首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural killer (NK) cells are innate immune cells that mediate resistance against viruses and tumors. They express multiple activating receptors that couple to immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling chains for downstream cell activation. Ligation of activating NK-cell receptors induces NK-cell cytotoxicity and cytokine release. How these distinct events are selectively controlled is not well defined. Here we report the identification of a specific signaling pathway that operates downstream of the ITAM-coupled NK-cell receptors NK1.1, Ly49D, Ly49H, and NKG2D. Using primary NK cells from Bcl10(-/-), Malt1(-/-), Carma1(-/-), and Card9(-/-) mice, we demonstrate a key role for Bcl10 signalosomes in the activation of canonical NF-kappaB signaling as well as JNK and p38 MAPK upon NK-cell triggering. Bcl10 directly cooperates with Malt1 and depends on Carma1 (Card11) but not on Card9 for NK-cell activation. These Bcl10-dependent cascades selectively control cytokine and chemokine production but do not affect NK-cell differentiation or killing. Thus, we identify a molecular basis for the segregation of NK-cell receptor-induced signals for cytokine release and target cell killing and extend the previously recognized roles for CARD-protein/Bcl10/Malt1 complexes in ITAM receptor signaling in innate and adaptive immune cells.  相似文献   

2.
Hesslein DG  Palacios EH  Sun JC  Beilke JN  Watson SR  Weiss A  Lanier LL 《Blood》2011,117(11):3087-3095
The protein tyrosine phosphatase CD45 is an important regulator of Src-family kinase activity. We found that in the absence of CD45, natural killer (NK) cells are defective in protecting the host from mouse cytomegalovirus infection. We show that although CD45 is necessary for all immunoreceptor tyrosine-based activation motif (ITAM)-specific NK-cell functions and processes such as degranulation, cytokine production, and expansion during viral infection, the impact of CD45 deficiency on ITAM signaling differs depending on the downstream function. CD45-deficient NK cells are normal in their response to inflammatory cytokines when administered ex vivo and in the context of viral infection. Syk and ζ chain-associated protein kinase 70 (Zap70) are thought to play redundant roles in transmitting ITAM signals in NK cells. We show that Syk, but not Zap70, controls the remaining CD45-independent, ITAM-specific NK-cell functions, demonstrating a functional difference between these 2 Syk-kinase family members in primary NK cells.  相似文献   

3.
The linker for activation of T cells (LAT) and the linker for activation of B cells (LAB/NTAL/LAT2) are integral proteins in receptor coupling to downstream events. Both proteins are expressed in natural killer (NK) cells and LAT is phosphorylated during target cell interactions or ligation of the immunoreceptor tyrosine-based activation motif (ITAM)-coupled CD16. Regardless, Lat(-/-) mice exhibit normal natural and antibody-mediated killing. Here we place both LAT and LAB in the DAP12 pathway of NK cells. Moreover, we unveil a LAT-independent pathway that requires expression of Syk. Mice lacking either LAT or LAB have a skewed Ly49 repertoire, and activated NK cells from Lat(-/-) mice have reduced responses to the ITAM-coupled receptor NK1.1. In contrast, resting Lat(-/-) NK cells show intact NK1.1 responses, whereas NK cells without LAB are hyperactive. Elimination of both adaptors severely reduces NK1.1 signaling under both conditions. Together these data show that NK ITAMs preferentially use a signaling cassette regulated by interplay between LAT and LAB. Activation by interleukin-2 causes a shift to greater dependency on LAT due to suppression of Syk signaling. The overlapping use of multiple adaptors permits fine-tuning of NK-cell ITAM responses over the course of an immune response.  相似文献   

4.
Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)-cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKC(KD)) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKC(KD) NK cells exhibit defective killing of MHC-I-deficient, but otherwise normal, target cells, resulting in defective rejection by NKC(KD) mice of transplants from various types of MHC-I-deficient mice. Self-MHC-I immunosurveillance by NK cells in NKC(KD) mice can be rescued by self-MHC-I-specific Ly49 transgenes. Although NKC(KD) mice display defective recognition of MHC-I-deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity-induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self-MHC-I molecules and that the absence of these receptors leads to loss of MHC-I-dependent "missing-self" immunosurveillance by NK cells.  相似文献   

5.
A crucial step in murine natural killer (NK) cell development, mediated by bone marrow stromal cells, is the induction of Ly49 and CD94/NKG2 receptor expression. The signals that regulate Ly49 receptor expression are still largely undetermined. It has been shown that interaction between lymphotoxin alpha1beta2 (LTalpha1beta2) and LTbeta receptor (LTbetaR), expressed on lymphoid progenitor cells and nonlymphoid bone marrow stromal cells, respectively, is important for both quantitative and functional NK cell development. Therefore, we have investigated the role of LT-LTbetaR-mediated signaling in Ly49 and CD94/NKG2 receptor acquisition. We show that the NK receptor repertoire of LTbetaR-/- mice can only be partially analyzed because of the residual 129/Ola mouse genetic background, due to a physical linkage of the LTbetaR locus and the loci encoding the Ly49 and CD94/NKG2 receptors. Therefore, we transferred wild-type B6 lymphoid-committed progenitor cells into LTbetaR-/- mice, which differentiated into NK cells with a normal NK cell receptor repertoire. Also, administration of LTbetaR-immunoglobulin (Ig), which acts as a soluble receptor for LTalpha1beta2, resulted in reduced NK cell percentages but did not influence the Ly49 and CD94/NKG2 receptor acquisition on remaining NK cells. These results indicate that LTbetaR-mediated signals are not required for Ly49 and CD94/NKG2 receptor acquisition.  相似文献   

6.
A functional cDNA cloning system was developed by using a retrovirus library encoding CD8-chimeric proteins and a nuclear factor of activated T cells (NFAT)-GFP reporter cell line to identify molecules inducing NFAT activation. By using this strategy, NFAT activating molecule 1 (NFAM1) was cloned as an immunoreceptor tyrosine-based activation motif (ITAM)-bearing cell surface molecule belonging to the Ig superfamily and is predominantly expressed in spleen B and T cells. NFAM1 crosslinking induced ITAM phosphorylation, ZAP-70/Syk recruitment, NFAT activation, and cytokine production. In vivo overexpression of NFAM1 in bone marrow chimeras and transgenic mice induced severe impairment of early B cell development in an ITAM-dependent manner. In NFAM1-expressing B cells, B cell antigen receptor stimulation induced NFAM1 translocation to lipid raft, and NFAM1 co-crosslinking augmented B cell antigen receptor signaling. The results suggest that NFAM1 modulates B cell signaling through its ITAM, which regulates B cell development.  相似文献   

7.
Coudert JD  Scarpellino L  Gros F  Vivier E  Held W 《Blood》2008,111(7):3571-3578
NKG2D is a multisubunit activation receptor that allows natural killer (NK) cells to detect and eliminate stressed, infected, and transformed host cells. However, the chronic exposure of NK cells to cell-bound NKG2D ligands has been shown to impair NKG2D function both in vitro and in vivo. Here we have tested whether continuous NKG2D engagement selectively impacted NKG2D function or whether heterologous NK cell activation pathways were also affected. We found that sustained NKG2D engagement induced cross-tolerization of several unrelated NK cell activation receptors. We show that receptors that activate NK cells via the DAP12/KARAP and DAP10 signaling adaptors, such as murine NKG2D and Ly49D, cross-tolerize preferentially NK cell activation pathways that function independent of DAP10/12, such as antibody-dependent cell-mediated cytotoxicity and missing-self recognition. Conversely, DAP10/12-independent pathways are unable to cross-tolerize unrelated NK cell activation receptors such as NKG2D or Ly49D. These data define a class of NK cell activation receptors that can tolerize mature NK cells. The reversible suppression of the NK cells' cytolytic function probably reduces the NK cells' efficacy to control endogenous and exogenous stress yet may be needed to limit tissue damage.  相似文献   

8.
Our previous studies have identified mechanisms by which cytokine production, blocked by Ly49G2 receptor cross-linking, can be overridden. In this study we analyzed the regulation of other ITAM-positive receptor signaling on NK, NKT, and T cells and characterized the biochemical pathways involved in this signaling. Our studies demonstrate that cross-linking of NKG2D and NK1.1 results in a synergistic NK IFN-gamma response when combined with IL-12 or IL-18. Examination of NKT- and T-cell responses demonstrated that cross-linking of NKG2D and CD3 resulted in potent synergy when combined with IL-12 and, to a lesser degree, with IL-18. We have now found that both the p38 MAP kinase and the ERK-dependent signal transduction pathways are required for the synergistic response. Further mechanistic examination of the synergy indicated a potent up-regulation of total IFN-gamma mRNA in the nuclear and the cytoplasmic compartment, but mRNA half-life was not affected. Fifteen minutes of IL-12 pretreatment was sufficient to result in maximal synergistic activation, indicating that the response of the cells to the IL-12 signal was rapid and immediate. Thus, our data demonstrate that multiple convergent signals maximize the innate immune response by triggering complementary biochemical signaling pathways.  相似文献   

9.
Regunathan J  Chen Y  Wang D  Malarkannan S 《Blood》2005,105(1):233-240
Interaction of the activating ligand H60 with NKG2D receptor constitutes a major stimulatory pathway for natural killer (NK) cells. The influence of inhibitory Ly49 receptors on NKG2D-mediated activation is not clearly understood. Here we show that the magnitude of NKG2D-mediated cytotoxicity is directly proportional to both the levels of H60 and the nature of major histocompatibility complex (MHC) class I molecules expressed on the target cells. The expression levels of H60 on the target cells determined the extent to which the inhibition by Ly49C/I receptors can be overridden. In contrast, even a higher expression of H60 molecule on the target cells failed to overcome the inhibition mediated by Ly49A/G receptors. Also, the level of interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) generated by NK cells through anti-NKG2D monoclonal antibody (mAb)-mediated activation is significantly reduced by the presence of immobilized anti-Ly49A/G mAbs. Thus, NKG2D-mediated cytotoxicity and cytokine secretion results from the fine balance between activating and inhibitory receptors, thereby defining the NK cell-mediated immune responses.  相似文献   

10.
Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.  相似文献   

11.
Adult mouse natural killer (NK) cells express two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2, whereas fetal and neonatal NK cells express only CD94/NKG2. After birth, Ly49(+) NK cells slowly increase and CD94/NKG2(+) NK cells decrease. The aim of this study was to determine whether murine NK cells develop differently from transplants of fetal liver and adult marrow stem cells and whether the adult marrow microenvironment is critical for NK receptor maturation. Enriched populations of stem cells were transplanted into adult mice, and the kinetics of NK receptor acquisition was examined. NK cells from osteopetrotic Csf1(op)/Csf1(op) mice, in which hematopoiesis within the marrow is severely limited, were also analyzed.NK cells regenerated from both fetal and adult stem cells initially resembled neonatal NK cells in their slow acquisition of Ly49 over several weeks, although the adult stem cell-derived NK cells matured approximately 10 days sooner. NK cells from adult Csf1(op)/Csf1(op) mice expressed normal levels of Ly49. Maturation of the NK receptor repertoire is a slow process regardless of their stem cell origin or reduced marrow space caused by osteopetrosis.  相似文献   

12.
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.  相似文献   

13.
14.
Ly49A is an inhibitory receptor, which counteracts natural killer (NK) cell activation on the engagement with H-2D(d) (D(d)) MHC class I molecules (MHC-I) on target cells. In addition to binding D(d) on apposed membranes, Ly49A interacts with D(d) ligand expressed in the plane of the NK cells' membrane. Indeed, multivalent, soluble MHC-I ligand binds inefficiently to Ly49A unless the NK cells' D(d) complexes are destroyed. However, it is not known whether masked Ly49A remains constitutively associated with cis D(d) also during target cell interaction. Alternatively, it is possible that Ly49A has to be unmasked to significantly interact with its ligand on target cells. These two scenarios suggest distinct roles of Ly49A/D(d) cis interaction for NK cell function. Here, we show that Ly49A contributes to target cell adhesion and efficiently accumulates at synapses with D(d)-expressing target cells when NK cells themselves lack D(d). When NK cells express D(d), Ly49A no longer contributes to adhesion, and ligand-driven recruitment to the cellular contact site is strongly reduced. The destruction of D(d) complexes on NK cells, which unmasks Ly49A, is necessary and sufficient to restore Ly49A adhesive function and recruitment to the synapse. Thus, cis D(d) continuously sequesters a considerable fraction of Ly49A receptors, preventing efficient Ly49A recruitment to the synapse with D(d)+ target cells. The reduced number of Ly49A receptors that can functionally interact with D(d) on target cells explains the modest inhibitory capacity of Ly49A in D(d) NK cells. This property renders Ly49A NK cells more sensitive to react to diseased host cells.  相似文献   

15.
Fcgamma receptor-mediated phagocytosis is a model for the study of immunoreceptor (immunoreceptor tyrosine-based activation motif [ITAM]) signaling and involves the activation of protein tyrosine kinases, protein tyrosine phosphatases, and downstream effectors including phosphatidylinositol-3 (PI-3) kinase. Relatively little is known of the role of lipid phosphatases in the control of ITAM signaling and inflammation. A heterologous COS7 cell system was used to examine the roles played by PI-3 kinase and the dual-specificity phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), in the signal transduction pathway leading to Fcgamma receptor IIA-mediated phagocytosis and the activation of Rac. The expression of wildtype PTEN completely abrogated the phagocytosis of immunoglobulin-G-sensitized sheep red blood cells, as compared with the catalytically inactive mutant of PTEN, which had no effect. This is the first direct evidence that PTEN, an inositol 3' phosphatase, regulates Fcgamma receptor-mediated phagocytosis, an ITAM-based signaling event. The data suggest that PTEN exerts control over phagocytosis potentially by controlling the downstream conversion of guanosine diphosphate-Rac to guanosine triphosphate-Rac following ITAM stimulation.  相似文献   

16.
Natural killer (NK) cell activation is the result of a balance between positive and negative signals triggered by specific membrane receptors. We report here the activation of NK cells induced through the transmembrane glycoprotein CD43 (leukosialin, sialophorin). Engagement of CD43 by specific antibodies stimulated the secretion of the chemokines RANTES, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta, which was prevented by treatment of cells with the specific tyrosine kinase inhibitor genistein. Furthermore, signaling through CD43 increased the cytotoxic activity of NK cells and stimulated an increase in the tyrosine kinase activity in antiphosphotyrosine immune complexes of NK cell lysates. PYK-2 was identified among the tyrosine kinase proteins that become activated. Hence, PYK-2 activation was observed after 20 minutes of CD43 stimulation, reached a maximum after 45 to 60 minutes, and decreased to almost basal levels after 120 minutes of treatment. Together, these results demonstrate the role of CD43 as an activation molecule able to transduce positive activation signals in NK cells, including the regulation of chemokine synthesis, killing activity, and tyrosine kinase activation.  相似文献   

17.
Stadnisky MD  Xie X  Coats ER  Bullock TN  Brown MG 《Blood》2011,117(19):5133-5141
MHC class I (MHC I) is essential to NK- and T-cell effector and surveillance functions. However, it is unknown whether MHC I polymorphism influences adaptive immunity through NK cells. Previously, we found that MHC I D(k), a cognate ligand for the Ly49G2 inhibitory receptor, was essential to NK control of murine (M)CMV infection. Here we assessed the significance of NK inhibitory receptor recognition of MCMV on CD8 T cells in genetically defined MHC I D(k) disparate mice. We observed that D(k)-licensed Ly49G2? NK cells stabilized and then enhanced conventional dendritic cells (cDCs) recovery after infection. Furthermore, licensed NK support of cDC recovery was essential to enhance the tempo, magnitude, and effector activity of virus-specific CD8 T cells. Minimal cDC and CD8 T-cell number differences after low-dose MCMV in D(k) disparate animals further implied that licensed NK recognition of MCMV imparted qualitative cDC changes to enhance CD8 T-cell priming.  相似文献   

18.
Natural killer (NK) cells are a unique subpopulation of lymphocytes with the capability to kill malignant cells via one of two alternative mechanisms: (i) Fc receptor-dependent cytotoxicity against antibody-coated targets or (ii) direct cell-mediated cytotoxicity. However, the molecular mechanisms that trigger and subsequently regulate NK cell cytotoxicity are incompletely understood. We have therefore investigated the role of protein tyrosine phosphorylation in the transmembrane signaling initiated after Fc receptor stimulation or direct tumor cell contact in clonal CD16+/CD3- human NK cells. We report that stimulation of the Fc receptor rapidly induced the tyrosine phosphorylation of a number of NK cell proteins. These effects occurred within 2 min, were maximal at 10 min, and declined toward baseline after 60 min. In addition, Fc receptor ligation increased the in vitro protein kinase activity of NK cell phosphotyrosyl proteins. We have also demonstrated that direct contact of NK cells with K562 tumor cells induced the rapid phosphorylation of distinct NK cell phosphotyrosyl proteins. Furthermore, the protein-tyrosine kinase inhibitor herbimycin A blocked NK cell cytotoxic function in a concentration-dependent manner. Our results suggest that protein tyrosine phosphorylation is an obligatory early proximal signal in activating the cytotoxic function of NK cells.  相似文献   

19.
20.
Effective natural killer (NK) cell recognition of murine cytomegalovirus (MCMV)-infected cells depends on binding of the Ly49H NK cell activation receptor to the m157 viral glycoprotein. Here we addressed the immunological consequences of variation in m157 sequence and function. We found that most strains of MCMV possess forms of m157 that evade Ly49H-dependent NK cell activation. Importantly, repeated passage of MCMV through resistant Ly49H+ mice resulted in the rapid emergence of m157 mutants that elude Ly49H-dependent NK cell responses. These data provide the first molecular evidence that NK cells can exert sufficient immunological pressure on a DNA virus, such that it undergoes rapid and specific mutation in an NK cell ligand enabling it to evade efficient NK cell surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号