首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain glutamate receptor type 2 (GluR2) subunits, recent findings suggest that LTP in hippocampal slices obtained from 2- to 3-wk-old rodents is dependent on the transient postsynaptic insertion and activation of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Here we examined whether LTP in slices prepared from adult animals exhibits similar properties. In contrast to previously reported findings, pausing synaptic stimulation for as long as 30 min post LTP induction had no effect on LTP maintenance in slices from 2- to 3-mo-old mice. LTP was also not disrupted by postinduction application of a selective blocker of GluR2-lacking AMPA receptors or the broad-spectrum glutamate receptor antagonist kynurenate. Although these results suggest that the role of GluR2-lacking AMPA receptors in LTP might be regulated during postnatal development, LTP in slices obtained from 15- to 21-day-old mice also did not require postinduction synaptic stimulation or activation of GluR2-lacking AMPA receptors. Thus the insertion and activation of GluR2-lacking AMPA receptors do not appear to be fundamental processes involved in LTP at excitatory synapses in the hippocampal CA1 region.  相似文献   

2.
The repetitive activation of synaptic glutamate receptors can induce a lasting change in the number or subunit composition of synaptic AMPA receptors (AMPARs). However, NMDA receptors that are present extrasynaptically can also be activated by a burst of presynaptic activity, and thus may be involved in the induction of synaptic plasticity. Here we show that the physiological-like activation of extrasynaptic NMDARs induces a lasting change in the synaptic current, by changing the subunit composition of AMPARs at the parallel fibre-to-cerebellar stellate cell synapse. This extrasynaptic NMDAR-induced switch in synaptic AMPARs from GluR2-lacking (Ca2+-permeable) to GluR2-containing (Ca2+-impermeable) receptors requires the activation of protein kinase C (PKC). These results indicate that the activation of extrasynaptic NMDARs by glutamate spillover is an important mechanism that detects the pattern of afferent activity and subsequently exerts a remote regulation of AMPAR subtypes at the synapse via a PKC-dependent pathway.  相似文献   

3.
In adult mice, long-term potentiation (LTP) of synaptic transmission at CA3-to-CA1 synapses induced by tetanic stimulation requires l -α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors containing GluR-A subunits. Here, we report a GluR-A-independent form of LTP, which is comparable in size to LTP in wild-type mice at postnatal day 14 (P14) but diminishes between P14 and P42 in brain slices of GluR-A-deficient mice. The GluR-A-independent form of LTP is sensitive to d (−)-2-amino-5-phosphonopentanoic acid ( d -AP5), but lacks short-term potentiation (STP) and can also be observed in the pairing induction protocol. As judged by unaltered paired-pulse facilitation, this LTP form is postsynaptically expressed despite depleted extrasynaptic AMPA receptor pools with reduced levels of GluR-B, which accumulates in somata and synapses of CA1 pyramidal neurons in GluR-A-deficient mice. Our results show that in the developing hippocampus synaptic plasticity can be expressed by AMPA receptors lacking the GluR-A subunit.  相似文献   

4.
In the CA1 region of the hippocampus, LTP is thought to be initiated by a transient activation of NMDA receptors and is expressed as a persistent increase in synaptic transmission through AMPA receptors. To investigate the postsynaptic modifications of AMPA receptors involved in this enhanced synaptic transmission, the channel density and single-channel properties of extrasynaptic AMPA receptors located in synaptically active dendritic regions were examined following the induction of LTP. Following tetanic stimulation an outside-out patch was excised from the apical dendrite near the point of stimulation and saturating concentrations of glutamate were rapidly applied to the patch. AMPA current amplitude and duration were increased significantly in patches pulled from dendrites that expressed LTP. Non-stationary fluctuation analysis of AMPA currents indicated that AMPA channel number was nearly twofold larger than in controls, while single channel conductance and maximum open-probability were unchanged. Furthermore, while subtle changes in AMPA channel kinetics could also be observed, we did not find any evidence that receptor affinity or rectification properties were altered by LTP induction. Very similar results were found when CaMK-II activity was increased through the intracellular application of Ca/CaM. Together, we interpret our data to indicate that the stimuli used here produce an increased delivery of AMPA receptors to synaptically active regions of the apical dendrite without inducing any significant changes in their basic biophysical properties and that such delivery is a key element in this form of synaptic plasticity.  相似文献   

5.
High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum interneurons expressing GluR2-lacking, Ca(2+)-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-d-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. At synapses expressing GluR2-deficient AMPA receptors, tetanic stimulation that activates NMDA receptors triggered long-term potentiation or depression (LTP or LTD) depending on membrane potential. LTP was elicited at most synapses when the interneuron was held at -30 mV during the stimulus train but was typically prevented by postsynaptic hyperpolarization to -70 mV, by strong depolarization to 0 mV, by d-2-amino-5-phosphonovaleric acid, or by postsynaptic injection of the Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid. At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.  相似文献   

6.
At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber-stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein (GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 (PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+ permeability of synaptic receptors.  相似文献   

7.
Gene-targeted mice lacking the AMPA receptor subunit GluR-A (also called GluR1 encoded by the gene Gria1,) have deficits in hippocampal CA3-CA1 long-term potentiation (LTP) and have profoundly impaired hippocampus-dependent spatial working memory (SWM) tasks, although their spatial reference memory remains normal. Here we show that forebrain-localized expression of GFP-tagged GluR-A subunits in GluR-A-deficient mice rescues SWM, paralleling its rescue of CA3-CA1 LTP. This provides powerful new evidence linking hippocampal GluR-A-dependent synaptic plasticity to rapid, flexible memory processing.  相似文献   

8.
Synaptic plasticity in inhibitory interneurons is essential to maintain a proper equilibrium between excitation and inhibition in hippocampal network. Recent studies showed that theta-burst-induced long-term potentiation (LTP) at excitatory synapses of oriens/alveus (O/A) interneurons in CA1 hippocampal region required the activation of metabotropic glutamate receptor (mGluR) 1. However these interneurons also express mGluR5 and the contribution of this receptor subtype in interneuron synaptic plasticity remains unexplored. We combined pharmacological and transgenic approaches to examine the relative contribution of mGluR1/5 in LTP at excitatory synapses on O/A interneurons. Bath-application of the selective mGluR1/5 agonist (s)-3,5-dihydroxyphenylglycine (DHPG) induced LTP of compound excitatory postsynaptic potentials. DHPG-induced LTP was not prevented by application of either mGluR1 or mGluR5 antagonists, was still present in mGluR1 knockout mice, but was blocked by co-application of both antagonists. These results indicate that LTP can be induced at O/A interneuron synapses by either mGluR1 or mGluR5 activation. As previously reported for mGluR1-dependent LTP, the mGluR5-dependent LTP was independent of N-methyl-d-aspartate receptors. Pairing DHPG application with postsynaptic depolarization induced mGluR1- and mGluR5-dependent LTP of minimally-evoked excitatory postsynaptic currents, which were composed of calcium-permeable AMPA receptor and presynaptically modulated by group II mGluRs, hence confirming that both forms of LTP occurred directly at interneuron excitatory synapses. These findings uncover a new mGluR5-dependent form of LTP at O/A interneuron synapses and indicate that activation of mGluR1 or mGluR5 is sufficient to induce LTP at these synapses. Thus, a rich repertoire of adaptive changes may take place at these interneuron synapses to regulate hippocampal feedback inhibition.  相似文献   

9.
Accumulation of amyloid beta-peptides (Abeta) in the brain has been linked with memory loss in Alzheimer's disease and its animal models. However, the synaptic mechanism by which Abeta causes memory deficits remains unclear. We previously showed that acute application of Abeta inhibited long-term potentiation (LTP) in the hippocampal perforant path via activation of calcineurin, a Ca2+ -dependent protein phosphatase. This study examined whether Abeta could also inhibit Ca2+/calmodulin dependent protein kinase II (CaMKII), further disrupting the dynamic balance between protein kinase and phosphatase during synaptic plasticity. Immunoblot analysis was conducted to measure autophosphorylation of CaMKII at Thr286 and phosphorylation of the GluR1 subunit of AMPA receptors in single rat hippocampal slices. A high-frequency tetanus applied to the perforant path significantly increased CaMKII autophosphorylation and subsequent phosphorylation of GluR1 at Ser831, a CaMKII-dependent site, in the dentate area. Acute application of Abeta1-42 inhibited dentate LTP and associated phosphorylation processes, but was without effect on phosphorylation of GluR1 at Ser845, a protein kinase A-dependent site. These results suggest that activity-dependent CaMKII autophosphorylation and AMPA receptor phosphorylation are essential for dentate LTP. Disruption of such mechanisms could directly contribute to Abeta-induced deficits in hippocampal synaptic plasticity and memory.  相似文献   

10.
Mokin M  Keifer J 《Neuroscience》2004,128(2):219-228
The synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning of a neural correlate of an eyeblink response was examined by fluorescence imaging of punctate staining for glutamate receptor subunits and the presynaptic marker synaptophysin. There was a significant increase in GluR4-containing AMPA receptors to synaptic sites after conditioning as determined by colocalization of GluR4 subunit puncta with synaptophysin. Moreover, the trafficking of these receptor subunits requires NMDA receptor activation as it was blocked by D,L-2-amino-5-phosphonovaleric acid (AP-5). In contrast, colocalization of NR1 subunits with synaptophysin was stable regardless of whether the preparations had undergone conditioning or had been treated by AP-5. The enhanced colocalization of GluR4 and synaptophysin was accompanied by an increase in both the total number and size of puncta for both proteins, suggesting greater synthesis and aggregation during conditioning. Western blot analysis confirmed upregulation of synaptophysin and GluR4 following conditioning. These data support the hypothesis that GluR4-containing AMPA receptors are delivered to synaptic sites during conditioning. Further, they suggest coordinate presynaptic and postsynaptic modifications during in vitro classical conditioning.  相似文献   

11.
Whether nascent glutamatergic synapses acquire their AMPA receptors constitutively or via a regulated pathway triggered by pre-existing NMDA receptor activation is still an open issue. Here, we provide evidence that some glutamatergic synapses develop without expressing NMDA receptors. Using immunocytochemistry, we showed that synapses between developing rat climbing fibres and Purkinje cells expressed GluR2-containing AMPA receptors as soon as they were formed (i.e. on embryonic day 19) but never carried detectable NMDA receptors. This was confirmed by electrophysiological recordings. Excitatory synaptic currents were recorded in Purkinje cells as early as P0. However, no NMDA receptor-mediated component was found in either spontaneous or evoked synaptic responses. In addition, we ruled out a possible role of extrasynaptic NMDA receptors by showing that AMPA receptor clustering at nascent climbing fibre synapses was not modified by chronic in utero NMDA receptor blockade.  相似文献   

12.
Activation of group I and group II metabotropic glutamate receptors (mGluRs) is thought to be required for long-term depression (LTD) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor-mediated synaptic transmission in the perirhinal cortex. However, little is known about how activation of mGluRs leads to this form of synaptic plasticity. AMPA receptor phosphorylation has been implicated in several forms of modulation of synaptic transmission. In the CA1 area of the hippocampus, N-methyl-d-aspartate (NMDA) receptor-dependent LTD is associated with the reduced phosphorylation of the GluR1 AMPA receptor subunit at serine 845 (GluR1-S845). Immunoblot analysis of perirhinal cortical neurons using GluR1 and GluR1-S845 phosphorylation state specific antibodies showed that stimulation of adenylyl cyclase (AC) with forskolin (FSK) dramatically increased PKA-mediated phosphorylation of GluR1-S845. However, selective or simultaneous application of mGluR5 agonist (S)-3,5-dihydroxyphenylglycine (CHPG) and mGluR2/3 agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) did not produce detectable changes in GluR1-S845 phosphorylation. These results indicate that in the perirhinal cortex mGluR activation does not alter the phosphorylation state of GluR1-S845. Therefore, it is likely that the process involved in the modification of AMPA receptors in mGluR activation dependent LTD in the perirhinal cortex is mechanistically distinct from NMDA receptor-mediated LTD described in hippocampal neurons.  相似文献   

13.
The mechanisms responsible for enhanced transmission during long-term potentiation (LTP) at CA1 hippocampal synapses remain elusive. Several popular models for LTP expression propose an increase in 'use' of existing synaptic elements, such as increased probability of transmitter release or increased opening of postsynaptic receptors. To test these models directly, we studied a GluR2 knockout mouse in which AMPA receptor transmission is rendered sensitive to a use-dependent block by polyamine compounds. This method can detect increases during manipulations affecting transmitter release or AMPA receptor channel open time and probability, but shows no such changes during LTP. Our results indicate that the recruitment of new AMPA receptors and/or an increase in the conductance of these receptors is responsible for the expression of CA1 LTP.  相似文献   

14.
AMPA receptors and NMDA receptors are the main subtypes of ionotropic glutamate receptors in the vertebrate central nervous system. Accumulating evidence demonstrates that two serine sites, S831 and S845, on the AMPA receptor GluA1 subunit, are phosphorylation-regulated and profoundly involved in NMDA receptor-dependent synaptic plasticity. On the other hand, recent studies have revealed distinct functional consequences of activating synaptic or extrasynaptic NMDA receptors, or of activating GluN2A- or GluN2B-containing NMDA receptors. Therefore, it is essential to determine how phosphorylation of the GluA1 at S831 and S845 is regulated by NMDA receptor subpopulations. In this study, we demonstrated transiently increased phosphorylation of GluA1 at S831 and persistently decreased phosphorylation of GluA1 at S845 by bath application of NMDA to hippocampal slices from rats. Interestingly, we also found a differential regulation of phosphorylation of GluA1 at S831 and S845 by activation of NMDA receptor subpopulations: the synaptic and/or the GluN2A-containing NMDA receptors were more likely to mediate up-regulation of GluA1 phosphorylation at S831 and down-regulation of GluA1 phosphorylation at S845, while the extrasynaptic NMDA receptors down-regulated GluA1 phosphorylation at S831. Taken together, our results suggest the NMDA receptor subpopulations differentially regulate GluA1 phosphorylation, which may contribute to NMDA receptor-dependent synaptic plasticity.  相似文献   

15.
The role of the neurotrophins; nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5, in synaptic development and plasticity has been extensively investigated. The neurotrophins regulate synaptic transmission as well as neural development in the brain. However, the mechanisms underlying these processes are unknown. In this study we show that brain-derived neurotrophic factor triggers an increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor (GluR) proteins without significant changes in their messenger RNA levels. Brain-derived neurotrophic factor treatment specifically increased the protein levels of GluR1 (193+/-22%) and GluR2/3 (182+/-11%) in cultured rat neocortical neurons. In contrast, nerve growth factor and neurotrophin-3 failed to alter the protein levels of these neurons, and brain-derived neurotrophic factor effects on N-methyl-D-aspartate-type glutamate receptors were either modest or negligible. Immunocytochemical studies indicated that the increase in AMPA receptor proteins reflects the induction of their neuronal expression, but not selective neuronal survival. In agreement with these results, cortical neurons from brain-derived neurotrophic factor-knockout mice exhibited a reduction in AMPA receptor proteins in the cytoskeletal fraction containing postsynaptic proteins. Thus, the neurotrophin plays a crucial role in modulating the expression of AMPA receptors presumably at translational or post-translation levels and is implicated in synaptic development and plasticity.  相似文献   

16.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been identified mostly as postsynaptic receptors mediating fast glutamatergic synaptic transmission. However, neurochemical studies based on the modulation of neurotransmitter release have suggested the existence of presynaptic AMPA receptors. We have used a recently described technique that allows a high-purity fractionation of the pre- and postsynaptic proteins of synaptic junctions to evaluate the distribution of the different AMPA receptor subunits in rat hippocampal synapses. Surprisingly, we found very high levels of GluR1- and GluR2/3-like immunoreactivity in the presynaptic fraction, but also in the postsynaptic and extrasynaptic fractions. GluR4-like immunoreactivity was much less abundant but was still detected, predominantly in the postsynaptic fraction. This methodology appears to be far more sensitive than the classical immunogold electron microscopy to determine the localization of synaptic receptors.  相似文献   

17.
In the present study, modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors by phosphatidylserine (PS) and synaptic plasticity were investigated in the hippocampus of young (4-month-old) and aged (18-month-old) apolipoprotein E (apoE)-deficient mice. Qualitative as well as quantitative analysis of brain sections in both young and aged apoE-deficient mice did not reveal any substantial changes of AMPA receptor binding in the various hippocampal regions, compared to age-matched controls. Nevertheless, enhancement of AMPA receptor binding elicited by PS treatment was found to be abolished in most hippocampal regions of young apoE-deficient mice, while modulation of AMPA receptors by this phospholipid was not significantly altered in the hippocampal formation of aged apoE-deficient animals. At the electrophysiological level, long-term potentiation (LTP) induced by theta burst stimulation was lower in area CA1 of the hippocampus of young, but not aged, apoE-deficient mice compared to age-matched controls. These results confirm that apoE is important for AMPA receptor regulation and LTP expression in the hippocampal formation. However, the presence of LTP in aged apoE-deficient animals, together with apparent recovery of the PS action on AMPA receptors, suggests that aged apoE-knockout mice possess compensatory mechanisms that reduce biochemical and electrophysiological alterations of glutamatergic neurons.  相似文献   

18.
Phosphatidylinositol 3 kinase (PI3-kinase) is activated during and is required for hippocampal glutamate receptor-dependent long-term potentiation. It mediates the delivery of AMPA receptors to the neuronal surface. Among the downstream targets of PI3-kinase are three members of the serum- and glucocorticoid-inducible kinase family, SGK1, SGK2 and SGK3. In Xenopus oocytes expressing the AMPA subunit GluR1, we show that SGK3, and to a lesser extent SGK2, but not SGK1, increase glutamate-induced currents by increasing the abundance of GluR1 protein in the cell membrane. We further show Sgk3 mRNA expression in the hippocampus by RT-PCR and in situ hybridization. According to Western blotting, the hippocampal abundance of GluR1 is significantly lower in gene-targeted mice lacking SGK3 ( Sgk3 −/−) than in their wild-type littermates ( Sgk3 +/+). The present observations disclose a novel mechanism in the regulation of GluR1.  相似文献   

19.
The regulated incorporation of AMPA receptors into synapses is important for synaptic plasticity. Here we examine the role of protein kinase A (PKA) in this process. We found that PKA phosphorylation of the AMPA receptor subunits GluR4 and GluR1 directly controlled the synaptic incorporation of AMPA receptors in organotypic slices from rat hippocampus. Activity-driven PKA phosphorylation of GluR4 was necessary and sufficient to relieve a retention interaction and drive receptors into synapses. In contrast, PKA phosphorylation of GluR1 and the activity of calcium/calmodulin-dependent kinase II (CaMKII) were both necessary for receptor incorporation. Thus, PKA phosphorylation of AMPA receptor subunits contributes to diverse mechanisms underlying synaptic plasticity.  相似文献   

20.
Synaptic plasticity is the foundation of learning and memory. The protein kinase CK2 phosphorylates many proteins related to synaptic plasticity, but whether it is directly involved in it has not been clarified. Here, we examined the role of CK2 in synaptic plasticity in hippocampal slices using the CK2 selective inhibitors 5,6-dichloro-1-β- d -ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromobenzotriazole (TBB). These significantly inhibited N -methyl- d -aspartate (NMDA) receptor-dependent long-term potentiation (LTP). DRB also inhibited NMDA receptor-mediated synaptic transmission, while leaving NMDA receptor-independent LTP unaffected. NMDA receptors thus appear to be the primary targets of CK2. Although both long-term depression (LTD) and LTP are induced by the influx of Ca2+ through NMDA receptors, surprisingly, LTD was not affected by CK2 inhibitors. We postulated that the LTP-selective modulation by CK2 is due to selective modulation of NMDA receptors, and tested two hypotheses concerning the modulation of NMDA receptors: (i) CK2 selectively modulates NR2A subunits possibly related to LTP, but not NR2B subunits possibly related to LTD; and (ii) CK2 selectively affects synaptic but not extrasynaptic NMDA receptors whose activation is sufficient to induce LTD. DRB decreased NMDA receptor-mediated synaptic transmission in the presence of selective NR2A subunit antagonist. The former hypothesis thus appears unlikely to be correct. However, DRB decreased synaptic NMDA receptor responses in cultured hippocampal neurons without affecting extrasynaptic NMDA receptor current. These findings support the latter hypothesis, that CK2 selectively affects LTP by selective modification of synaptic NMDA receptors in a receptor-location-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号