced a transient decrease in the firing rate, whereas transition away from looming produced a transient increase. The change in firing rate at the time of transition was strongly correlated with unique expansion parameters described by the instantaneous angular acceleration of the leading edge and subtense angle of the disk. However, response time remained invariant. While these results may reflect low spatial resolution of the compound eye, they also suggest that this motion-sensitive pathway may be capable of monitoring dynamic expansion properties of objects that change the trajectory of motion.  相似文献   

4.
The lobula giant movement detector (LGMD) in the locust visual system and its target neuron, the descending contralateral movement detector (DCMD), respond to approaching objects looming on a collision course with the animal. They thus provide a good model to study the cellular and network mechanisms underlying the sensitivity to this specific class of behaviorally relevant stimuli. We determined over an entire locust eye the density distribution of optical axes describing the spatial organization of local inputs to the visual system and compared it with the sensitivity distribution of the LGMD/DCMD to local motion stimuli. The density of optical axes peaks in the equatorial region of the frontal eye. Local motion sensitivity, however, peaks in the equatorial region of the caudolateral visual field and only correlates positively with the dorso-ventral density of optical axes. On local stimulation, both the velocity tuning and the response latency of the LGMD/DCMD depend on stimulus position within the visual field. Spatial and temporal integration experiments in which several local motion stimuli were activated either simultaneously or at fixed delays reveal that the LGMD processes local motion in a strongly sublinear way. Thus the neuron's integration properties seem to depend on several factors including its dendritic morphology, the local characteristics of afferent fiber inputs, and inhibition mediated by different pathways or by voltage-gated conductances. Our study shows that the selectivity of this looming sensitive neuron to approaching objects relies on more complex biophysical mechanisms than previously thought.  相似文献   

5.
Summary The reflex interconnection of lower and upper extremity muscles was investigated in subjects with chronic (> 1 year post-injury) lesions to the cervical spinal cord. Lower extremity mixed nerves were stimulated with single shocks or with brief trains of high-frequency stimuli of varying intensities. EMG from a number of lower and upper extremity muscles was recorded on magnetic tape for later analysis. In one population of spinal cord injury (SCI) subjects, single stimuli to lower extremity nerves resulted in muscle responses in both ipsi- and contralateral upper extremity muscles. The minimal response latency to a single shock was typically much less in muscles on the ipsilateral side than for contralateral upper extremity muscles. Application of brief trains of stimuli (for example, 2 stimulus pulses at 500 Hz) typically resulted in a large reduction in latency to the contralateral motor response, such that it was now approximately equal to the ipsilateral motor response latency. This decline in response latency was not gradual with increasing afferent input. Instead, the response occurred either early or late, but not at intermediate latencies. Stimuli which were subthreshold for evoking M-waves or H-reflexes were sometimes still adequate to evoke upper extremity motor responses. Once the threshold had been exceeded, the magnitude of the evoked response appeared to be independent of the stimulus magnitude. These reflex interconnections of lower and upper extremities were obtained only from subjects with chronic and motor-complete cervical spinal cord injury. No such interlimb responses were seen in control subjects, or in subjects who had recovered some motor function below the level of their injury, and were now considered to be motor-incomplete quadriplegics.  相似文献   

6.
Neural circuits are strongly affected by temperature and failure ensues at extremes. However, detrimental effects of high temperature on neural pathways can be mitigated by prior exposure to high, but sublethal temperatures (heat shock). Using the migratory locust, Locusta migratoria, we investigated the effects of heat shock on the thermosensitivity of a visual interneuron [the descending contralateral movement detector (DCMD)]. Activity in the DCMD was elicited using a looming stimulus and the response was recorded from the axon using intracellular and extracellular methods. The thoracic region was perfused with temperature-controlled saline and measurements were taken at 5 degrees intervals starting at 25 degrees C. Activity in DCMD was decreased in control animals with increased temperature, whereas heat-shocked animals had a potentiated response such that the peak firing frequency was increased. Significant differences were also found in the thermosensitivity of the action potential properties between control and heat-shocked animals. Heat shock also had a potentiating effect on the amplitude of the afterdepolarization. The concurrent increase in peak firing frequency and maintenance of action potential properties after heat shock could enhance the reliability with which DCMD initiates visually guided behaviors at high temperature.  相似文献   

7.
We demonstrate pronounced differences in the visual system of a polyphenic locust species that can change reversibly between two forms (phases), which vary in morphology and behavior. At low population densities, individuals of Schistocerca gregaria develop into the solitarious phase, are cryptic, and tend to avoid other locusts. At high densities, individuals develop instead into the swarm-forming gregarious phase. We analyzed in both phases the responses of an identified visual interneuron, the descending contralateral movement detector (DCMD), which responds to approaching objects. We demonstrate that habituation of DCMD is fivefold stronger in solitarious locusts. In both phases, the mean time of peak firing relative to the time to collision nevertheless occurs with a similar characteristic delay after an approaching object reaches a particular angular extent on the retina. Variation in the time of peak firing is greater in solitarious locusts, which have lower firing rates. Threshold angle and delay are therefore conserved despite changes in habituation or behavioral phase state. The different rates of habituation should contribute to different predator escape strategies or flight control for locusts living either in a swarm or as isolated individuals. For example, increased variability in the habituated responses of solitarious locusts should render their escape behaviors less predictable. Relative resistance to habituation in gregarious locusts should permit the continued responsiveness required to avoid colliding with other locusts in a swarm. These results will permit us to analyze neuronal plasticity in a model system with a well-defined and controllable behavioral context.  相似文献   

8.
Encoding of visual information by LGN bursts.   总被引:5,自引:0,他引:5  
Encoding of visual information by LGN bursts. Thalamic relay cells respond to visual stimuli either in burst mode, as a result of activation of a low-threshold Ca2+ conductance, or in tonic mode, when this conductance is inactive. We investigated the role of these two response modes for the encoding of the time course of dynamic visual stimuli, based on extracellular recordings of 35 relay cells from the lateral geniculate nucleus of anesthetized cats. We presented a spatially optimized visual stimulus whose contrast fluctuated randomly in time with frequencies of up to 32 Hz. We estimated the visual information in the neural responses using a linear stimulus reconstruction method. Both burst and tonic spikes carried information about stimulus contrast, exceeding one bit per action potential for the highest variance stimuli. The "meaning" of an action potential, i.e., the optimal estimate of the stimulus at times preceding a spike, was similar for burst and tonic spikes. In within-trial comparisons, tonic spikes carried about twice as much information per action potential as bursts, but bursts as unitary events encoded about three times more information per event than tonic spikes. The coding efficiency of a neuron for a particular stimulus is defined as the fraction of the neural coding capacity that carries stimulus information. Based on a lower bound estimate of coding efficiency, bursts had approximately 1.5-fold higher efficiency than tonic spikes, or 3-fold if bursts were considered unitary events. Our main conclusion is that both bursts and tonic spikes encode stimulus information efficiently, which rules out the hypothesis that bursts are nonvisual responses.  相似文献   

9.
Summary The reflex responses of single motor units in human masseter muscle to electrical stimulation of the lip were recorded. The subject maintained a contant mean level of pre-stimulus excitation of the parent motor neurone by biting in such a way that the unit fired at either 10 or 15 Hz during each trial. When firing at 10 Hz, most units were reflexly inhibited for up to 90 ms by electrical stimuli at intensities that were perceived to be mildly uncomfortable. In many units, the inhibition consisted of 2 phases which were separated from each other by a few spikes occurring about 30 ms after the stimulus. It was occasionally possible to evoke only the later phase (latency about 40 ms) with stimuli at intensities near the response threshold. In these instances, the inhibitory response became biphasic at higher stimulus intensities with the emergence of a shorter (10–15 ms) component. Still higher intensities caused the 2 phases of inhibition to merge, giving the appearance of a single, prolonged, inhibitory response. When the pre-stimulus firing frequency of the unit was changed from 10 Hz to 15 Hz, the inhibitory responses to the same stimuli were decreased, with the longer-latency component usually surviving beyond the shorter-latency phase. The pattern of reflex responses observed can be explained by a model based on information derived from intracellular recordings in animal experiments.  相似文献   

10.
1. We examine the critical image cues that are used by the locust visual system for the descending contralateral motion detector (DCMD) neuron to distinguish approaching from receding objects. Images were controlled by computer and presented on an electrostatic monitor. 2. Changes in overall luminance elicited much smaller and briefer responses from the DCMD than objects that appeared to approach the eye. Although a decrease in overall luminance might boost the response to an approaching dark object, movement of edges of the image is more important. 3. When two pairs of lines, in a cross-hairs configuration, were moved apart and then together again, the DCMD showed no preference for divergence compared with convergence of edges. A directional response was obtained by either making the lines increase in extent during divergence and decrease in extent during convergence; or by continually increasing the velocity of line movement during divergence and decreasing velocity during convergence. 4. The DCMD consistently gave a larger response to growing than to shrinking solid rectangular images. An increase compared with a decrease in the extent of edge in an image is, therefore, an important cue for the directionality of the response. For single moving edges of fixed extent, the neuron gave the largest response to edges that subtended 15 degrees at the eye. 5. The DCMD was very sensitive to the amount by which an edge traveled between frames on the display screen, with the largest responses generated by 2.5 degrees of travel. This implies that the neurons in the optic lobe that drive this movement-detecting system have receptive fields of about the same extent as a single ommatidium. 6. For edges moving up to 250 degree/s, the excitation of the DCMD increases with velocity. The response to an edge moving at a constant velocity adapts rapidly, in a manner that depends on velocity. Movement over one part of the retina can adapt the subsequent response to movement over another part of the retina. 7. For the DCMD to track and continue to respond to the image of an approaching object, the edges of the image must continually increase in velocity. This is the second important stimulus cue. 8. Edges of opposite contrasts (light-dark compared with dark-light) are processed in separate pathways that inhibit each other. This would contribute to the reduction of responses to wide-field movements.  相似文献   

11.
1. The "descending contralateral movement detector" (DCMD) neuron in the locust has been challenged with a variety of moving stimuli, including scenes from a film (Star Wars), moving disks, and images generated by computer. The neuron responds well to any rapid movement. For a dark object moving along a straight path at a uniform velocity, the DCMD gives the strongest response when the object travels directly toward the eye, and the weakest when the object travels away from the eye. Instead of expressing selectivity for movements of small rather than large objects, the DCMD responds preferentially to approaching objects. 2. The neuron shows a clear selectivity for approach over recession for a variety of sizes and velocities of movement both of real objects and in simulated movements. When a disk that subtends > or = 5 degrees at the eye approaches the eye, there are two peaks in spike rate: one immediately after the start of movement; and a second that builds up during the approach. When a disk recedes from the eye, there is a single peak in response as the movement starts. There is a good correlation between spike rate and angular acceleration of the edges of the image over the eye. 3. When an object approaches from a distance sufficient for it to subtend less than one interommatidial angle at the start of its approach, there is a single peak in response. The DCMD tracks the approach, and, if the object moves at 1 m/s or faster, the spike rate increases throughout the duration of object movement. The size of the response depends on the speed of approach. 4. It is unlikely that the DCMD encodes the time to collision accurately, because the response depends on the size as well as the velocity of an approaching object. 5. Wide-field movements suppress the response to an approaching object. The suppression varies with the temporal frequency of the background pattern. 6. Over a wide range of contrasts of object against background, the DCMD gives a stronger response to approaching than to receding objects. For low contrasts, the selectivity is greater for objects that are darker than the background than for objects that are lighter.  相似文献   

12.
Rats employ rhythmic whisker movements to sample information in their sensory environment. To study frequency tuning and filtering characteristics of thalamic circuitry, we recorded single-unit responses of ventroposterior medial (VPm) and thalamic reticular (Rt) neurons to 1- to 40-Hz sinusoidal and pulsatile whisker deflection in lightly narcotized rats. Neuronal entrainment was assessed by a measure of the relative modulation (RM) of firing at the stimulus frequency given by the first harmonic (F1) of the cycle time histogram divided by the mean firing rate (F0). VPm signaling of both sinusoidal and periodic pulsatile whisker movements improved gradually over 1-16 and was maximal at 20-40 Hz. By contrast, the RM of Rt responses increased over 1-8 Hz, but deteriorated progressively over the 12- to 40-Hz range. In Rt, response adaptation occurred at lower stimulus frequencies and to a greater extent than in VPm. Within a train of high-frequency stimuli, Rt responses progressively decremented, possibly due to the accumulation of inhibition, whereas those of VPm neurons augmented. Mean firing rates in Rt increased 42 spikes/s over 1-40 Hz, providing tonic (low RM) inhibition during high-frequency stimulation that may enhance VPm signal-to-noise ratios. Consistent with this view, VPm mean firing rates increased only 13 spikes/s over 1-40 Hz, and inter-deflection activity was suppressed to a greater extent than stimulus-evoked responses. Rt inhibition is likely to act in concert with actions of neuromodulators in optimizing thalamic temporal signaling of high-frequency whisker movements.  相似文献   

13.
Spikes were evoked in rat olfactory sensory neuron (OSN) populations by electrical stimulation of the olfactory bulb nerve layer in pentobarbital anesthetized rats. The latencies and recording positions for these compound spikes showed that they originated in olfactory epithelium. Dual simultaneous recordings indicated conduction velocities in the C-fiber range, around 0.5 m/s. These spikes are concluded to arise from antidromically activated olfactory sensory neurons. Electrical stimulation at 5 Hz was used to track changes in the size and latency of the antidromic compound population spike during the odor response. Strong odorant stimuli suppressed the spike size and prolonged its latency. The latency was prolonged throughout long odor stimuli, indicating continued activation of olfactory receptor neuron axons. The amounts of spike suppression and latency change were strongly correlated with the electroolfactogram (EOG) peak size evoked at the same site across odorants and across stimulus intensities. We conclude that the curve of antidromic spike suppression gives a reasonable representation of spiking activity in olfactory sensory neurons driven by odorants and that the correlation of peak spike suppression with the peak EOG shows the accuracy of the EOG as an estimate of intracellular potential in the population of olfactory sensory neurons. In addition, these results have important implications about traffic in olfactory nerve bundles. We did not observe multiple peaks corresponding to stimulated and unstimulated receptor neurons. This suggests synchronization of spikes in olfactory nerve, perhaps by ephaptic interactions. The long-lasting effect on spike latency shows that action potentials continue in the nerve throughout the duration of an odor stimulus in spite of many reports of depolarization block in olfactory receptor neuron cell bodies. Finally, strong odor stimulation caused almost complete block of antidromic spikes. This indicates that a very large proportion of olfactory axons was activated by single strong odor stimuli.  相似文献   

14.
1. Intracellular recordings near the output terminals of an identified interneuron (the descending contralateral movement detector, DCMD) in the locust revealed the occurrence of depolarizing synaptic potentials. These presynaptic depolarizing potentials were evoked by spikes in both DCMDs, by auditory stimuli, and by electrical stimulation of the pro- to mesothoracic connectives. The occurrence of the depolarizing potentials decreased the amplitude of the action potentials close to the output terminals. 2. The stimuli that produced depolarizing potentials in the presynaptic terminals reduced the amplitude of the monosynaptic excitatory postsynaptic potentials evoked by the DCMDs in identified follower interneurons. We conclude that at least part of this reduction in transmission from the DCMDs results from presynaptic inhibition and that the presynaptic inhibition is related to a reduction in the amplitude of the presynaptic action potentials. 3. We propose that the function of the presynaptic inhibition of the DCMDs is to ensure that the interneurons triggering a jump are never activated by the DCMDs in the absence of proprioceptive signals from the legs indicating the animal's readiness to jump.  相似文献   

15.
Within a neuron, spike propagation can occur in a complex manner, with spikes propagating into some processes but not others. We study this phenomenon in an experimentally advantageous mechanoafferent in Aplysia, neuron B21. B21 has two processes within the CNS. One is ipsilateral to the soma and is referred to as the lateral process. The second travels into the contralateral hemiganglion and is referred to as the contralateral process. Previously we characterized spike propagation to the lateral process, which is an output region that contacts follower motor neurons. Spikes fail to actively propagate to the lateral process when B21 is peripherally activated at its resting potential. This propagation failure can be relieved if the medial regions of B21 are centrally depolarized during peripheral activation. This study examines spike propagation to the contralateral process. We show that, unlike the lateral process, active spike propagation in the contralateral process occurs when B21 is peripherally activated at its resting membrane potential. Thus spike propagation occurs selectively, favoring the contralateral process. Interestingly, the contralateral process of one B21 is immediately adjacent to the medial region of the bilaterally symmetrical cell. The B21 neurons are electrically coupled, suggesting that spikes propagating in the contralateral process of one cell could modify propagation in the sister neuron. Consistent with this idea, we show that lateral process propagation failures observed when a single B21 is peripherally activated can be relieved by central coactivation of the contralateral cell. These results imply that stimuli that coactivate the B21 neurons bilaterally are more apt to generate afferent activity that is transmitted to followers than stimuli that activate one cell.  相似文献   

16.
We have used intracellular recording and staining techniques to investigate the cellular mechanisms for the initiation and maintenance of flight in the locust, Locusta migratoria. In particular, we examined the properties of a small group of interneurons in the mesothoracic ganglion. We refer to these interneurons as 404 neurons. Their structure has been described, in a closely related species, by Watson and Burrows (21). Using a preparation in which intracellular recordings could be made from the main neurite of a 404 neuron during the generation of flight activity, we observed that the 404 neurons discharged tonically throughout flight episodes elicited by a constant wind stimulus on the head and by a sudden dimming of the lights. Their discharge rate was linearly related to the frequency of the flight activity. Depolarization of individual 404 neurons often initiated flight activity in quiescent preparations, and the application of hyperpolarizing currents during a flight episode either slowed or stopped flight activity. Hyperpolarizing currents also prevented the initiation of flight activity in some preparations. Individual 404 neurons were not always necessary for the generation of flight activity, since flight activity sometimes persisted when all spiking in a 404 neuron was prevented by the application of a hyperpolarizing current. We conclude that the 404 neurons function to initiate and maintain flight activity in response to wind stimulation of the head, but we have not yet established that they are the only thoracic neurons with this function. The 404 neurons discharged with a high-frequency burst at the time of triggering of a kick. Since the motor program for a jump is similar to that for a kick, the 404 neurons may also be involved in linking the initiation of flight activity to the jump. None of our data indicate that the 404 neurons receive input from the central rhythm generator. Thus the neuronal circuitry for flight appears to be hierarchically organized with at least one distinct neuronal system providing a tonic drive to initiate and maintain activity in the system that patterns activity in flight motoneurons.  相似文献   

17.
In crickets (Teleogryllus oceanicus), the paired auditory interneuron Omega Neuron 1 (ON1) responds to sounds with frequencies in the range from 3 to 40 kHz. The neuron is tuned to frequencies similar to that of conspecific songs (4.5 kHz), but its latency is longest for these same frequencies by a margin of 5-10 ms. Each ON1 is strongly excited by input from the ipsilateral ear and inhibits contralateral auditory neurons that are excited by the contralateral ear, including the interneurons ascending neurons 1 and 2 (AN1 and AN2). We investigated the functional consequences of ON1's long latency to cricket-like sound and the resulting delay in inhibition of AN1 and AN2. Using dichotic stimuli, we controlled the timing of contralateral inhibition of the ANs relative to their excitation by ipsilateral stimuli. Advancing the stimulus to the ear driving ON1 relative to that driving the ANs "subtracted" ON1's additional latency to 4.5 kHz. This had little effect on the spike counts of AN1 and AN2. The response latencies of these neurons, however, increased markedly. This is because in the absence of a delay in ON1's response, inhibition arrived at AN1 and AN2 early enough to abolish the first spikes in their responses. This also increased the variability of AN1 latency. This suggests that one possible function of the delay in ON1's response may be to protect the precise timing of the onset of response in the contralateral AN1, thus preserving interaural difference in response latency as a reliable potential cue for sound localization. Hyperpolarizing ON1 removed all detectable contralateral inhibition of AN1 and AN2, suggesting that ON1 is the main, if not the only, source of contralateral inhibition.  相似文献   

18.
1. We used the Karhunen-Loève (K-L) transform to quantify the temporal distribution of spikes in the responses of lateral geniculate (LGN) neurons. The basis functions of the K-L transform are a set of waveforms called principal components, which are extracted from the data set. The coefficients of the principal components are uncorrelated with each other and can be used to quantify individual responses. The shapes of each of the first three principal components were very similar across neurons. 2. The coefficient of the first principal component was highly correlated with the spike count, but the other coefficients were not. Thus the coefficient of the first principal component reflects the strength of the response, whereas the coefficients of the other principal components reflect aspects of the temporal distribution of spikes in the response that are uncorrelated with the strength of the response. Statistical analysis revealed that the coefficients of up to 10 principal components were driven by the stimuli. Therefore stimuli govern the temporal distribution as well as the number of spikes in the response. 3. Through the application of information theory, we were able to compare the amount of stimulus-related information carried by LGN neurons when two codes were assumed: first, a univariate code based on response strength alone; and second, a multivariate temporal code based on the coefficients of the first three principal components. We found that LGN neurons were able to transmit an average of 1.5 times as much information using the three-component temporal code as they could using the strength code. 4. The stimulus set we used allowed us to calculate the amount of information each neuron could transmit about stimulus luminance, pattern, and contrast. All neurons transmitted the greatest amount of information about stimulus luminance, but they also transmitted significant amounts of information about stimulus pattern. This pattern information was not a reflection of the luminance or contrast of the pixel centered on the receptive field. 5. In addition to measuring the average amount of information each neuron transmitted about all stimuli, we also measured the amount of information each neuron transmitted about the individual stimuli with both the univariate spike count code and the multivariate temporal code. We then compared the amount of information transmitted per stimulus with the magnitudes of the responses to the individual stimuli. We found that the magnitudes of both the univariate and the multivariate responses to individual stimuli were poorly correlated with the information transmitted about the individual stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The human electroencephalogram (EEG) is generated predominantly by synchronised cortical excitatory postsynaptic potentials oscillating at frequencies <100 Hz. Unusually, EEG responses to electrical nerve stimulation contain brief bursts of high-frequency (600 Hz) wavelets. Here we show, in awake monkeys, that a subset of primary somatosensory cortex single units consistently fires both bursts and single spikes phase-locked to EEG wavelets. Spike bursts were also evoked by tactile stimuli, proving that this is a natural response mode. EEG wavelets at 600 Hz may therefore permit non-invasive assessment of population spike timing in human cortex.  相似文献   

20.
Recent studies have demonstrated the frequency selectivity of air-conducted (AC) and bone-conducted (BC) stimuli in eliciting ocular vestibular evoked myogenic potentials (oVEMPs). In this study, frequency tuning of the oVEMP was assessed in patients with superior canal dehiscence (SCD) and compared with responses previously reported for healthy subjects. Six (five unilateral) SCD patients were stimulated using AC sound (50–1,200 Hz) and BC transmastoid vibration (50–1,000 Hz). Stimuli were delivered at two standardized intensities: one the same as previously used for healthy controls and the other at 10 dB above vestibular threshold (a similar relative intensity to that used in controls). For AC stimulation, SCD patients had larger oVEMP amplitudes across all frequencies tested for both stimulus intensities. Normalized tuning curves demonstrated greater high-frequency responses with the stronger stimulus. For BC stimulation, larger oVEMP amplitudes were produced at frequencies at and above 100 Hz using standard intensity stimuli. For the matched intensity above vestibular threshold, enhancement of the oVEMP response was present in SCD patients for 500–800 Hz only. We conclude that SCD causes greater facilitation for AC than BC stimuli. The high-frequency response is likely to originate from the superior (anterior) canal and is consistent with models of inner ear changes occurring in SCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号