首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of capsaicin-sensitive afferent neurons and calcitonin gene-related peptide (CGRP) in the central thyrotropin-releasing hormone (TRH)-induced hepatic hyperemia was investigated in urethane anesthetized rats. Both systemic capsaicin pretreatment and intravenous administration of CGRP receptor antagonist, human CGRP-(8-37), completely abolished the stimulatory effect of hepatic blood flow induced by intracisternal injection of TRH analog (RX-77368; p-Glu-His-(3,3'-dimethyl)-Pro-NH2, 100 ng), assessed by the hydrogen gas clearance method. These data demonstrate the involvement of capsaicin-sensitive afferent neurons and CGRP in the central TRH-induced stimulation of hepatic blood flow.  相似文献   

2.
The involvement of capsaicin-sensitive afferent neurons and calcitonin gene-related peptide (CGRP) in central thyrotropin-releasing hormone (TRH)-induced hepatic cytoprotection was investigated in rats. Both systemic capsaicin pretreatment and intravenous administration of CGRP receptor antagonist, human CGRP-(8-37), completely abolished the protective effect of intracisternal TRH analog (RX-77368; p-Glu-His-(3,3'-dimethyl)-Pro-NH2, 5 ng) against carbon tetrachloride (CCl4)-induced acute liver injury, assessed by serum alanin aminotransferase levels and histological changes. These data demonstrate the involvement of capsaicin-sensitive afferent neurons and CGRP in central TRH-induced hepatic cytoprotection.  相似文献   

3.
In functional experiments, we have investigated the effect exerted by neurotransmitters released from capsaicin-sensitive primary afferent nerve terminals in the isolated guinea-pig common bile duct. In resting preparations, capsaicin (0.1 microM) produced a quick contraction (45.1+/-4% of KCl 80mM) which was abolished by either atropine (1 microM) or tetrodotoxin (0.5 microM). The tachykinin receptor-selective antagonists GR 82334 (NK1 receptor-selective; 3 microM), MEN 11420 (NK2 receptor-selective; 1 microM) and SR 142801 (NK3 receptor-selective; 0.1 microM) administered separately failed to reduce the capsaicin-evoked contraction, whereas any combination of the three antagonists was effective: GR 82334 plus MEN 11420, 36+/-7% reduction; GR 82334 plus SR 142801, 48+/-4% reduction; MEN 11420 plus SR 142801, 55+/-3% reduction; GR 82334 plus MEN 11420 plus SR 142801, 57+/-5% reduction. Neither the CGRP1 receptor antagonist h-CGRP (8-37) (1.5 microM) nor the P2X purinoceptor antagonist PPADS (50 microM) affected the contractile response to capsaicin. The effect of capsaicin (0.1 microM) was abolished by pretreatment with capsaicin itself (10 microM for 15 min). Human calcitonin gene-related peptide (h-CGRP; 0.1 microM) mimicked the effect of capsaicin on resting preparations (contractile response =28% of KCl 80 mM). In preparations precontracted with a submaximal concentration of KCl (24 mM), and in the presence of atropine (1 microM), GR 82334 (3 microM) and MEN 11420 (3 microM), capsaicin (1 microM) produced a tetrodotoxin-insensitive long-lasting relaxation (45+/-3% reduction of tone, at 4min from administration), which was unaffected by the nitric oxide (NO) synthase inhibitor, L-NOARG (100 microM). h-CGRP (10-50 nM) produced a similar sustained relaxation of precontracted preparations (59+/-4% reduction of tone). h-CGRP (8-37) (1.5 microM) almost completely reversed the relaxations produced by both capsaicin and h-CGRP. Application of electrical field stimulation (EFS: trains of stimuli of 10Hz; 0.25ms pulse width; supramaximal voltage; for 60s) to precontracted preparations produced a sustained, tetrodotoxin (1 microM)-sensitive relaxation (32+/-4% reduction of tone). L-NOARG (100 microM) greatly reduced (69+/-5% inhibition) the EFS-elicited relaxation. A complete reversal of the relaxant response to EFS into a contraction was obtained by administering L-NOARG to preparations in which a functional blockade of capsaicin-sensitive primary afferent neurons had been achieved by incubating the tissue with capsaicin (10 microM) for 15 min. At immunohistochemistry, tachykinin- and CGRP-immunoreactivities (TK-IR/CGRP-IR) were detected in varicose nerve fibers throughout the common bile duct, while TK-IR cell bodies were observed in the terminal portion (ampulla) only. In vivo pretreatment with capsaicin (50 mg/kg; 6-7 days before) decreased the number of CGRP-IR nerves, whereas the TK-IR neural network was apparently unchanged. In conclusion, our data provide functional evidence for the presence of capsaicin-sensitive primary afferent nerve endings in the guinea-pig terminal biliary tract, whose stimulation by capsaicin or EFS produces the release of tachykinins and CGRP. In addition, morphological evidence is provided that the bulk of TK-IR material in the biliary tract is contained in intrinsic neuronal elements, while CGRP in this tissue is of extrinsic origin only. Tachykinins, probably released in small amounts by capsaicin, act by activating receptors of the NK1, NK2 and NK3 type, most probably located on intrinsic cholinergic neurons, which in turn release ACh to produce the final excitatory motor response. The contractile response to capsaicin obtained in the presence of the three tachykinin receptor antagonists could be due to the co-released CGRP and/or to other unknown neurotransmitters. CGRP produces either indirect excitatory or direct inhibitory responses by stimulation of CGRP2 and CGRP1 receptors, respectively.  相似文献   

4.
1. Capsaicin sensitive afferent nerves play an important role in gastric mucosal defensive mechanisms. Capsaicin stimulates afferent nerves and enhances the release of calcitonin gene-related peptide (CGRP), which seems to be the predominant neurotransmitter of spinal afferents in the rat stomach, exerting many pharmacological effects by a direct mechanism or indirectly through second messengers such as nitric oxide (NO). 2. Lafutidine is a new type of anti-ulcer drug, possessing both an antisecretory effect, exerted via histamine H(2) receptor blockade, and gastroprotective activities. Studies with certain antagonists or chemical deafferentation techniques suggest the gastroprotective actions of lafutidine to be mediated by capsaicin sensitive afferent nerves, but this is an assumption based on indirect techniques. In order to explain the direct relation of lafutidine to afferent nerves, we conducted the following studies. 3. We determined CGRP and NO release from rat stomach and specific [(3)H]-resiniferatoxin (RTX) binding to gastric vanilloid receptor subtype 1 (VR1), which binds capsaicin, using EIA, a microdialysis system and a radioreceptor assay, respectively. 4. Lafutidine enhanced both CGRP and NO release from the rat stomach induced by a submaximal dose of capsaicin, but had no effect on specific [(3)H]-RTX and capsaicin binding to VR1. 5. In conclusion, our findings demonstrate that lafutidine modulates the activity of capsaicin sensitive afferent nerves in the rat stomach, which may be a key mechanism involved in its gastroprotective action.  相似文献   

5.
Exposure of rat stomach to 1 M NaCl reduced the transmucosal potential difference (PD) followed by an increase of luminal pH and gastric mucosal blood flow (GMBF). Desensitization of capsaicin-sensitive afferent neurons significantly mitigated the increase in GMBF without affecting PD and pH responses. Mucosal application of capsaicin increased GMBF with no effect on PD and pH. The findings suggest that capsaicin-sensitive afferent neurons may be involved in the regulatory mechanism of GMBF responses induced by a mild irritant.  相似文献   

6.
Glucocorticoid hormones produced in response to various ulcerogenic stimuli contribute to the maintenance of the gastric mucosal integrity. The role of glucocorticoids in gastroprotection becomes especially important where there is deficiency of prostaglandins (PGs) or nitric oxide (NO) or desensitization of capsaicin-sensitive sensory neurons (CSN). It has been found that neither inhibition of PG or NO production nor desensitization of CSN by itself provokes damage in the gastric mucosa of rats with normal corticosterone levels. However, each of these treatments results in mucosal damage in adrenalectomized rats; this effect being prevented by corticosterone replacement. Indomethacin-induced gastric erosions are potentiated to similar degrees by adrenalectomy, inhibition of NO production or desensitization of CSN. The potentiation caused by inhibition of NO production or CSN desensitization is further enhanced by concomitant glucocorticoid deficiency. These results suggest a pivotal compensatory role of glucocorticoids in the maintenance of the gastric mucosal integrity under the adverse conditions where the gastroprotective mechanisms provided by PGs, NO and capsaicin-sensitive sensory neurons are impaired. Received 22 August 2006; revised 16 November 2006; 2nd revision received 29 November 2006; accepted 14 December 2006  相似文献   

7.
We examined the effect of lafutidine, a novel histamine H(2)-receptor antagonist, on acid reflux esophagitis in rats in relation to capsaicin-sensitive afferent neurons. The esophagitis was induced in rats by ligating both the pylorus and forestomach for 4 h. Lafutidine (1 - 30 mg/kg) and cimetidine (100 mg/kg) were administered either intragastrically or intraduodenally, while capsaicin (1 - 30 mg/kg) was administered intragastrically after the dual ligation. Intragastrical administered lafutidine at >3 mg/kg significantly prevented the hemorrhagic esophageal damage induced by the dual ligation, and this effect was mimicked by neither capsaicin nor cimetidine given intragastrically, but totally abolished by sensory deafferentation. In contrast, lafutidine and cimetidine given intraduodenally were both protective against the esophageal damage in a sensory deafferentation-resistant manner. The acid secretion in pylorus-ligated stomachs was significantly inhibited by these agents given intraduodenally, but not intragastrically. Vanilloid receptor subtype 1 (VR1) was expressed abundantly in the stomach, but very weakly expressed in the esophagus as assessed by Western blotting. These results suggest that lafutidine is effective against the esophageal lesions induced by acid reflux through inhibition of acid secretion and capsaicin-sensitive afferent neurons. The latter mechanism, not shared by cimetidine, may be due to the interaction of lafutidine with unidentified sites on sensory neurons other than VR1.  相似文献   

8.
Capsaicin-sensitive extrinsic afferent nerves have been demonstrated to release biologically active substances in the gastrointestinal (GI) tract. This fact may be useful for identifying sensory transmitter substances in isolated organ experiments. In the GI tract of animals neuropeptides like tachykinins and calcitonin gene-related peptide (CGRP) mediate specific excitatory and inhibitory effects of capsaicin; some evidence indicates a participation of purinergic mechanisms as well. The human gut (especially the circular musculature) is powerfully relaxed by capsaicin, and this effect seems to have a completely different transmitter background (nitric oxide (NO) and maybe VIP, neither of them of intrinsic neuronal origin). We propose that NO may be a sensory neurotransmitter. The "local efferent" (mediator-releasing) effect of extrinsic afferent neurons can also be demonstrated in vivo, both in animals and man. Yet, nearly normal motility of the small and large intestines (i.e., the most "autonomous" part of the GI tract) is maintained in animals with functionally inhibited capsaicin-sensitive nerves. The importance of this system in regulating GI movements may be exaggerated under pathopysiological conditions, first of all inflammation. The afferent function of capsaicin-sensitive nerves plays a role in sympathetic reflexes, such as the inhibition of GI motility after laparotomy or by peritoneal irritation.  相似文献   

9.
1. The influence of capsaicin-sensitive afferent neurones in modulating acid-secretory responses has been investigated in the continuously perfused stomach of the anaesthetized rat. 2. Ablation of primary afferent neurones, after systemic neonatal pretreatment with high doses of capsaicin, did not modify acid responses to direct stimuli of the oxyntic cell with histamine (5 mg kg-1), pentagastrin (20 micrograms kg-1) or carbachol (4 micrograms kg-1). 3. Acid responses to hypoglycaemia induced by insulin (0.3 iu kg-1) were not influenced by systemic capsaicin pretreatment or by acute coeliac ganglionectomy. Vagotomy abolished this secretory response. 4. The increase in acid output induced by gastric distension (20 cmH2O) was abolished by systemic neonatal capsaicin pretreatment. Likewise, vagotomy and acute coeliac ganglionectomy eliminated this secretory response. 5. Acute intragastric infusion with high doses of capsaicin inhibited the acid responses to distension but failed to modify the increase in acid output induced by insulin. 6. Local application (7-14 days before) of capsaicin to the coeliac ganglion abolished the acid response to gastric distension. This lack of secretory response was not the result of a nonspecific destruction of the ganglion, since changes in intragastric pressure after electrical stimulation of the coeliac ganglion were unaffected by such treatment. 7. These observations indicate that peripheral capsaicin-sensitive sensory neurones, located both in the gastric mucosa and in the coeliac ganglion, play a physiological role in the acid secretory responses to gastric distension.  相似文献   

10.
The role of capsaicin-sensitive afferent nerves in gastroprotection by capsaicin was investigated in the absolute ethanol-induced gastric lesion model in rats. Capsaicin (0.1 and 0.5 mg/kg, p.o.) inhibited the lesion formation dose-dependently. The protective effect of capsaicin was attenuated by indomethacin-pretreatment and disappeared in capsaicin-sensitive nerve degenerated rats. Capsaicin did not induce the distension of gastric mucosal folds. These results suggested that stimulation of capsaicin-sensitive afferent nerves by capsaicin would enhance the prostaglandin formation, leading to an inhibition of gastric lesions.  相似文献   

11.
1. Our objective was to determine whether endotoxin (ETX) could directly trigger the release of calcitonin gene-related peptide (CGRP) from perivascular sensory nerves in the isolated mesenteric arterial bed (MAB) of the rat and to determine whether nitric oxide (NO) and prostaglandins (PGs) are involved. 2. ETX caused time- and concentration-dependent release of CGRP, and as much as a 17 fold increase in CGRP levels in the perfusate at 10-15 min after the administration of ETX (50 micrograms ml-1). 3. CGRP-like immunoreactivity in the perfusate was shown to co-elute with synthetic rat CGRP by reverse-phase h.p.l.c. 4. Pretreatment of MAB with capsaicin or ruthenium red inhibited ETX-induced CGRP release by 90% and 71%, respectively. ETX-evoked CGRP release was decreased by 84% during Ca2(+)-free perfusion. 5. The release of CGRP evoked by ETX was enhanced by L-arginine by 43% and inhibited by N omega-nitro-L-arginine (L-NOARG) and methylene blue by 37% and 38%, respectively. L-Arginine reversed the effect of L-NOARG. 6. Indomethacin and ibuprofen also inhibited the ETX-induced CGRP release by 34% and 44%, respectively. No additive inhibition could be found when L-NOARG and indomethacin were concomitantly incubated. 7. The data suggest that ETX triggers the release of CGRP from capsaicin-sensitive sensory nerves innervating blood vessels. The ETX-induced CGRP release is dependent on extracellular Ca2+ influx and involves a ruthenium red-sensitive mechanism. Both NO and PGs appear to be involved in the ETX-induced release of CGRP in the rat mesenteric arterial bed.  相似文献   

12.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

13.
Gastroprotective role of glucocorticoid hormones   总被引:1,自引:0,他引:1  
Gastric ulcer disease remains widespread; a stressful lifestyle and nonsteroidal antiinflammatory drugs (NSAIDs) make significant contributions to this pathological situation. The findings overviewed here support the idea that glucocorticoid hormones released in response to acute stress or NSAIDs act as gastroprotective substances and exert many of the same actions in the stomach as prostaglandins (PGs) and nitric oxide (NO) as well as capsaicin-sensitive afferent neurons. Glucocorticoids exert a gastroprotective effect by both maintaining local defensive factors (mucosal blood flow and mucus production) and inhibiting pathogenic elements (gastric motility and microvascular permeability). Furthermore, they exert gastroprotective actions in co-operation with PGs, NO, and the afferent neurons; and their compensatory action is observed when the protective mechanism provided by either of these factors is impaired. The gastroprotective action of glucocorticoids is also associated with maintenance of general body homeostasis, including blood glucose levels and systemic blood pressure. In conclusion, glucocorticoids released in response to acute stress or NSAIDs are naturally occurring protective factors that play an important role in maintenance of the gastric mucosal integrity. This led us to re-evaluate the traditional paradigm that glucocorticoid hormones produced during activation of the hypothalamic-pituitary-adrenocortical axis are ulcerogenic in the stomach.  相似文献   

14.
The effects of endotoxin on gastric emptying of a solid nutrient meal and the neural mechanisms involved in such a response were investigated in conscious rats. The intraperitoneal (i.p.) administration of E. coli endotoxin (40 microg/kg) significantly reduced the 4-h rate of gastric emptying of a standard solid nutrient meal. Ablation of primary afferent neurons by systemic administration of high doses of capsaicin (20+30+50 mg/kg s.c.) to adult rats did not modify the rate of gastric emptying in control animals but prevented the delay in gastric transit induced by endotoxin. Local application of capsaicin to the vagus nerve rather than application of capsaicin to the celiac ganglion significantly repressed endotoxin-induced delay in gastric emptying. Neither treatment modified the rate of gastric emptying in vehicle-treated animals. Blockade of CGRP receptors (CGRP 8-37, 100 microg/kg i.v.) did not alter gastric emptying in control animals but significantly prevented endotoxin-induced inhibition of gastric emptying. In contrast, a tachykinin receptor antagonist ([D-Pro2, D-Trp7.9]-substance P, 2 mg/kg i.p.) significantly reduced the rate of gastric emptying in control animals and did not modify the inhibitory effects of endotoxin. Adrenergic blockade with phentolamine (3 mg/kg i.p.) +/- propranolol (5 mg/kg i.p.) or muscarinic antagonism with atropine (0.1 mg/kg i.p.) failed to reverse the delay in gastric emptying induced by endotoxin. These observations indicate that endotoxin-induced delay in gastric emptying of a solid nutrient meal is mediated by capsaicin-sensitive afferent neurons.  相似文献   

15.
The aim of the present study was to determine the role of prostaglandins (PG), nitric oxide (NO) and capsaicin-sensitive sensory nerves in neutrophil infiltration in gastric adaptation to cold restraint stress in rats. Wistar rats were exposed to single or repeated cold restraint stress for 3.5 h every other day for up to 4 days. Prior to repeated stress, rats were pretreated with NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg, s.c.), indomethacin (10 mg/kg, s.c.) or capsaicin (125 mg/kg, s.c.). The extent of gastric mucosal lesions was evaluated histologically and myeloproxidase (MPO) activity, PGE2, NO and calcitonin gene-related peptide (CGRP) levels were measured in gastric tissue. Cold restraint stress produced haemorrhagic lesions and reduced PGE2 and CGRP levels in the stomach, with an increase in MPO activity and NO levels. Repeated stress insults reduced stress-induced gastric damage, NO production and MPO activity, with an increase in PGE2 and CGRP levels compared with rats exposed to single cold restraint stress. Adaptation to cold restraint stress was prevented by indomethacin and capsaicin pretreatment, but not by L-NAME. We conclude that the stomach has the ability to adapt to repeated exposure to cold restraint stress and that the adaptation, via inhibition of neutrophil infiltration, is mediated, at least in part, by endogenous PG and CGRP.  相似文献   

16.
Relaxant effect of capsaicin in the rat gastric fundus.   总被引:1,自引:0,他引:1  
The effect of capsaicin was studied in precontracted longitudinal muscle strips of the rat gastric fundus. Capsaicin induced a relaxation in the concentration range 10(-7)-10(-6) M. The relaxation induced by 10(-6) M capsaicin was completely prevented by extrinsic denervation of the stomach. The adrenoceptor antagonists phentolamine and propranolol did not influence the effect of capsaicin while hexamethonium potentiated it; this potentiation was not observed with another nicotinic receptor antagonist trimethaphan. Tetrodotoxin did not have a consistent effect as it reduced the capsaicin-induced relaxation in some but not all tissues. The peptidase trypsin consistently reduced the action of capsaicin but vasoactive intestinal polypeptide (VIP) antiserum, desensitization to calcitonin gene-related peptide (CGRP), and CGRP antiserum had no influence. The neuropeptide involved in the relaxant effect of capsaicin in the rat gastric fundus has thus still to be determined.  相似文献   

17.
We studied whether tissue levels of nitric oxide (NO) and cGMP are regulated by sensory nerves in normoxic and ischemic hearts. Wistar rats were treated with capsaicin to deplete neurotransmitters from capsaicin-sensitive sensory nerves. In separate experiments, capsaicin was applied perineurally to both vagus nerves for selective chemodenervation of vagal cardiac afferent nerves. Systemic capsaicin administration significantly decreased basal myocardial NO content assessed by electron spin resonance (ESR) spectroscopy, whereas, local treatment of vagus nerves did not change it. Both systemic and local capsaicin treatment decreased cardiac cGMP content measured by radioimmunoassay. In separate experiments, isolated hearts from control and systemic capsaicin-treated rats were subjected to 30-min global ischemia. NO signal intensity increased 10-fold after ischemia, whereas, cardiac cGMP decreased. Capsaicin pretreatment did not influence ischemic NO or cGMP content. These results suggest a major role for capsaicin-sensitive sensory neurons in the maintenance of basal but not ischemic myocardial NO and cGMP content. Vagal sensory nerves may be involved in the regulation of basal myocardial cGMP but not basal NO level. Consequently, basal NO content in the heart is regulated primarily by spinal afferent nerves.  相似文献   

18.
The ability of glucocorticoid hormones to protect gastric mucosa during desensitization of capsaicin-sensitive afferent neurons has been investigated in rats. Functional ablation of the afferent neurons was performed by pre-treatment with neurotoxic doses of capsaicin (100 mg/kg s.c.). After 1 week of recovery, capsaicin-desensitized, as well as control rats were adrenalectomized or shamoperated. Seven days later, indomethacin at an ulcerogenic dose (35 mg/kg s.c.) was given to each group of rats. One half of adrenalectomized capsaicin-pre-treated rats were injected by corticosterone for replacement (4 mg/kg s.c., 15 min before indomethacin). Gastric lesions, plasma corticosterone and blood glucose levels were estimated 4 h after indomethacin administration. Indomethacin caused gastric erosions that were aggravated by adrenalectomy or desensitization of capsaicinsensitive afferent neurons approximately with the same extension. Combination of adrenalectomy with the sensory desensitization profoundly potentiated the effect of sensory desensitization alone on indomethacin-induced gastric erosions: the mean gastric erosion area was increased approximately 10-fold. Corticosterone replacement completely prevented this profound effect of adrenalectomy. The results suggest a pivotal role of glucocorticoid hormones in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by PGs and capsaicin-sensitive sensory neurons.  相似文献   

19.
This article reviews recent studies dealing with the relationship between the cytoprotective action of PGE2 and the EP receptor subtypes in the gastric mucosa. Gastric cytoprotection afforded by PGE2 was mimicked by EP1 agonists and attenuated by the EP1 antagonist. Likewise, the adaptive cytoprotection induced by a mild irritant was attenuated by the EP1 antagonist and indomethacin. By contrast, capsaicin-induced protection was mitigated by indomethacin as well as sensory deafferentation but not by the EP1 antagonist. PGE2 failed to provide both direct and adaptive cytoprotection in EP1-receptor knockout mice, while capsaicin-induced protection was observed in the animals lacking either EP1 or EP3 receptors but disappeared in IP receptor knockout mice. We conclude that PGs, either generated endogenously or administered exogenously, exhibit gastric cytoprotection directly through activation of EP1 receptors, and endogenous PGs also contribute to the mucosal protection induced by capsaicin by sensitizing sensory neurons, probably through IP receptors.  相似文献   

20.
Ye F  Deng PY  Li D  Luo D  Li NS  Deng S  Deng HW  Li YJ 《Vascular pharmacology》2007,46(4):238-246
Previous studies have shown that heat stress possesses cardioprotection, which is related to the synthesis and release of calcitonin gene-related peptide (CGRP) via activation of capsaicin receptor (vanilloid receptor subtype 1, VR1) on the capsaicin-sensitive sensory neurons. The VR1 exists in human umbilical vein endothelial cells (HUVECs). Endothelial cells can synthesize CGRP and CGRP could protect against endothelial dysfunction induced by lysophosphatidylcholine (LPC) or oxidized low-density lipoprotein. In the present study, we explored whether the endothelial cell-derived CGRP is involved in the effect of heat stress on endothelial function in vivo and in vitro. Our results indicated that heat stress significantly increased the plasma concentration of CGRP, which was abolished by pretreatment with capsazepine, a VR1 antagonist. Immunohistochemistry and in situ hybridization showed that the endothelium of mesenteric artery and aorta expressed CGRP. And heat stress increased the expression of CGRP, which was also abolished by capsazepine. LPC attenuated the endothelium-dependent relaxation responses of aorta rings, which were improved by pretreatment with heat stress. In cultured HUVECs, the CGRP secretion was increased after heat stress. LPC increased the lactate dehydrogenase (LDH) activity in the cultured medium and decreased the cell viability, suggesting that LPC injured the HUVECs. However, pretreatment with heat stress attenuated the injurious effects of LPC on HUVECs. And this beneficial effect of heat stress on HUVECs was inhibited by capsazepine or CGRP(8-37), the CGRP receptor antagonist. The present results suggest that the endothelial cell-derived CGRP contributes to the protective effects of heat stress on endothelial function. Our study provides a potential mechanism to explain the protective effect of heat stress on cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号