首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fas receptor‐mediated apoptosis: a clinical application?   总被引:29,自引:0,他引:29  
Fas is a membrane protein belonging to the death receptor family. Cross-linking of Fas by its ligand, FasL, or agonistic anti-Fas antibodies, induces apoptosis of cells expressing Fas on the membrane by triggering a cascade of caspases. Since many different tumours express Fas on their membrane, targeting Fas-mediated apoptosis by anti-Fas antibodies may be a promising anticancer therapy. Unfortunately, not all Fas-expressing cells are sensitive to Fas-mediated apoptosis. This has resulted in the discovery of many different inhibition mechanisms of Fas-mediated apoptosis. In addition, mutations in the Fas or p53 gene can also influence the sensitivity for Fas-mediated apoptosis. However, the role of wild-type p53 in Fas expression is still controversial. Because several different cytotoxic drugs are able to induce Fas membrane expression, combination therapy of anticancer drugs with anti-Fas antibodies or FasL is conceivable as an anticancer strategy. The efficiency of the induction of Fas-mediated apoptosis by anti-Fas antibodies, FasL-expressing cells or recombinant FasL (rFasL) in tumours has been demonstrated in vivo in solid tumours implanted in mice. Unfortunately, systemic treatment with anti-Fas antibodies or rFasL causes severe damage to the liver, so most preclinical studies are now focusing on circumvention of this problem by local administration of FasL, or on the use of inducible FasL-expressing vectors as gene therapy.  相似文献   

2.
We have studied the expression and function of Fas antigen on murine B lymphocytes. While Fas was present on only a few B cells in the bone marrow, spleen, lymph node or peripheral blood, its expression could be strongly up-regulated by stimulation with soluble CD40 ligand (CD40L). Treatment with anti-IgM and interleukin-4 (IL-4) alone did not induce significant Fas expression but enhanced CD40L-mediated up-regulation of Fas expression. The T cell-derived signal via CD40 is therefore a potent inducer of Fas expression by B lymphocytes. The sensitivity to Fas-mediated apoptosis was found to depend on the duration of B cell activation. B cells activated for 1 day were resistant to Fas-mediated cell death, whereas B cells activated for 3 days were relatively sensitive. Interestingly, different sensitivity to Fas-mediated death signal was observed in 2-day activated B cells. It was found that B cells stimulated with CD40 L alone were more sensitive to Fas-mediated apoptosis than were cells stimulated with CD40L plus anti-IgM or IL-4, and in particular, the combination of the two. The greater sensitivity exhibited by B cells stimulated with CD40L alone seems to be related to limited activation of these cells in the absence of additional stimulation. Co-stimulation of B cells in the presence of CD40L and anti-Fas antibody resulted initially in activation of B lymphocytes, as reflected by the expression of activation markers and cell growth, but this was followed by growth inhibition and cell death. The data demonstrate that the B cell response can be regulated positively and negatively by signaling through CD40 and Fas antigens, respectively.  相似文献   

3.
To get insight into the involvement of tumor necrosis factor-α (TNF-α) and Fas (CD95) ligand in apoptosis (programmed cell death) of monocyte/macrophages in HIV-1-infected individuals, various T cell and myelomonocytic cell lines, including the HIV-1-infected clones OM-10.1 and U1 cells, were cultured in the presence of either TNF-α alone, anti-Fas agonist monoclonal antibody (Fas-mAb) alone, or their combinations. TNF-α moderately decreased the viability of myelomonocytic cell lines in a dose-dependent fashion (1–100 ng/ml). Unlike HIV-1-infected T cell lines, the viability of OM-10.1 and U1 cells was not affected by the treatment with Fas-mAb alone at concentrations up to 1,000 ng/ml. However, the viability of OM-10.1 cells further decreased with increasing concentrations of Fas-mAb when exposed simultaneously to TNF-α, suggesting that TNF-α sensitizes the cells to Fas-mAb-induced cell death. FACScan analysis and DNA gel electrophoresis revealed that the cell death was due to apoptosis. Such an effect of Fas-mAb was not identified in U1 cells. TNF-α but not Fas-mAb activated latent HIV-1 in OM-10.1 and U1 cells. Although all myelo-monocytic cell lines expressed Fas on their cell surface, TNF-α significantly up-regulated the expression of Fas in only OM-10.1 cells. These results indicate that, unlike T cells, HIV-1-infected myelomonocytic cells are generally resistant to the Fas-mediated apoptosis. However, they would become sensitive to the apoptosis if the expression of Fas could be up-regulated by TNF-α or other factors. Received: 11 November 1996  相似文献   

4.
Objective: Fas is a cell-surface receptor responsible for induction of apoptosis in human thyrocytes upon interaction with Fas Ligand. Fas protein expression on thyroid cells and Fas-mediated apoptosis is decreased in multinodular goiter (MNG) resulting in thyroid cell proliferation. The soluble form of Fas (sFas) produced by alternative mRNA splicing may inhibit Fas-Fas Ligand binding and apoptosis. The aim of this study was to examine whether sFas is differentially expressed in multinodular goiter (MNG), which is associated with decreased Fas-mediated apoptosis. Method: We determined serum sFas levels using enzyme-linked immunosorbent assay (ELISA) in 42 patients with MNG and 23 normal controls. Results: Serum sFas levels were increased in patients with MNG (7.47 ± 2.55 ng/ml) compared to normal controls (2.26 ± 0.9 ng/ml). Levels of sFas were not significantly correlated with age, sex or clinical parameters, such as serum levels of FT4 or TSH. Discussion: Increased sFas in MNG may indicate increased expression of alternatively spliced Fas mRNA variant and decreased expression of cell-surface Fas protein, and may enhance thyroid cell proliferation by protecting thyroid cells from Fas-mediated apoptosis.  相似文献   

5.
Mechanisms of B cell apoptosis are critical in reducing aberrant B cell proliferations such as those that arise in autoimmune disease and in B cell malignancies. The physiologic interaction of CD4+ helper T cells and B lymphocytes has been extensively studied over the past two decades. Although CD4+ T cells are considered primarily to offer positive costimulatory signals for B cell differentiation into active immunoglobulin-secreting cells, recent studies have shown that CD4+ T cells are crucial in downregulating the humoral immune response. In the course of cognate interaction between CD40 ligand (CD40L)-bearing CD4+ T cells and CD40-expressing germinal center B cells, CD40 ligation results in augmented Fas expression at the B cell surface. Like CD40L, Fas ligand is expressed on activated CD4+ Th1 cells and when bound to Fas receptor on the B cell surface, initiates an apoptotic signal in that cell. Thus, CD4+ T cells limit the growth of autologous germinal center B cells by first inducing Fas expression and then instigating a death signal via Fas ligand. In this work, we will consider these observations about CD4+ T-cell-induced, Fas-mediated B cell death in the context of other factors that affect apoptosis in B cells, normal and malignant.  相似文献   

6.
Fas (CD95) is a cell surface receptor whose biological function in circulating peripheral T cells is not well understood. To address the question of abnormal T cell sensitivity to Fas stimulation in systemic lupus erythematosus (SLE), we studied Fas-transduced stimulation and apoptosis in peripheral blood T cells from patients with SLE and normal control. Immobilized anti-Fas monoclonal antibodies (mAb) (imCH-11; IgM type) significantly stimulated SLE T cell proliferation compared to T cells from normal donors and patients with rheumatoid arthritis ( p < 0.003 and p < 0.005, respectively). The soluble form of CH-11 and other immobilized anti-Fas mAb (UB-2, ZB-4; IgG type) failed to stimulate lupus T cells while immobilized human Fas ligand did. Furthermore, imCH-11 induced IL-2 and IL-6 mRNA expression. However, imCH-11 activation failed to induce expression of the T cell activation surface molecules CD25 and CD69. Addition of exogenous ceramide, a second messenger for Fas-mediated apoptosis signaling, also induced T cell proliferation in SLE and normal controls. Moreover, fumonisin B1, a specific ceramide synthase inhibitor, and caspase inhibitors markedly suppressed imCH-11 induced T cell proliferation, suggesting that the ceramide pathway may be involved in Fas-transduced stimulation signals in SLE T cells. These results show that SLE T cells have an alteration in the Fas signal transduction pathway leading to cell proliferation. This defect may be important in Fas-mediated peripheral immune homeostasis.  相似文献   

7.
8.
The accumulation of activated CD4+ T cells and antigen (Ag)-dependent cellular interactions between thyrocytes and CD4+ T cells have been determined in thyroid gland from patients with Graves' disease. The Fas/Fas ligand (FasL) interaction between antigen-presenting cells and T cells regulates the apoptosis of the former cells triggered by the latter cells. The inhibition of Fas-mediated apoptosis in thyrocytes could be a underlying mechanism of hyperplasia of thyrocytes in patients with Graves' disease. We investigated the potential role of Fas/FasL interaction between thyrocytes and CD4+ T cells in the induction of Fas-mediated apoptosis of the former cells induced by the latter cells. The presence of only a few specific T cells responsive to a putative autoantigen has hampered the investigation of specific T cell activation toward antigen-presenting cells (APCs). Therefore, we used a superantigen, staphylococcal enterotoxin B (SEB), to examine specific T cell activation toward thyrocytes in vitro since it stimulates a large proportion of T cells with particular Vbeta elements. Spontaneous apoptosis of thyrocytes in culture was not found even in the presence of various kinds of cytokines. In contrast, a clear induction of Fas-mediated apoptosis by anti-Fas IgM was determined in interferon-gamma (IFN-gamma)-stimulated thyrocytes. In addition, a significant cytotoxicity of purified CD4+ T cells toward IFN-gamma-stimulated thyrocytes in the presence of SEB was induced, and the addition of anti-HLA-DR and -DQ monoclonal antibodies (mAbs) or blockade of the Fas/FasL interaction reduced this cytotoxicity. FasL expression of CD4+ T cells cocultured with IFN-gamma-stimulated thyrocytes in the presence of SEB was clearly induced. Furthermore, the addition of mAbs against CD54 and CD58 inhibited both cytotoxicity and FasL expression of CD4+ T cells. The cytotoxicity of CD4+ T cells toward IFN-gamma-stimulated, SEB-pulsed thyrocytes was markedly inhibited when we used thyrocytes cultured with IFN-gamma in the presence of thyroid-stimulating hormone (TSH) as target cells. Our results suggest that 1) CD4+ T cells were activated by thyrocytes expressing MHC class II molecules in an SEB-dependent manner and then expressed FasL. 2) These activated FasL+ CD4+ T cells killed thyrocytes by interacting with Fas on thyrocytes and FasL on activated CD4+ T cells. The presence of costimulating molecules such as CD54 and CD58 on thyrocytes was also necessary to generate activated FasL+ CD4+ T cells. 3) Since the actions of thyroid stimulating antibody (TSAb) toward thyrocytes are similar to those of TSH, one goitrogenic activity of TSAb may, in part, be due to the inhibitory effect on Fas-mediated apoptosis of thyrocytes triggered by activated CD4+ T cells.  相似文献   

9.
Apoptosis, a programmed cell death, can be observed in the tissues of viral or autoimmune hepatitis and of hepatocellular carcinoma. Fas antigen (Fas) was proposed as a protein that triggers apoptosis. To elucidate the relationship between Fas expression and its location in hepatocellular carcinoma cells, we histochemically examined Fas expression by using 25 hepatocellular carcinoma tissues and their corresponding noncancerous tissues, which were surgically obtained from the same patients. In addition, the relationship between Fas expression and apoptotic cell numbers was examined in the hematoxylin-and-eosin-stained specimens obtained from 23 of the 25 patients. Hepatocellular carcinoma tissues expressed Fas less frequently and more weakly than noncancerous tissues. The majority of noncancerous specimens expressed Fas both on the surface and in the cytoplasm, whereas the majority of hepatocellular carcinoma expressed Fas only in the cytoplasm. Apoptotic cell counts were significantly higher in Fas-expressing tissues than in Fas-negative tissues. Among Fas-expressing tissues, the counts were higher in surface Fas-expressing tissues than in tissues that expressed only cytoplasmic Fas (P < 0.01 to 0.05). Our findings indicate that the development of apoptosis in hepatocellular carcinoma tissues relates to not only Fas expression but also its location.  相似文献   

10.
11.
Wang S  Tang Y  Cui H  Zhao X  Luo X  Pan W  Huang X  Shen N 《Genes and immunity》2011,12(2):149-154
Fas is ubiquitously expressed on a variety of cells and triggers apoptosis, which have critical roles in the immune system. MicroRNAs (miRNAs) have been recently identified as regulators that modulate target gene expression and are involved in diverse biological processes, such as cell proliferation and apoptosis. This study was undertaken to investigate the contribution of miRNA in the regulation of Fas expression and Fas-mediated apoptosis. Bioinformatics analysis indicated that Fas was a potential target of let-7/miR-98 family. Indeed ectopic expression of let-7/miR-98 reduced, whereas knockdown of endogenous let-7/miR-98 increased the expression of Fas at both mRNA and protein levels. Let-7/miR-98 was verified to target Fas 3' untranslated region directly by site-directed gene mutagenesis and reporter gene assay. More importantly, introduction of let-7/miR-98 could decrease the sensitivity to Fas-induced apoptosis. Furthermore, let-7/miR-98 expression was reduced in activation-induced cell death process, accompanied by increased expression of Fas. In conclusion, our study first demonstrated that let-7/miR-98 regulated Fas expression and the sensitivity of Fas-mediated apoptosis.  相似文献   

12.
The role of Fas ligand as an effector molecule in corneal graft rejection   总被引:5,自引:0,他引:5  
Previous studies have shown that the expression of Fas ligand (FasL; CD95L) by donor corneas is critical to their survival when placed on allogeneic recipients. Since there have been reports that the cornea expresses Fas, we tested the idea that FasL on lymphoid cells could be an effector molecule during rejection episodes. When FasL defective BALB/c-gld mice were engrafted with allogeneic corneas, significantly more of these corneas were accepted than by normal BALB/c mice. However, this was not due to impaired FasL-mediated effector function in these mice as the allogeneic corneas did not express detectable Fas by Western blot or RT-PCR analysis. Furthermore, donor corneas without Fas were given no survival advantage, but were rejected similar to wild-type donor allogeneic corneas. Examination of the T cell compartment in gld mice revealed that these cells express higher levels of Fas and are more susceptible to Fas-mediated death than wild-type cells. These results indicate that FasL is not an effector molecule in corneal graft rejection and that gld mice show reduced graft rejection due to greater susceptibility of their T cells to Fas-mediated apoptosis.  相似文献   

13.
14.
Signaling by the BCR causes proliferation and resistance to Fas-induced apoptosis in mature B cells, but growth arrest and apoptosis in immature B cells. We have identified a variant of the immature B cell line WEHI 231 that retains the apoptotic response to the BCR but has acquired susceptibility to Fas-induced apoptosis. The Fas susceptibility was associated with increased Fas expression on the cell surface and down-regulated IgD expression. These cells exhibited a distinctive functional relationship in response to signals from the BCR, Fas and CD40: BCR stimulation markedly promoted Fas-mediated apoptosis (and vice versa) and Fas-induced apoptosis was not subject to modulation by CD40 signaling. While BCR-induced apoptosis was effectively rescued by CD40, it was not affected by the expression of a dominant-negative FADD. The mechanistic distinctions between BCR- and Fas-induced apoptosis were further characterized by the differential effects of different caspase inhibitors on these two processes which imply the involvement of different subsets of caspases. For BCR-induced apoptosis, we provide evidence that the final apoptotic destruction phase can be inhibited by the pan-caspase inhibitor BOC-Asp-FMK (BD) and that, in the presence of BD, the BCR only induces growth arrest which is reversible. The striking enhancing effects of Fas on BCR-induced apoptosis seen in the variant cells prompted us to examine if a similar cooperation in induction of apoptosis occurs in the highly tolerizable immature B cells of the spleen. We found that the splenic immature B population contains a significant number of Fas-expressing cells, but neither Fas-induced apoptosis nor an enhancing effect of Fas on BCR-induced apoptosis of these cells was detected in vitro.  相似文献   

15.
Fas is an apoptosis-signaling receptor important for homeostasis of the immune system. In this study, Fas-mediated apoptosis and Fas mutations were analyzed in three Japanese children from two families with a lymphoproliferative disorder characterized by lymphadenopathy, hepatosplenomegaly, pancytopenia, hypergammaglobulinemia and an increase in TCR alphabeta+ CD4- CD8- T cells. Apoptosis induced by anti- Fas mAb was defective in both activated T cells and B cells, and granulocytes from these patients. Truncated Fas receptor lacking the cytoplasmic death domain caused by a point mutation in the splice region of intron 7 were demonstrated in two siblings. A homozygous point mutation in the splice acceptor of intron 3 was found in the Fas gene of the third patient, which resulted in the skipping of exon 4 and complete loss of Fas expression. Corresponding to these mutations, soluble Fas concentrations were decreased and reciprocally soluble Fas ligands were increased in patients' sera. Interestingly, co-stimulation by immobilized anti-Fas mAb in T cells from the two siblings was comparable to that seen in normal T cells. These results suggest that Fas-mediated apoptosis plays a pivotal role in immunological homeostasis in vivo, especially regarding clonal deletion of immune cells in humans.   相似文献   

16.
17.
Fas-mediated apoptosis is a form of cell death that operates through a Fas-Fas ligand (FasL) interaction. In this study we investigated the role of the Fas system during development of normal and Fas-mutated lymphocytes. Irradiated RAG2–/– recipients were reconstituted with bone marrow cells from B6 and lpr mice (Fas defective) or from B6 and gld mice (FasL defective), and analyzed for long-term development. The results showed a primary role of the Fas system in peripheral cell death and thymic colonization. In the periphery, the interaction in vivo between Fas+ and Fas T cell populations indicated that cellular homeostasis was defective. Indeed, we observed a FasL-mediated cytotoxic effect on normal-derived T cells, explaining the dominance of lpr T cells in the mixed chimeras. The Fas mutation affected neither cell activation nor cell proliferation, as the effector (Fas) and target (Fas+) cells behaved similarly with regard to activation marker expression and cell cycle status. However, Fas T cells failed to seed the periphery and the thymus in the long term. We suggest that this could be due to the fact that FasL is involved in the structural organization of the lymphoid compartment.  相似文献   

18.
Fas (also known as Apo-1 and CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen-presenting cells (APCs) was sufficient to cause systemic autoimmunity, implying that normally APCs are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APCs was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APCs is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells.  相似文献   

19.
Both the function and regulation of Fas expression in tumours is poorly understood. Our laboratory has reported that cultured, low Fas-expressing tumours undergo massive, yet reversible, up-regulation of cell surface Fas expression when injected into mice. The present study was aimed at determining what causes this enhanced Fas expression and whether the newly expressed Fas functions as a death receptor. Newly expressed Fas is indeed capable of inducing apoptosis. Based on our observation that Fas induction is reduced when tumour cells are injected into immune-deficient mice, we propose that Fas up-regulation in vivo involves the host's immune system. Accordingly, Fas up-regulation occurs in vitro when low Fas-expressing tumour cells are cocultured with lymphoid cells. Furthermore ascitic fluid extracted from tumour-bearing mice trigger Fas up-regulation in low Fas expressing tumours. This last finding suggests that a soluble factor(s) mediates induction of Fas expression. The best candidate for this soluble factor is nitric oxide (NO) based on the following observations: the factor in the ascites is unstable; Fas expression is induced to a lesser degree after injection into inducible NO synthase (NOS)-deficient (iNOS(-/-)) mice when compared to control mice; similarly, coculture with iNOS(-/-) splenocytes induces Fas less effectively than coculture with control splenocytes; and finally, the NO donor SNAP induces considerable Fas up-regulation in tumours in vitro. Our model is that host lymphoid cells in response to a tumour increase NO synthesis, which in turn causes enhanced Fas expression in the tumour.  相似文献   

20.
We show that an influenza hemagglutinin-specific CD4+ murine T cell hybridoma (IP-12-7) enters the apoptotic suicide program via the Fas ligand (FasL)/Fas-mediated pathway upon T cell receptor (TCR) stimulation. These cells express Fas and FasL mRNA, cell surface Fas and intracellular FasL, but do not enter apoptosis upon Fas ligation prior to TCR stimulation. TCR stimulation additionally results in protein synthesis-dependent cell surface expression of the preformed FasL. Addition of phorbol dibutyrate (PBu2) alone was sufficient to induce susceptibility to Fas ligation induced apoptosis, while addition of both PBu2 and calcium ionophore A23187 were required to induce FasL cell surface expression. Addition of cyclosporin A completely inhibited TCR-mediated death and FasL cell surface up-regulation, but had no effect on apoptosis induced directly by Fas ligation following TCR stimulation. Inhibitors of protein kinase C (PKC) (G? 6976 and GF 109203X) completely inhibited TCR-induced susceptibility to Fas ligation, but only partially inhibited TCR-induced cell surface expression of FasL. PKC isoenzymes alpha, beta, delta and zeta were expressed by this cell line and only the alpha and betaI isoforms translocated to the membrane fraction upon TCR stimulation. Our data suggest that in activation-induced T cell apoptosis PKC is involved in pathways that mediate the acquisition of Fas susceptibility, while calcineurin is required for cell surface expression of the preformed FasL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号