首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketamine is metabolized by cytochrome P450 (CYP) leading to production of pharmacologically active products and contributing to drug excretion. We identified the CYP enzymes involved in the N-demethylation of ketamine enantiomers using pooled human liver microsomes and microsomes from human B-lymphoblastoid cells that expressed CYP enzymes. The kinetic data in human liver microsomes for the (R)- and (S)-ketamine N-demethylase activities could be analyzed as two-enzyme systems. The K(m) values were 31 and 496 microM for (R)-ketamine, and 24 and 444 microM for (S)-ketamine. Among the 12 cDNA-expressed CYP enzymes examined, CYP2B6, CYP2C9, and CYP3A4 showed high activities for the N-demethylation of both enantiomers at the substrate concentration of 1 mM. CYP2B6 had the lowest K(m) value for the N-demethylation of (R)- and (S)-ketamine (74 and 44 microM, respectively). Also, the intrinsic clearance (CL(int): V(max)/K(m)) of CYP2B6 for the N-demethylation of both enantiomers were 7 to 13 times higher than those of CYP2C9 and CYP3A4. Orphenadrine (CYP2B6 inhibitor, 500 microM) and sulfaphenazole (CYP2C9 inhibitor, 100 microM) inhibited the N-demethylase activities for both enantiomers (5 microM) in human liver microsomes by 60 to 70%, whereas cyclosporin A (CYP3A4 inhibitor, 100 microM) failed to inhibit these activities. In addition, the anti-CYP2B6 antibody inhibited these activities in human liver microsomes by 80%, whereas anti-CYP2C antibody and anti-CYP3A4 antibody failed to inhibit these activities. These results suggest that the high affinity/low capacity enzyme in human liver microsomes is mediated by CYP2B6, and the low affinity/high capacity enzyme is mediated by CYP2C9 and CYP3A4. CYP2B6 mainly mediates the N-demethylation of (R)- and (S)-ketamine in human liver microsomes at therapeutic concentrations (5 microM).  相似文献   

2.
Identification of cytochrome P-450 isoenzymes (CYPs) involved in perazine 5-sulphoxidation and N-demethylation was carried out using human liver microsomes and cDNA-expressed human CYPs (Supersomes). In human liver microsomes, the formation of perazine metabolites correlated significantly with the level of CYP1A2 and ethoxyrezorufin O-deethylase activity, as well as with the level of CYP3A4 and cyclosporin A oxidase activity. Moreover, the formation of N-desmethylperazine also correlated well with S-mephenytoin 4'-hydroxylase activity (CYP2C19). alpha-Naphthoflavone (a CYP1A2 inhibitor) and ketoconazole (a CYP3A4 inhibitor) significantly decreased the rate of perazine 5-sulphoxidation, while ticlopidine (a CYP2C19 inhibitor) strongly reduced the rate of perazine N-demethylation in human liver microsomes. The cDNA-expressed human CYPs generated different amounts of perazine metabolites, but the preference of CYP isoforms to catalyze perazine metabolism was as follows (pmol of product/pmol of CYP isoform/min): 1A1>2D6>2C19>1A2>2B6>2E1>2A6 approximately 3A4>2C9 for 5-sulphoxidation and 2C19>2D6>1A1>1A2>2B6>3A4>2C9>2A6 for N-demethylation. In the light of the obtained results and regarding the contribution of each isoform to the total amount of CYP in human liver, it is concluded that CYP1A2 and CYP3A4 are the main isoenzymes catalyzing 5-sulphoxidation (32% and 30%, respectively), while CYP2C19 is the main isoform catalyzing perazine N-demethylation (68%). CYP2C9, CYP2E1 CYP2C19 and CYP2D6 are engaged to a lesser degree in 5-sulphoxidation, while CYP1A2, CYP3A4 and CYP2D6 in perazine N-demethylation (6-10%, depending on the isoform).  相似文献   

3.
The kinetics of flunitrazepam (FNTZ) N-demethylation to desmethylflunitrazepam (DM FNTZ), and 3-hydroxylation to 3-hydroxyflunitrazepam (3-OH FNTZ), were studied in human liver microsomes and in microsomes containing heterologously expressed individual human CYPs. FNTZ was N-demethylated by cDNA-expressed CYP2A6 (K(m) = 1921 microM), CYP2B6 (K(m) = 101 microM), CYP2C9 (K(m) = 50 microM), CYP2C19 (K(m) = 60 microM), and CYP3A4 (K(m) = 155 microM), and 3-hydroxylated by cDNA-expressed CYP2A6 (K(m) = 298 microM) and CYP3A4 (K(m) = 286 microM). The 3-hydroxylation pathway was predominant in liver microsomes, accounting for more than 80% of intrinsic clearance compared with the N-demethylation pathway. After adjusting for estimated relative abundance, CYP3A accounted for the majority of intrinsic clearance via both pathways. This finding was supported by chemical inhibition studies in human liver microsomes. Formation of 3-OH FNTZ was reduced to 10% or less of control values by ketoconazole (IC(50) = 0.11 microM) and ritonavir (IC(50) = 0.041 microM). Formation of DM FNTZ was inhibited to 40% of control velocity by 2.5 microM ketoconazole and to 30% of control by 2.5 microM ritonavir. Neither 3-OH FNTZ nor DM FNTZ formation was inhibited to less than 85% of control activity by alpha-naphthoflavone (CYP1A2), sulfaphenazole (CYP2C9), omeprazole (CYP2C19), or quinidine (CYP2D6). Thus, CYP-dependent FNTZ biotransformation, like that of many benzodiazepine derivatives, is mediated mainly by CYP3A. Clinical interactions of FNTZ with CYP3A inhibitors can be anticipated.  相似文献   

4.
1. The aim of the present study was to identify human cytochrome p-450 isoforms (CYPs) involved in 5-sulphoxidation and N-demethylation of the simplest phenothiazine neuroleptic promazine in human liver. 2. The experiments were performed in the following in vitro models: (A). a study of promazine metabolism in liver microsomes-(a). correlations between the rate of promazine metabolism and the level and activity of CYPs; (b). the effect of specific inhibitors on the rate of promazine metabolism (inhibitors: CYP1A2-furafylline, CYP2D6-quinidine, CYP2A6+CYP2E1-diethyldithiocarbamic acid, CYP2C9-sulfaphenazole, CYP2C19-ticlopidine, CYP3A4-ketoconazole); (B). promazine biotransformation by cDNA-expressed human CYPs (Supersomes 1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2E1, 3A4); (C). promazine metabolism in a primary culture of human hepatocytes treated with specific inducers (rifampicin-CYP3A4, CYP2B6 and CYP2C inducer, 2,3,7,8-tetrachlordibenzeno-p-dioxin (TCDD)-CYP1A1/1A2 inducer). 3. In human liver microsomes, the formation of promazine 5-sulphoxide and N-desmethylpromazine was significantly correlated with the level of CYP1A2 and ethoxyresorufin O-deethylase and acetanilide 4-hydroxylase activities, as well as with the level of CYP3A4 and cyclosporin A oxidase activity. Moreover, the formation of N-desmethylpromazine was correlated well with S-mephenytoin 4'-hydroxylation. 4. Furafylline (a CYP1A2 inhibitor) and ketoconazole (a CYP3A4 inhibitor) significantly decreased the rate of promazine 5-sulphoxidation, while furafylline and ticlopidine (a CYP2C19 inhibitor) significantly decreased the rate of promazine N-demethylation in human liver microsomes. 5. The cDNA-expressed human CYPs generated different amounts of promazine metabolites, but the rates of CYP isoforms to catalyse promazine metabolism at therapeutic concentration (10 microM) was as follows: 1A1>2B6>1A2>2C9>3A4>2E1>2A6>2D6>2C19 for 5-sulphoxidation and 2C19>2B6>1A1>1A2>2D6>3A4>2C9>2E1>2A6 for N-demethylation. The highest intrinsic clearance (V(max)/K(m)) was found for CYP1A subfamily, CYP3A4 and CYP2B6 in the case of 5- sulphoxidation, and for CYP2C19, CYP1A subfamily and CYP2B6 in the case of N-demethylation. 6. In a primary culture of human hepatocytes, TCDD (a CYP1A subfamily inducer), as well as rifampicin (mainly a CYP3A4 inducer) induced the formation of promazine 5-sulphoxide and N-desmethylpromazine. 7. Regarding the relative expression of various CYPs in human liver, the obtained results indicate that CYP1A2 and CYP3A4 are the main isoforms responsible for 5-sulphoxidation, while CYP1A2 and CYP2C19 are the basic isoforms that catalyse N-demethylation of promazine in human liver. Of the other isoforms studied, CYP2C9 and CYP3A4 contribute to a lesser degree to promazine 5-sulphoxidation and N-demethylation, respectively. The role of CYP2A6, CYP2B6, CYP2D6 and CYP2E1 in the investigated metabolic pathways of promazine seems negligible.  相似文献   

5.
The 4-hydroxylation of mephobarbital enantiomers was investigated by using human liver microsomes from the extensive metabolizers (EM) and poor metabolizers of CYP2C19. The 4-hydroxylase activity of R-mephobarbital in the EM microsomes was >10 times higher than that of S-mephobarbital. In the poor metabolizer microsomes, the 4-hydroxylase activity of R-mephobarbital was much lower than that in the EM microsomes, and the ratio of 4-hydroxylase activity of R-mephobarbital to that of S-mephobarbital was also lower than that in the EM microsomes. Moreover, the 4-hydroxylase activity of R-mephobarbital showed a high correlation (r = 0.985, p<0.001) with the 4'-hydroxylase activity of S-mephenytoin in a panel of nine human liver microsomes. Anti-CYP2C antibody inhibited R-mephobarbital 4-hydroxylase activity by 85% of the control activity. R-Mephobarbital competitively inhibited S-mephenytoin 4'-hydroxylase activity (K(i) = 34 microM), while S-mephenytoin inhibited R-mephobarbital 4-hydroxylase activity (K(i) = 103 microM). Among the seven cDNA-expressed CYPs studied, only CYP2C19 catalyzed R-mephobarbital 4-hydroxylation. These findings suggest that the 4-hydroxylation of mephobarbital catalyzed by CYP2C19 is preferential for R-enantiomer in human liver microsomes.  相似文献   

6.
Effect of bisphenol A on drug-metabolizing enzyme activities by human hepatic cytochrome P450s (CYP) was investigated. We measured aminopyrine N-demethylation by eleven kinds of cDNA-expressed CYPs. CYP2C19 and CYP2B6 catalyzed most efficiently the aminopyrine N-demethylation, followed by CYP2C8 and CYP2D6. Bisphenol A (1 mM) most efficiently inhibited aminopyrine N-demethylation by CYP2C8 and CYP2C19 by 82% and 85%, respectively, whereas inhibition of the activities by CYP 2B6 and 2D6 was less than 40%. Bisphenol A exhibited a noncompetitive-type inhibition of aminopyrine N-demethylase activity by CYP2C8 with Ki value of 97 microM. Additionally, we investigated the inhibitory effect of bisphenol A on CYP2C19-mediated S-mephenytoin 4-hydroxylation. Bisphenol A exhibited a mixed-type inhibition with Ki value of 113 microM. These results suggest that bisphenol A inhibits human hepatic CYP activities, especially CYP2C8 and CYP2C19.  相似文献   

7.
Nornicotine is an N-demethylated metabolite of nicotine. In the present study, human cytochrome P450 (P450) isoform(s) involved in nicotine N-demethylation were identified. The Eadie-Hofstee plot of nicotine N-demethylation in human liver microsomes was biphasic with high-affinity (apparent K(m) = 173 +/- 70 microM, V(max) = 57 +/- 17 pmol/min/mg) and low-affinity (apparent K(m) = 619 +/- 68 microM, V(max) = 137 +/- 6 pmol/min/mg) components. Among 13 recombinant human P450s expressed in baculovirus-infected insect cells (Supersomes), CYP2B6 exhibited the highest nicotine N-demethylase activity, followed by CYP2A6. The apparent K(m) values of CYP2A6 (49 +/- 12 microM) and CYP2B6 (550 +/- 46 microM) were close to those of high- and low-affinity components in human liver microsomes, respectively. The intrinsic clearances of CYP2A6 and CYP2B6 Supersomes were 5.1 and 12.5 nl/min/pmol P450, respectively. In addition, the intrinsic clearance of CYP2A13 expressed in Escherichia coli (44.9 nl/min/pmol P450) was higher than that of CYP2A6 expressed in E. coli (2.6 nl/min/pmol P450). Since CYP2A13 is hardly expressed in human livers, the contribution of CYP2A13 to the nicotine N-demethylation in human liver microsomes would be negligible. The nicotine N-demethylase activity in microsomes from 15 human livers at 20 microM nicotine was significantly correlated with the CYP2A6 contents (r = 0.578, p < 0.05), coumarin 7-hydroxylase activity (r = 0.802, p < 0.001), and S-mephenytoin N-demethylase activity (r = 0.694, p < 0.005). The nicotine N-demethylase activity at 100 microM nicotine was significantly correlated with the CYP2B6 contents (r = 0.677, p < 0.05) and S-mephenytoin N-demethylase activities (r = 0.740, p < 0.005). These results as well as the inhibition analyses suggested that CYP2A6 and CYP2B6 would significantly contribute to the nicotine N-demethylation at low and high substrate concentrations, respectively. The contributions of CYP2A6 and CYP2B6 would be dependent on the expression levels of these isoforms in any human liver.  相似文献   

8.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be mainly N-demethylated to desmethylazelastine in humans. In the present study, Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from human B-lymphoblast cells, recombinant cytochrome P-450 (CYP)2D6 and CYP1A1 exhibited higher azelastine N-demethylase activity than did other CYP enzymes. On the other hand, recombinant CYP3A4 and CYP1A2 as well as CYP1A1 and CYP2D6 in microsomes from baculovirus-infected insect cells were active in azelastine N-demethylation. The K(M) value of the recombinant CYP2D6 (2.1 microM) from baculovirus-infected insect cells was similar to the K(M) value of the high-affinity (2.4+/-1.3 microM) component in human liver microsomes. On the other hand, the K(M) values of the recombinant CYP3A4 (51.1 microM) and CYP1A2 (125.4 microM) from baculovirus-infected insect cells were similar to the K(M) value of the low-affinity (79.7+/-12.8 microM) component in human liver microsomes. Bufuralol inhibited the high-affinity component, making the Eadie-Hofstee plot in human liver microsomes monophasic. Azelastine N-demethylase activity in human liver microsomes (5 microM azelastine) was inhibited by ketoconazole, erythromycin, and fluvoxamine (IC(50) = 0.08, 18.2, and 17.2 microM, respectively). Azelastine N-demethylase activity in microsomes from twelve human livers was significantly correlated with testosterone 6beta-hydroxylase activity (r = 0.849, p<.0005). The percent contributions of CYP1A2, CYP2D6, and CYP3A4 in human livers were predicted using several approaches based on the concept of correction with CYP contents or relative activity factors (RAFs). Our data suggested that the approach using RAF(CL) (RAF as the ratio of clearance) is most predictive of the N-demethylation clearance of azelastine because it best reflects the observed N-demethylation clearance in human liver microsomes. Summarizing the results, azelastine N-demethylation in humans liver microsomes is catalyzed mainly by CYP3A4 and CYP2D6, and CYP1A2 to a small extent (in average, 76.6, 21.8, and 3.9%, respectively), although the percent contribution of each isoform varied among individuals.  相似文献   

9.
Sertraline, a new antidepressant of the selective serotonin reuptake inhibitor class, is extensively metabolized to desmethylsertraline in humans. We identified the cytochrome P-450 (CYP) isoforms involved in sertraline N-demethylation using pooled human liver microsomes and cDNA-expressed CYP isoforms. Eadie-Hofstee plots for the sertraline N-demethylation in human liver microsomes were monophasic. The estimated Michaelis-Menten kinetic parameters were: KM = 18.1 +/- 2.0 microM, Vmax = 0.45 +/- 0.03 nmol/min/mg of protein, and Vmax/KM = 25.2 +/- 4.3 microl/min/mg of protein. At the substrate concentration of 20 microM, which approximated the apparent KM value, sulfaphenazole (CYP2C9 inhibitor) and triazolam (CYP3A substrate) reduced the N-demethylation activities by 20 to 35% in human liver microsomes, whereas the inhibition induced by mephenytoin (CYP2C19 substrate) or quinidine (CYP2D6 inhibitor) was marginal. The anti-CYP2B6 antibody inhibited the sertraline N-demethylation activities by 35%. Sertraline N-demethylation activities were detected in all cDNA-expressed CYP isoforms studied. In particular, CYP2C19, CYP2B6, CYP2C9-Arg, CYP2D6-Val, and CYP3A4 all showed relatively high activity. When the contributions of CYP2D6, CYP2C9, CYP2B6, CYP2C19, and CYP3A4 were estimated from the Vmax/KM of cDNA-expressed CYP isoforms and from their contents in pooled human liver microsomes, the values were found to be 35, 29, 14, 13, and 9%, respectively. The results suggest that at least five isoforms of CYP (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4) are involved in the sertraline N-demethylation in human liver microsomes and that the contribution of any individual isoform does not exceed 40% of overall metabolism. Therefore, concurrent administration of a drug that inhibits a specific CYP isoform is unlikely to cause a marked increase in the plasma concentration of sertraline.  相似文献   

10.
Azelastine hydrochloride [4-[(4-chlorophenyl)methyl]-2-(hexahydro-1-methyl-1H-azepin-4yl )-1-(2 H)-phthalazinone monohydrochloride], is a long-acting antiallergic and antiasthmatic drug. The human cytochrome P-450 (CYP) isoform responsible for azelastine N-demethylation, the major metabolic pathway for azelastine, has been examined. Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from baculovirus-infected insect cells, recombinant CYP3A4, 2D6, 1A2, and 2C19 exhibited high azelastine N-demethylase activity. The K(m) values of the recombinant CYP2D6 (3.75 microM) and CYP3A4 (43.7 microM) were relatively close to that of high-affinity (14.1 microM) and low-affinity (54.7 microM) components in human liver microsomes, respectively. Azelastine N-demethylase activity was inhibited only by the anti-CYP3A antibody, in contrast to antibodies for CYP1A, 2D6, and 2C. In addition, desmethylazelastine formation was significantly inhibited by ketoconazole and troleandomycin but only weakly by omeprazole, sulfaphenazole, and furafylline. These observations suggested that the N-demethylation of azelastine is most extensively catalyzed by the CYP2D6 and 3A4 isoforms in humans.  相似文献   

11.
The in vitro biotransformation of bupropion to hydroxybupropion was studied in human liver microsomes and microsomes containing heterologously expressed human cytochromes P450 (CYP). The mean (+/-S.E.) K(m) in four human liver microsomes was 89 (+/-14) microM. In microsomes containing cDNA-expressed CYPs, hydroxybupropion formation was mediated only by CYP2B6 at 50 microM bupropion (K(m) 85 microM). A CYP2B6 inhibitory antibody produced more than 95% inhibition of bupropion hydroxylation in four human livers. Bupropion hydroxylation activity at 250 microM was highly correlated with S-mephenytoin N-demethylation activity (yielding nirvanol), another CYP2B6-mediated reaction, in a panel of 32 human livers (r = 0.94). The CYP2B6 content of 12 human livers highly correlated with bupropion hydroxylation activity (r = 0.96). Thus bupropion hydroxylation is mediated almost exclusively by CYP2B6 and can serve as an index reaction reflecting activity of this isoform. IC(50) values for inhibition of a CYP2D6 index reaction (dextromethorphan O-demethylation) by bupropion and hydroxybupropion were 58 and 74 microM, respectively. This suggests a low inhibitory potency versus CYP2D6, the clinical importance of which is not established. Since bupropion is frequently coadministered with other antidepressants, IC(50) values (microM) for inhibition of bupropion hydroxylation were determined as follows: paroxetine (1.6), fluvoxamine (6.1), sertraline (3.2), desmethylsertraline (19.9), fluoxetine (59.5), norfluoxetine (4.2), and nefazodone (25.4). Bupropion hydroxylation was only weakly inhibited by venlafaxine, O-desmethylvenlafaxine, citalopram, and desmethylcitalopram. The inhibition of bupropion hydroxylation in vitro by a number of newer antidepressants suggests the potential for clinical drug interactions.  相似文献   

12.
Identification of cytochrome P450 isoforms (CYPs) involved in flourofenidone (5-methyl-1-(3-fluorophenyl)-2-[1H]-pyridone, AKF-PD) 5-methylhydroxylation was carried out using human liver microsomes and cDNA-expressed human CYPs (supersomes). The experiments were performed in the following in vitro models: (A) a study of AKF-PD metabolism in liver microsomes: (a) correlations study between the rate of AKF-PD 5-methylhydroxylation and activity of CYPs; (b) the effect of specific CYPs inhibitors on the rate of AKF-PD 5-methylhydroxylation; (B) AKF-PD biotransformation by cDNA-expressed human CYPs (1A2, 2D6, 2C9, 2C19, 2E1, 3A4). In human liver microsomes, the formation of AKF-PD 5-methylhydroxylation metabolite significantly correlated with the caffeine N3-demethylase (CYP1A2), chlorzoxazone 6-hydroxylase (CYP2E1), midazolam 1'- hydroxylase (CYP3A4), tolbutamide 4-hydroxylase (CYP2C9), and debrisoquin 4-hydroxylase (CYP2D6) activities. The production of AKF-PD 5-methylhydroxylation metabolite was completely inhibited by a-naphthoflavone (a CYP1A2 inhibitor) with the IC50 value of 0.12 μM in human liver microsomes. The cDNA-expressed human CYPs generated different amounts of AKF-PD 5-methylhydroxylation metabolites, but the preference of CYP isoforms to catalyze AKF-PD metabolism was as follows: 2D6?>?2C19?>?1A2?>?2E1?>?2C9?>?3A4. The results demonstrated that CYP1A2 is the main isoform catalyzing AKF-PD 5-methylhydroxylation while CYP3A4, CYP2C9, CYP2E1, CYP2C19, and CYP2D6 are engaged to a lesser degree. Potential drug-drug interactions involving CYP1A2 may be noticed when AKF-PD is used combined with CYP1A2 inducers or inhibitors.  相似文献   

13.
Relative activity factors (RAFs) and immunoquantified levels of cytochrome P450 (CYP) isoforms both have been proposed as scaling factors for the prediction of hepatic drug metabolism from studies using cDNA-expressed CYPs. However, a systematic comparison of the two approaches, including possible mechanisms underlying differences, is not available. In this study, RAFs determined for CYPs 1A2, 2B6, 2C19, 2D6, and 3A4 in 12 human livers using lymphoblast-expressed enzymes were compared to immunoquantified protein levels. 2C19, 2D6, and 3A4 RAFs were similar to immunoquantified enzyme levels. In contrast, 1A2 RAFs were 5- to 20-fold higher than CYP1A2 content, and the RAF:content ratio was positively correlated with the molar ratio of NADPH:CYP oxidoreductase (OR) to CYP1A2. The OR:CYP1A2 ratio in lymphoblast microsomes was 92-fold lower than in human liver microsomes. Reconstitution experiments demonstrated a 10- to 20-fold lower activity at OR:CYP1A2 ratios similar to those in lymphoblasts, compared with those in human livers. CYP2B6-containing lymphoblast microsomes had 29- and 13-fold lower OR:CYP and cytochrome b(5):CYP ratios, respectively, than did liver microsomes and yielded RAFs that were 6-fold higher than CYP2B6 content. Use of metabolic rates from cDNA-expressed CYPs containing nonphysiologic concentrations of electron-transfer proteins (relative to human liver microsomes) in conjunction with hepatic CYP contents may lead to incorrect predictions of liver microsomal rates and relative contributions of individual isoforms. Scaling factors used in bridging the gap between expression systems and liver microsomes should not only incorporate relative hepatic abundance of individual CYPs but also account for differences in activity per unit enzyme in the two systems.  相似文献   

14.
Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4'-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4'-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4'-OH-NBL. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.  相似文献   

15.
1. The metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin (BFBFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomes and in cDNA-expressed human liver CYP isoforms. For purposes of comparison, some limited studies were also performed with 7-benzyloxyquinoline (7BQ). 2. Initial interactive docking studies with a homology model of human CYP3A4 indicated that BFBFC was likely to be a selective substrate for CYP3A4 with a relatively high binding affinity, due to the presence of several key hydrogen bonds with active site amino acid residues. 3. Kinetic analysis of NADPH-dependent BFBFC metabolism to HFC in three preparations of pooled human liver microsomes revealed mean (+/- TSEM) Km and Vmax = 4.6 +/- 0.3 microM and 20.0 +/- 3.8 pmol/min/mg protein, respectively. 4. The metabolism of BFBFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing a BFBFC substrate concentration of lO microM (i.e. around twice Km). Good correlations (r2 = 0.736-0.904) were observed between BFBFC metabolism and markers of CYP3A isoforms. 5. While 10O microM BFBFC was metabolized to HFC by cDNA-expressed CYP3A4, little or no metabolism was observed with cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. The metabolism of 10 microM BFBFC in human liver microsomes was markedly inhibited by 5-50 microM troleandomycin and 0.2-5 microM ketoconazole, but stimulated by 0.2-10 microM alpha-naphthoflavone. The metabolism of 10 microM BFBFC in human liver microsomes was also markedly inhibited by an antibody to CYP3A4. 7. Kinetic analysis of NADPH-dependent 7BQ metabolism to 7-hydroxyquinoline (7HQ) in human liver microsomes revealed Km and Vmax = 70 microM and 3.39 nmol/min/mg protein, respectively. 8. While 80 microM 7BQ was metabolized to 7HQ by cDNA-expressed CYP3A4, only low rates of metabolism were observed with cDNA-expressed CYPIA2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 9. In summary, by correlation analysis, the use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFBFC metabolism in human liver microsomes appears to be primarily catalysed by CYP3A4. BFBFC may be a useful fluorescent probe substrate for human hepatic CYP3A4, but compared with 7BQ has only a low rate of metabolism in human liver microsomes.  相似文献   

16.
Ketamine is a widely used drug for its anesthetic and analgesic properties; it is also considered as a drug of abuse, as many cases of ketamine illegal consumption were reported. Ketamine is N-demethylated by liver microsomal cytochrome P450 into norketamine. The identification of the enzymes responsible for ketamine metabolism is of great importance in clinical practice. In the present study, we investigated the metabolism of ketamine in human liver microsomes at clinically relevant concentrations. Liver to plasma concentration ratio of ketamine was taken into consideration. Pooled human liver microsomes and human lymphoblast-expressed P450 isoforms were used. N-demethylation of ketamine was correlated with nifedipine oxidase activity (CYP3A4-specific marker reaction), and it was also correlated with S-mephenytoin N-demethylase activity (CYP2B6-specific marker reaction). Orphenadrine, a specific inhibitor to CYP2B6, and ketoconazole, a specific inhibitor to CYP3A4, inhibited the N-demethylation of ketamine in human liver microsomes. In human lymphoblast-expressed P450, the activities of CYP2B6 were higher than those of CYP3A4 and CYP2C9 at three concentrations of ketamine, 0.005, 0.05, and 0.5 mM. When these results were extrapolated using the average relative content of these P450 isoforms in human liver, CYP3A4 was the major enzyme involved in ketamine N-demethylation. The present study demonstrates that CYP3A4 is the principal enzyme responsible for ketamine N-demethylation in human liver microsomes and that CYP2B6 and CYP2C9 have a minor contribution to ketamine N-demethylation at therapeutic concentrations of the drug.  相似文献   

17.
The aim of the present study was to identify cytochrome P450 isoenzymes (CYPs) involved in the 5-sulfoxidation and N-demethylation of the aliphatic-type phenothiazine neuroleptic levomepromazine in human liver. Experiments were performed in vitro using cDNA-expressed human CYP isoforms (Supersomes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4), liver microsomes from different donors and CYP-selective inhibitors. The obtained results indicate that CYP3A4 is the main isoform responsible for levomepromazine 5-sulfoxidation (72%) and N-demethylation (78%) at a therapeutic concentration of the drug (10 μM). CYP1A2 contributes to a lesser degree to levomepromazine 5-sulfoxidation (20%). The role of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 in catalyzing the above-mentioned reactions is negligible (0.1–8%). Moreover, at a higher, toxicological concentration of the neuroleptic (100 μM), the relative contribution of CYP1A2 to levomepromazine metabolism visibly increases (from 20% to 28% for 5-sufoxidation, and from 8% to 32% for N-demethylation), while the role of CYP3A4 significantly decreases (from 72% to 59% for 5-sulfoxidation, and from 78% to 47% for N-demethylation). The obtained results indicate that the catalysis of levomepromazine 5-sulfoxidation and N-demethylation in humans shows a strict CYP3A4 preference, especially at a therapeutic drug concentration. Hence pharmacokinetic interactions involving levomepromazine and CYP3A4 substrates (e.g. tricyclic antidepressants, calcium channel antagonists, macrolide antibiotics, testosterone), inhibitors (e.g. ketoconazole, erythromycin, SSRIs) or inducers (e.g. rifampicin, carbamazepine) are likely to occur.  相似文献   

18.
  1. Identification of cytochrome P450 isoforms (CYPs) involved in flourofenidone (5-methyl-1-(3-fluorophenyl)-2-[1H]-pyridone, AKF-PD) 5-methylhydroxylation was carried out using human liver microsomes and cDNA-expressed human CYPs (supersomes). The experiments were performed in the following in vitro models: (A) a study of AKF-PD metabolism in liver microsomes: (a) correlations study between the rate of AKF-PD 5-methylhydroxylation and activity of CYPs; (b) the effect of specific CYPs inhibitors on the rate of AKF-PD 5-methylhydroxylation; (B) AKF-PD biotransformation by cDNA-expressed human CYPs (1A2, 2D6, 2C9, 2C19, 2E1, 3A4).

  2. In human liver microsomes, the formation of AKF-PD 5-methylhydroxylation metabolite significantly correlated with the caffeine N3-demethylase (CYP1A2), chlorzoxazone 6-hydroxylase (CYP2E1), midazolam 1’- hydroxylase (CYP3A4), tolbutamide 4-hydroxylase (CYP2C9), and debrisoquin 4-hydroxylase (CYP2D6) activities. The production of AKF-PD 5-methylhydroxylation metabolite was completely inhibited by a-naphthoflavone (a CYP1A2 inhibitor) with the IC50 value of 0.12 μM in human liver microsomes. The cDNA-expressed human CYPs generated different amounts of AKF-PD 5-methylhydroxylation metabolites, but the preference of CYP isoforms to catalyze AKF-PD metabolism was as follows: 2D6?>?2C19?>?1A2?>?2E1?>?2C9?>?3A4.

  3. The results demonstrated that CYP1A2 is the main isoform catalyzing AKF-PD 5-methylhydroxylation while CYP3A4, CYP2C9, CYP2E1, CYP2C19, and CYP2D6 are engaged to a lesser degree. Potential drug–drug interactions involving CYP1A2 may be noticed when AKF-PD is used combined with CYP1A2 inducers or inhibitors.

  相似文献   

19.
Phenacetin O-deethylation, widely used as an index reaction for cytochrome P450 1A2 (CYP1A2) activity, displays biphasic kinetics in human liver microsomes. CYP1A2 has been identified as contributing to the high affinity component, but is not verified as the sole contributor to the high affinity phase. In addition, the human CYP isoforms accounting for the low affinity phase have not been identified. We have used heterologously expressed human CYP isoforms to identify, kinetically characterize, and predict the relative contribution of the major human liver CYP isoforms mediating phenacetin O-deethylation. CYP1A2 (Km 31 microM) is the only high affinity phenacetin O-deethylase in human liver microsomes, while CYPs 2A6 (Km 4098 microM), 2C9 (Km 566 microM), 2C19 (Km 656 microM), 2D6 (Km 1021 microM), and 2E1 (Km 1257 microM) all contribute to the low affinity phase of the reaction. Considering the relative abundance of the various CYPs in human liver, CYP1A2 accounts for 86% of net reaction velocity at a substrate concentration of 100 microM, while CYP2C9 becomes the primary phenacetin O-deethylase at substrate concentrations of 865 microM and higher and accounts for 31% of the net Vmax of the reaction. Predictions from kinetic studies on heterologously expressed CYPs are consistent with chemical inhibition studies on human liver microsomes with sulfaphenazole and alpha-naphthoflavone that suggest a greater role for CYP2C9, and a smaller role for CYP1A2, at higher substrate concentrations. Thus CYP1A2 is the only high affinity human liver phenacetin O-deethylase, thereby validating the use of the high affinity component as an index of CYP1A2 activity in human liver microsomes.  相似文献   

20.
The human liver enzyme microsomal alcohol oxygenase was able to oxidize both 7alpha- and 7beta-hydroxy-Delta(8)-tetrahydrocannabinol (7alpha- and 7beta-hydroxy-Delta(8)-THC) to 7-oxo-Delta(8)-THC. The oxidative activity was determined by using a panel of 12 individual cDNA-expressed human cytochrome P450s (CYPs) (1A1, 1A2, 2A6, 2B6, 2C8, 2C9-Arg, 2C9-Cys, 2C19, 2D6-Met, 2D6-Val, 2E1 and 3A4). Among the CYP isoforms examined, CYP3A4 showed the highest activity for both of substrates. The metabolism of 7alpha- and 7beta-hydroxy-Delta(8)-THC to 7-oxo-Delta(8)-THC was also detected for CYPs 1A1 (4.8% of CYP3A4), 1A2 (4.7%), 2A6 (2.3%), 2C8 (16.6%), and 2C9-Cys (5.4%), and CYPs 1A1 (0.4%), 2C8 (1.3%), 2C9-Arg (4.3%), and 2C9-Cys (0.9%), respectively. The 7alpha- and 7beta-hydroxy-Delta(8)-THC microsomal alcohol oxygenase activities in human liver were significantly inhibited by addition of 100 microM troleandomycin, 1 microM ketoconazole, and anti-CYP3A antibody, although these activities were not inhibited by 1 microM 7, 8-benzoflavone and 50 microM sulfaphenazole. When the substrates were incubated with the CYP3A4-expressed microsomes under oxygen-18 gas phase, atmospheric oxygen was incorporated into 35% of 7-oxo-Delta(8)-THC formed from 7alpha-OH-Delta(8)-THC, but only 12% of 7-oxo-Delta(8)-THC formed from 7beta-OH-Delta(8)-THC. These results indicate that CYP3A4 is a major isoform responsible for the oxidation of 7alpha- and 7beta-hydroxy-Delta(8)-THC to 7-oxo-Delta(8)-THC in liver microsomes of humans, although the oxidation mechanisms for 7alpha- and 7beta-hydroxy-Delta(8)-THC might be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号