首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylated nonpeptide compounds have recently been identified as potent mycobacteria-derived ligands for human Vγ9/Vδ2-expressing γδ T cells. Crude mycobacterial extracts also contain protein antigens which stimulate CD4 αβ T cells to produce growth factors that are used by γδ T cells for clonal expansion. We have investigated the dynamics in vitro of expansion of CD4 T cells and Vγ9 cells in cultures of peripheral blood mononuclear cells stimulated with synthetic isopentenyl pyrophosphate (IPP) in the absence or presence of additional stimuli. The results indicated that following stimulation with IPP, γδ T cells express CD25 and CD69 antigens, but fail to proliferate unless growth factors are provided exogenously or endogenously through activation of CD4 T cells by additional stimuli such as tetanus toxoid, alloantigen, or superantigens. Furthermore, the presence of antigen presenting cells are required for expansion of γδ T cells. In response to IPP stimulation, purified CD4 T cells neither express CD25 or CD69, nor do they proliferate even in the presence of exogenous IL-2. Apart from IL-2, IL-15 and, less efficiently, IL-4, IL-7, and IL-12 can contribute to cellular expansion of IPP-reactive Vγ9 cells. Together, the results demonstrate that peripheral blood γδ T cells proliferate in response to IPP only if CD4 T cells are simultaneously activated by an additional stimulus. This mechanism provides a tight control of the reactivity of γδ T cells towards phosphorylated nonpeptide antigens.  相似文献   

2.
In rheumatoid arthritis and other inflammatory diseases we and others have found that γδ T cells express activation antigens, suggesting that they are involved in the pathogenesis of these disorders. In this study we have stimulated peripheral blood mononuclear cells from normal donors with recombinant interleukin-2 (rIL-2) to see whether such a stimulus alone could activate γδ T cells. Short-term exposure (24-96 h) to rIL-2 selectively stimulated the γδ but not the αβ T cells to express activation antigens (CD69, CD25 and HLA-DR). Long-term culture (2 weeks) in rIL-2-containing medium caused a selective increase in the proportion of the γδ T cells and a corresponding reduction of the fraction of αβ T cells. Limiting dilution analysis revealed that approximately 1/60 of the γδ T cells responded to IL-2 in contrast to only 1/250 of the αβ T cells. Comparison of the expression of the IL-2 receptor (IL-2R) a and P chains showed that there was a similar expression of the α chain on γδ and αβ T cells whereas the relative density of the β chain was more than twice as high on γδ T cells. Both the IL-2-induced proliferation of γδ T cells and the expression of activation antigens on these cells could be inhibited by an anti-IL-2Rβ monoclonal antibody (mAb) but not by an anti-IL-2Rα mAb. Expression of CD69 on γδ T cells was dependent neither on the presence of B cells, monocytes, nor αβ T cells. Finally, we found that the IL-2-induced expression of CD69 was inhibited by activation of cAMP-dependent protein kinase and by inhibition of the Src-family of the tyrosine protein kinase, but not by inhibition of protein kinase C or by activation of the CD45 associated tyrosine phosphatase. The ability of γδ T cells to be activated by IL-2 is a feature which they have in common with natural killer cells. Moreover, it may be possible that the expression of activation antigens on γδ T cells in inflammatory diseases is an epiphenomenon secondary to IL-2 produced by activated αβ T cells.  相似文献   

3.
The secretion of tumor necrosis factor (TNF)-α from macrophages is regulated by both priming and triggering signals. We found that macrophages from mice lacking γδ T cells [T cell receptor (TCR) δ?/- mice], which lack the gene encoding the δ chain, produced only small amounts of TNF-α in response to lipopolysaccharide (LPS) and showed a reduced level of expression of CD14. Pre-incubation of macrophages from TCR δ-/- mice with γδ T cells from their TCR δ+/- littermates restored their capacity to produce TNF-α in response to LPS. The priming activity of γδ T cells was in part inhibited by neutralizing anti-interferon (IFN)-γ monoclonal antibodies. Collectively, these results suggest that γδ T cells play a role in priming macrophages to a steady state of activation via IFN-γ secretion, which allows them to produce TNF-α when exposed to LPS.  相似文献   

4.
We have studied the in vitro activation of chicken γδ T cells. Both splenic αβ and γδ T cells obtained from complete Freund's adjuvant-primed chickens proliferated in vitro when stimulated with mycobacterial sonicate or purified protein derivative of Mycobacterium tuberculosis. When CD4+ cells or αβ T cell receptor (TcR)-positive cells were removed, both the proliferation and the blast formation of γδ T cells in response to mycobacterial antigens were abrogated. The response was restored if supernatant from concanavalin A (Con A)-activated lymphocyte cultures (CAS) as a source of helper factors was added together with the specific antigen purified protein derivative. The CD4- or αβ TcR-depleted cells still proliferated in response to Con A, although a decrease of the response was observed. To analyze the γδ T cell response more specifically we stimulated peripheral blood cells with immobilized monoclonal antibodies against T cell receptor. Anti-γδ TcR antibody alone did not induce significant proliferation. When CAS was added together with the anti-γδ TcR monoclonal antibody, a strong proliferation of γδ T cells was observed. In contrast, both Vβ1- and Vβ2-expressing αβ T cells proliferated in vitro in response to stimulation with the relevant anti-TcR monoclonal antibody alone. Depletion of either Vβ1+ or Vβ2+ T cell subset alone had no negative effect on the proliferation or blast formation of γδ T cells stimulated with mycobacterial antigens. Taken together our results suggest that CD4+ αβ T cells (both Vβl- and Vβ2-expressing) play a role in the activation and response of chicken γδ T cells.  相似文献   

5.
6.
PROBLEM: T cells bearing αβ T cell receptor (TcR) and γδ TcR are present at the fetomaternal interface, and the latter, which express surface activation markers, can react with fetal trophoblast cell antigens. What is the role of these cells? METHOD: Using stress-abortion-prone DBA/2-mated CBA/J and abortion-resistant C57/B16 mice, αβ, γδ, and CD8+/- T cell subsets were measured in spleen and uterine decidua. The effect of immunization against abortion and administration of anti-TcR antibody in vivo was examined. Cytokine synthesis was measured by intracellular staining of Brefeldin A-treated cells. RESULTS: Abortion-prone matings showed an unexpected accumulation of γδ T cells beginning in the peri-implantation period and this was suppressed by immunization against abortion. The immunization deleted γδ T cells producing the abortogenic cytokines, TNF-α and γ-interferon, and increased production of the anti-abortive cytokines, IL-10 and transforming growth factor-β2 (TGF-β2). Immunization also boosted the number of αβ T cells which were present in the decidua as early as 2 days after implantation. In vivo injection of GL4 (anti-δ) depleted γδ T cells producing Th1 cytokines in the peri-implantation period, and prevented abortions, whereas H57 (anti-β) decreased the number of αβ T cells and led to 100% abortions. CD8+ T cells present in peri-implant decidua before onset of abortions were mostly αβ TcR+, although some were γδ+. Changes in γδ and αβ T cells in pregnancy were most dramatic in uterine tissue. CONCLUSION: Although decidual γδ T cells after formation of a distinct placenta and fetus produce anti-abortive TGF-β2-like molecules and IL-10, prior events can lead to abortion. High local production of TNF-α and γ-interferon develop during the peri-implantation phase because of an excessive increase in the Th1 cytokine+ subset of γδ cells; these cytokines may be contributed by other tissues in decidua, and the contribution of bioactive factors by γδ T cells may augment the cytokine pool. In contrast, αβ T cells (which may be inactivated by stress that causes abortions) may mediate the anti-abortive effect of alloimmunization. Alloimmunization involves a shift from a Th1 to a Th2 pattern in the γδ T cells in decidua.  相似文献   

7.
8.
Although the patterns of lymphokine (LK) secretion by CD4 and CD8 αβ T cells have been extensively studied, the question of whether γδ T cells display patterns of restricted LK production and whether these patterns are the same as seen in conventional αδ T cells has not been previously addressed. In this study we generated panels of γδ T cell clones from normal C57BL/6 and BALB/c mice using a lectin-driven system and compared their patterns of secretion of nine LK with those of CD4 and CD8 αβ T cell clones generated in the same system. The results showed that γδ T cell clones displayed nonrandom patterns of highly restricted LK production with a strong bias towards the production of type 1 LK. The dominant pattern was one of high level secretion of interferon-γ and tumor necrosis factor (TNF), with variable production of interleukin (IL)-2, and little or none of the type 2 LK IL-4, IL-5, IL-6, and IL-10. This pattern differed significantly from that of CD4 Th1 clones in that γδ clones showed a striking deficiency in the production of IL-3 and granulocyte/macrophage colony-stimulating factor. A small subset of γδ clones displayed a novel pattern, in which the only LK produced in substantial quantity were TNF and variable amounts of IL-2. The bias of γδ T cells towards type 1 LK production was not an artefact associated with cloning because bulk populations of splenic γδ T cells behaved in the same way, even when activated in the presence of high concentrations of IL-4.  相似文献   

9.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

10.
γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)‐CD40 signaling by γδ T cells induces protective immunity against the blood‐stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T‐cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1+ cells, we saw that Vγ1+ γδ T cells were important for the control of PbXAT infection. Splenic Vγ1+ γδ T cells preferentially expand and express CD40L, and both Vγ1+ and Vγ4+ γδ T cells produce IFN‐γ during infection. Although expression of CD40L on Vγ1+ γδ T cells is maintained during infection, the IFN‐γ positivity of Vγ1+ γδ T cells is reduced in late‐phase infection due to γδ T‐cell dysfunction. In Plasmodium‐infected IFN‐γ signaling‐deficient mice, DC activation is reduced, resulting in the suppression of γδ T‐cell dysfunction and the dampening of γδ T‐cell expansion in the late phase of infection. Our data suggest that Vγ1+ γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1+ γδ T‐cell response is dependent on IFN‐γ‐activated DCs.  相似文献   

11.
Extensive evidence suggests that the immune system exerts powerful effects on bone cells, particularly in chronic disease pathologies such as rheumatoid arthritis (RA). The chronic inflammatory state in RA, particularly the excessive production of T cell‐derived proinflammatory cytokines such as tumour necrosis factor (TNF)‐α and interleukin (IL)‐17, triggers bone erosions through the increased stimulation of osteoclast formation and activity. While evidence supports a role for IL‐17 and TNF‐α secreted by conventional CD4+ T cells in RA, recent evidence in animal models of RA have implicated γδ T cells as a major producer of pathogenic IL‐17. However, the capacity of γδ T cells to influence osteoclast formation and activity in humans has not yet been investigated widely. To address this issue we investigated the effects of γδ T cells on osteoclast differentiation and resorptive activity. We have demonstrated that anti‐CD3/CD28‐stimulated γδ T cells or CD4+ T cells inhibit human osteoclast formation and resorptive activity in vitro. Furthermore, we assessed cytokine production by CD3/CD28‐stimulated γδ T cells and observed a lack of IL‐17 production, with activated γδ T cells producing abundant interferon (IFN)‐γ. The neutralization of IFN‐γ markedly restored the formation of osteoclasts from precursor cells and the resorptive activity of mature osteoclasts, suggesting that IFN‐γ is the major factor responsible for the inhibitory role of activated γδ T cells on osteoclastogenesis and resorptive activity of mature osteoclasts. Our work therefore provides new insights on the interactions between γδ T cells and osteoclasts in humans.  相似文献   

12.
We have established human γδ T cell lines specific for Streptococcus sanguis (S. sanguis) KTH-1 present in normal oral cavity flora. The CD4?CD8? CD3+Vγ9+Vδ1?CD45RO+ CD25+ T cell lines showed a proliferative response to the streptococcal antigen (Ag) in the presence of autologous antigen-presenting cells without apparent evidence of HLA restriction. The proliferative response of the γδ T cell lines was completely blocked by anti-TcRγδ monoclonal antibody (mAb) and anti-HLA class I mAb (W6/32), whereas anti-HLA classical class Ia mAb (B-H9; anti-HLA-A,B,C), anti-HLA class II mAb (anti-DR, anti-DQ, and anti-DP) and anti-CD4 mAb did not have any inhibitory effects. Surprisingly, the γδ T cell lines showed the proliferative response against the original bacterial Ag KTH-1 exclusively, and exhibited no cross-reactivity with nominal Ag such as purified protein derivative of tuberculin, tetanus toxoid and Mycobacterium tuberculosis, or the same species but different strain of S. sanguis, American Type Culture Collection (ATCC) standard strain (10556), or even with the same strain but different serotype of S. sanguis, KTH-3. Moreover, cytokine production of the γδ T cell lines was similar to the Th1 pattern [interferon-γ, tumor necrosis factor (TNF)-α and TNF-β]. They also produced interleukin-8 that functions as one of chemoattractants for polymorphonuclear cells. Using direct sequencing technique of the polymerase chain reaction products, we found that junctional diversity of the T cell receptor (TcR) used by the parental KTH-1 specific γδ T cell line and its subclones is rather limited. It is suggested that γδ T cells with canonical TcR could preferentially respond to KTH-1 Ag. Thus, in addition to a broad or cross-reactivity of γδ T cells against phylogenetically conserved stress/heat-shock protein, which is well characterized by others, some peripheral blood γδ T cells could recognize and kill exogenous agents with fine antigenic specificity to protect the body against them.  相似文献   

13.
A particular T cell population expressing NK cell markers, CD56 and CD57, exists in humans. Many CD56+ T and CD57+ T cells (i.e. NK T cells) exist in the liver and increase in number in the blood with ageing. They may be a human counterpart of extrathymic T cells, similar to NK1.1+ CD3int cells seen in mice. We investigate here the existence of such NK T cells in human cord blood and the in vitro expansion of these cells by the stimulation of human recombinant IL-2 (rIL-2). There were very small populations (< 1.0%) of CD56+ T cells, CD57+ T cells, and γδ T cells in cord blood. However, all of these populations increased in number after birth and with ageing. When lymphocytes in cord blood were cultured with rIL-2 (100 U/ml) for 14 days, CD56+ T cells expanded up to 25% of T cells. CD57+ T cells were never expanded by these in vitro cultures. The expansion of γδ T cells (mainly Vγ9? non-adult type) also occurred in the in vitro culture. A considerable proportion of CD56+ T cells was found to use Vα24 (i.e. equivalent to invariant Vα14 chain used by murine NK T cells) for TCR αβ. These results suggest that neonatal blood contains only a few NK T cells but CD56+ NK T cells and γδ T cells are able to expand in vitro.  相似文献   

14.
mAb targeting the γδ TCR have been used for γδ T‐cell depletion with varying success. Although the depletion‐capacity of the anti‐γδ TCR mAb clone GL3 has been disputed repeatedly, many groups continue to use γδ T‐cell depletion protocols involving the mAb clone UC7‐13D5 and find significant biological effects. We show here that treatment with both GL3 and UC7‐13D5 antibodies does not deplete γδ T cells in vivo, but rather leads to TCR internalization and thereby generates “invisible” γδ T cells. We addressed this issue using anti‐γδ TCR mAb injections into WT mice as well as into reporter TCR delta locus‐histone 2B enhanced GFP knock‐in mice, in which γδ T cells can be detected based on an intrinsic green fluorescence. Importantly, the use of TCR delta locus‐histone 2B enhanced GFP mice provided here for the first time direct evidence that the “depleted” γδ T cells were actually still present. Our results show further that GL3 and UC7‐13D5 mAb are in part cross‐competing for the same epitope. Assessed by activation markers, we observed in vitro and in vivo activation of γδ T cells through mAb. We conclude that γδ T‐cell depletion experiments must be evaluated with caution and discuss the implications for future studies on the physiological functions of γδ T cells.  相似文献   

15.
Human γδ T lymphocytes expressing the variable T cell receptor elements Vγδ paired with Vδ2 are activated by antigen derived from Mycobacterium tuberculosis (M. tb.) and presented by antigen-presenting cells (APC). The subsequent proliferation is strictly dependent on the presence of CD4+TCRαβ+ T helper type 1 (Th1) cells producing interleukin-2 (IL-2). In this study, we report that the reactivity of Vγ9 cells to M. tb. stimulation in vitro was drastically decreased or absent in the majority of the analyzed HIV-1-infected individuals (CDC stages III and IV). We show that the failure of Vγ9 cells frim HIV? individuals to proliferate following M. tb. stimulation was not due to an intrinsic qualitative or quantitative defect of γδ T cells but rather to a deficiency of M. tb.-reactive CD4 Th1 cells. Thus, Vγ9 responsiveness could be restored if cultures of M. tb.-stimulated T cells from HIV+ donors were reconstituted with one of the following: (i) exogenous IL-2; (ii) purified CD4T cells from allogeneic donors; or (iii) T cell-depleted APC from allogeneic donors. In the majority of HIV+ patients, the defective Th1 activity of M. tb.-stimulated CD4 T cells could be increased neither by cytokines known to favor Th1 development (IL-12, interferon-γ) nor by neutralization of the Th1-suppressing Th2 cytokine IL-10. We suggest that measurement of Vγ9 cell expansion within M. tb.-stimulated peripheral blood mononuclear cells provides a sensitive assay for the functional capacity of antigen (M. tb.)-specific CD4 Th1 cells in HIV-infected individuals.  相似文献   

16.
γδ T cells have been shown to stimulate the recruitment and activation of neutrophils through the release of a range of cytokines and chemokines. Here, we investigated the reverse relationship, showing that human neutrophils suppress the function of human blood γδ T cells. We show that the upregulation of CD25 and CD69 expression, the production of IFN‐γ, and the proliferation of γδ T cells induced by (E)‐1‐hydroxy‐2‐methylbut‐2‐enyl 4‐diphosphate are inhibited by neutrophils. Spontaneous activation of γδ T cells in culture is also suppressed by neutrophils. We show that inhibitors of prostaglandin E2 and arginase I do not exert any effect, although, in contrast, catalase prevents the suppression of γδ T cells induced by neutrophils, suggesting the participation of neutrophil‐derived ROS. We also show that the ROS‐generating system xanthine/xanthine oxidase suppresses γδ T cells in a similar fashion to neutrophils, while neutrophils from chronic granulomatous disease patients only weakly inhibit γδ T cells. Our results reveal a bi‐directional cross‐talk between γδ T cells and neutrophils: while γδ T cells promote the recruitment and the activation of neutrophils to fight invading pathogens, neutrophils in turn suppress the activation of γδ T cells to contribute to the resolution of inflammation.  相似文献   

17.
18.
19.
Ptak and Askenase showed that both αβ and γδ cells are required for transfer of contact sensitivity (CS). This study confirms that day 4 immune cells depleted of γδ cells fail to transfer CS to trinitrochlorobenzene (TNP-Cl) systemically and demonstrates that administration of anti-γδ monoclonal antibodies (mAb) in vivo abolishes the CS reaction. Moreover, γδ cells accumulate at the antigen challenge site: these cells have the unusual phenotype CD8α+, CD8β-, IL-4 R+ which we suggest is due to their state of activation. Following immunization with contact sensitizer on the skin, the absolute number of γδ cells increases in the regional lymph nodes with a peak at 4 days. Of the γδ cells, 80%, both in the lymph nodes of TNP-Cl-immune mice and accumulating at the antigen challenge site are Vγ3+. The γδ cells expressing Vγ3, which is characteristic of dendritic epithelial T cells (DETC), obtained 4 days after sensitization, proliferate in response to interleukin (IL)-7, but only poorly to IL-2 and IL-4. They also respond to concanavalin A and immobilized anti-γδ mAb, but not to haptens or heat-shocked syngeneic spleen cells. Furthermore, injection of mice with mAb to IL-7 inhibits accumulation of Vγ3+ cells both in the lymph nodes after skin sensitization and at the antigen-challenge site. Altogether, these results strongly support the view that DETC are related to, or the original source of, the γδ cells found in the lymph node after skin sensitization and at the site of challenge, and that IL-7 is implicated in these phenomena.  相似文献   

20.
Hepatosplenic γδ T cell lymphoma (HSTCL) has been observed in patients with Crohn's disease (CD) who received anti‐tumour necrosis factor (TNF)‐α agents and thiopurines, but only one case was reported in a psoriasis patient worldwide. This difference could be due to differences in either the nature of the inflammatory diseases or in the use of immunomodulators. We investigated the impact of anti‐TNF‐α agents on the level and repertoire of γδ T cells in peripheral blood from psoriasis patients. Forty‐five men and 10 women who were treated with anti‐TNF‐α agents for psoriasis were monitored for a median 11 months for the level and clonality of γδ T cells via flow cytometry and polymerase chain reaction (PCR) analysis of T cell receptor gamma (TCR‐γ) gene rearrangements. Seventeen men had a repeated analysis within 48 h of the infliximab infusion to reveal a possible expansion of γδ T cells, as observed previously in CD patients. Ten psoriasis patients who were never exposed to biologicals and 20 healthy individuals served as controls. In the majority of psoriasis patients, the level and clonal pattern of γδ T cells was remarkably stable during infliximab treatment. A single male patient repeatedly experienced a significant increase in the level of γδ T cells after infliximab infusions. A monoclonal γδ T cell repertoire in a polyclonal background tended to be more frequent in anti‐TNF‐α‐treated patients than naive patients, suggesting that anti‐TNF‐α therapy may promote the clonal selection of γδ T cells in psoriasis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号