首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The underlying molecular pathogenic mechanisms remain unknown in the majority of human pituitary tumors. GADD45 gamma is a member of a growth arrest and DNA damage-inducible gene family that functions in the negative regulation of cell growth. We have found that the mRNA expression of the GADD45 gamma gene is significantly different between normal human pituitary tissue and clinically nonfunctioning pituitary adenomas using cDNA-representational difference analysis. Although GADD45 gamma mRNA was found in normal human pituitary tissue, it was detectable in only 1 of 18 clinically nonfunctioning pituitary tumors by RT-PCR. Furthermore, this gene was not expressed in the majority of GH- or PRL-secreting pituitary tumors (6 of 8 and 7 of 10, respectively). In colony formation assays, transfection of human GADD45 gamma cDNA into the human pituitary tumor-derived cell line, PDFS, results in a dramatic decrease in cell growth by 88%. GADD45 gamma also reduces colony formation in other pituitary tumor-derived cell lines, AtT20 and GH4, by approximately 60% and 50%, respectively, confirming its function in controlling cell proliferation in the pituitary. These data indicate that GADD45 gamma is a powerful growth suppressor controlling pituitary cell proliferation, and GADD45 gamma represents the first identified gene whose expression is lost in the majority of human pituitary tumors.  相似文献   

3.
Recent progress in studies of pituitary tumor pathogenesis   总被引:1,自引:0,他引:1  
  相似文献   

4.
Genetics and proteomics of pituitary tumors   总被引:1,自引:0,他引:1  
Asa SL  Ezzat S 《Endocrine》2005,28(1):43-47
Genetics and proteomics determine structure and function of normal tissues, and the molecular alterations that underlie tumorigenesis result in changes in these aspects of tissue biology in neoplasms. We review the known genetic alterations in pituitary tumors. These include the oncogenic Gsα protein (GSP)-activating mutations, and pituitary tumor-derived fibroblast growth factor receptor-4 (ptd-FGFR4), as well as tumor suppressor gene mutations associated with multiple endocrine neoplasia type 1 (MEN1). Other candidates identified from expression profiling include pituitary tumor-transforming gene (PTTG), GADD45, and bone morphogenic protein (BMP)4. Proteomic changes in pituitary tumors include classical alterations identified by immunohistochemistry as well as epigenetic reductions in p27. The underlying mechanisms for dysregulated cell adhesive molecules including cadherins and FGFRs are reviewed. The combined use of genetic and proteomic approaches will enhance novel drug therapeutic development.  相似文献   

5.
The molecular mechanisms leading to increased cellular proliferation rates and, thus, tumor formation in the anterior pituitary gland are poorly understood. The cyclin-dependent kinase inhibitor p27Kip1 is a key molecule regulating the G1 phase of the cell cycle in many cell types. Furthermore, it was shown that p27 knock-out mice develop pro-opiomelanocortin-positive pituitary tumors. In an effort to clarify the role of p27 in the normal and tumorous human pituitary, we studied the expression of p27 by immunohistochemistry, using a highly specific mouse monoclonal anti-human p27 antibody. Normal pituitaries and 54 pituitary adenomas (twelve somatotrope adenomas, nine prolactinomas, twelve corticotrope adenomas, three TSH-producing tumors, six gonadotrope adenomas, six null cell adenomas, and six oncocytomas) were analyzed. p27 expression was determined semiquantitatively with regard to both the percentage of positive cells and the intensity of the staining. Normal human pituitaries showed strong expression of p27 in most nuclei. In contrast, the levels of p27 were reduced in the majority of the tumors analyzed. Twenty-two tumors (six somatotrope adenomas, five prolactinomas, four corticotrope adenomas, two TSH-producing tumors, two gonadotrope adenomas, and three null cell adenomas) were completely p27-negative. In 18 tumors, p27 expression was found in < or = 10% of the cells. In the other ten tumors, 11-80% of the cells were p27-positive. In summary, we were able to demonstrate reduced expression levels of the cell-cycle inhibitor p27 in tumors derived from all pituitary cell types. Our data indicate that p27 may be an important regulator of cellular proliferation in the anterior pituitary, the underexpression of which could play a role in pituitary tumorigenesis.  相似文献   

6.
Mice heterozygous for the retinoblastoma (Rb) tumor suppressor gene develop pituitary and thyroid tumors with high penetrance. We demonstrate here that loss of the ARF tumor suppressor strongly accelerates intermediate lobe pituitary tumorigenesis in Rb heterozygous mice. These effects in the pituitary are greater than those conferred by p53 loss in that Rb+-;ARF-- mice display significantly more early atypical lesions than Rb+-; p53-- mice. Also, Rb+-;ARF-- compound mutants do not develop many of the novel tumors or precancerous lesions seen in Rb+-;p53-- compound mutants. Although complete loss of ARF expression is not obligatory for pituitary tumorigenesis in Rb+- mice, alterations of the ARF locus are observed in tumors from Rb+-;ARF+- mice, consistent with a selective advantage of ARF inactivation in this context. We conclude that inactivation of ARF acts more broadly than that of p53 in connecting abrogation of the Rb pathway to tumorigenesis.  相似文献   

7.
This study was designed to elucidate the mechanism underlying the inhibition of endothelial cell growth by laminar shear stress. Tumor suppressor gene p53 was increased in bovine aortic endothelial cells subjected to 24 h of laminar shear stress at 3 dynes (1 dyne = 10 microN)/cm(2) or higher, but not at 1.5 dynes/cm(2). One of the mechanisms of the shear-induced increase in p53 is its stabilization after phosphorylation by c-Jun N-terminal kinase. To investigate the consequence of the shear-induced p53 response, we found that prolonged laminar shear stress caused increases of the growth arrest proteins GADD45 (growth arrest and DNA damage inducible protein 45) and p21(cip1), as well as a decrease in phosphorylation of the retinoblastoma gene product. Our results suggest that prolonged laminar shear stress causes a sustained p53 activation, which induces the up-regulation of GADD45 and p21(cip1). The resulting inhibition of cyclin-dependent kinase and hypophosphorylation of retinoblastoma protein lead to endothelial cell cycle arrest. This inhibition of endothelial cell proliferation by laminar shear stress may serve an important homeostatic function by preventing atherogenesis in the straight part of the arterial tree that is constantly subjected to high levels of laminar shearing.  相似文献   

8.
Pituitary tumorigenesis involves remodeling of the extracellular matrix (ECM). Heparanase, an endoglycosidase capable of degrading heparan sulfate, a major polysaccharide constituent of the ECM, is implicated in diverse processes associated with ECM remodeling, such as morphogenesis, angiogenesis, and tumor invasion. The aim of this study was to investigate the possible role of heparanase in pituitary tumorigenesis. Human normal pituitaries and pituitary tumors were examined for heparanase mRNA and protein expression using real-time PCR and immunohistochemistry, respectively. Cell proliferation was assessed by colony formation after heparanase overexpression in GH3 and MtT/S cells. Cell viability and cell cycle progression were evaluated after heparanase gene silencing. Higher heparanase mRNA and protein expression was noted in GH tumors as compared with normal pituitaries. Heparanase overexpression in GH3 and MtT/S cells resulted in a 2- to 3-fold increase in colony number, compared with control cells. Cell viability decreased by 50% after heparanase gene silencing due to induced apoptosis reflected by increased fraction of cleaved poly-ADP-ribose polymerase and sub-G1 events. Notably, exogenously added heparanase enhanced epidermal growth factor receptor, Src, Akt, ERK, and p38 phosphorylation in pituitary tumor cells. Our results indicate that heparanase enhances pituitary cell viability and proliferation and may thus contribute to pituitary tumor development and progression.  相似文献   

9.
10.
Hepatocellular carcinoma (HCC) results from the accumulation of deregulated tumor suppressor genes and/or oncogenes in hepatocytes. Inactivation of TP53 and inhibition of transforming growth factor-beta (TGF-β) signaling are among the most common molecular events in human liver cancers. Thus, we assessed whether inactivation of TGF-β signaling, by deletion of the TGF-β receptor, type II (Tgfbr2), cooperates with Trp53 loss to drive HCC formation. Albumin-cre transgenic mice were crossed with floxed Trp53 and/or floxed Tgfbr2 mice to generate mice lacking p53 and/or Tgfbr2 in the liver. Deletion of Trp53 alone (Trp53(KO) ) resulted in liver tumors in approximately 41% of mice by 10 months of age, whereas inactivation of Tgfbr2 alone (Tgfbr2(KO) ) did not induce liver tumors. Surprisingly, deletion of Tgfbr2 in the setting of p53 loss (Trp53(KO) ;Tgfbr2(KO) ) decreased the frequency of mice with liver tumors to around 17% and delayed the age of tumor onset. Interestingly, Trp53(KO) and Trp53(KO) ;Tgfbr2(KO) mice develop both HCC and cholangiocarcinomas, suggesting that loss of p53, independent of TGF-β, may affect liver tumor formation through effects on a common liver stem cell population. Assessment of potential mechanisms through which TGF-β signaling may promote liver tumor formation in the setting of p53 loss revealed a subset of Trp53(KO) tumors that express increased levels of alpha-fetoprotein. Furthermore, tumors from Trp53(KO) mice express increased TGF-β1 levels compared with tumors from Trp53(KO) ;Tgfbr2(KO) mice. Increased phosphorylated Smad3 and ERK1/2 expression was also detected in the tumors from Trp53(KO) mice and correlated with increased expression of the TGF-β responsive genes, Pai1 and Ctgf. CONCLUSION: TGF-β signaling paradoxically promotes the formation of liver tumors that arise in the setting of p53 inactivation.  相似文献   

11.
Chromosome 3p and 1p deletions are among the most frequent genetic changes in human lung cancer and although candidate tumor suppressor genes have been identified in these regions, no causative correlations have been drawn between deletion or mutation of these and lung carcinogenesis. We identify XPC and Gadd45a as genes within each of these regions involved in lung tumor initiation and progression, respectively. One hundred percent of XPC-/- mice develop multiple spontaneous lung tumors with a minority progressing to non-small cell lung adenocarcinoma, occasionally with metastasis to adjacent lymph nodes. Deletion of Gadd45a alone does not lead to increased lung tumors in mice, but coupled with an XPC deletion, it results in lung tumor progression. Analysis of published data indicated allelic loss of XPC in most human lung tumors and allelic loss of Gadd45a in some human lung and other cancer types. Because DNA repair capacity is compromised in XPC+/- cells, it is possible that the loss of a single XPC allele in the human lung might confer a mutator phenotype. Coupled with cigarette carcinogens, decreased DNA repair would lead to additional mutations in genes such as p53 that are frequent targets in lung cancer.  相似文献   

12.
von Recklinghausen neurofibromatosis (NF1) is a common hereditary disorder characterized by neural crest-derived tumors, particularly benign neurofibromas whose malignant transformation to neurofibrosarcomas can be fatal. The NF1 gene has been mapped to a small region of chromosome 17q, but neither the nature of the primary defect nor the mechanisms involved in tumor progression are understood. We have tested whether NF1 might be caused by the inactivation of a tumor suppressor gene on 17q, analogous to that on chromosome 22 in NF2, by searching for deletions of chromosome 17 in NF1-derived tumor specimens. Both neurofibrosarcomas from patients with "atypical" NF and 5 of 6 neurofibrosarcomas from NF1 patients displayed loss of alleles for polymorphic DNA markers on chromosome 17. However, the common region of deletion was on 17p and did not include the NF1 region of 17q. Since no loss of markers on chromosome 17 was observed in any of 30 benign tumors from NF1 patients, the 17p deletions seen in neurofibrosarcomas are probably associated with tumor progression and/or malignancy. This region contains a candidate gene for tumor progression, p53, which has recently been implicated in the progression of a broad array of human cancers. In a preliminary search for p53 aberrations by direct sequencing of polymerase chain reaction-amplified DNA from 7 neurofibrosarcomas, 2 tumors that contained point mutations in exon 4 of the p53 gene were found, suggesting a role for this gene in at least some neurofibrosarcomas. Thus the formation of malignant neurofibrosarcomas may result from several independent genetic events including mutation of the NF1 gene, whose mechanism of tumorigenesis remains uncertain, and subsequent loss of a "tumor suppressor" gene on 17p, most likely p53.  相似文献   

13.
A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets.  相似文献   

14.
Oncogenes and tumor suppressor genes involved in most common cancers are not involved in the great majority of pituitary adenomas. Similarly, there is little evidence to suggest that the mutations involved in genetic syndromes associated with pituitary tumors (such as the gsp, MEN1, PKAR1A or AIP mutations) are common in sporadic tumors. A novel pituitary tumor transforming gene (PTTG, securin) has been identified which is over-expressed in most tumors—but it is unclear as to its causal role in oncogenesis. Cell signaling abnormalities have been identified in pituitary tumors but their genetic basis is unknown. However, both the Akt pathway and the MAPK pathway are over-expressed in many pituitary tumors, which results in the inhibition of cell cycle inhibitors. These pathways share a common root in the tyrosine kinase receptor, and a change to these receptors or their relationship to membrane matrix-related proteins may be an early event in tumorigenesis.  相似文献   

15.
目的:观察人剪切修复基因人类着色性干皮病D组基因(xeroderma pigmentosum group D,XPD)转染至人肝癌细胞株SMMC-7721细胞后XPD、DNp73和GADD45β基因的表达变化以及对肝癌细胞生长的影响.方法:实验分4组:重组质粒SMMC-7721-pEGFP-N2-XPD(XPD组)、空载质粒SMMC-7721-pEGFP-N2组(N2组),脂质体组和SMMC-7721细胞空白对照组.应用Lipofectamine2000脂质体瞬时转染,逆转录聚合酶链反应(RT-PCR)和蛋白印迹(Western blot)法检测转XPD基因后,人肝癌细胞株SMMC-7721细胞中DNp73以及GADD45β的mRNA和蛋白质的表达量变化,并用四甲基偶氮唑盐(MTT)法检测细胞增殖的活力,流式细胞仪检测细胞凋亡的变化.结果:荧光显微镜下,XPD组和N2组细胞中观察到绿色荧光蛋白表达,说明转染成功;RT-PCR检测显示:XPD组中DNp73 mRNA相对表达量较其他3组显著下调,XPD和GADD45βmRNA相对表达量较其他3组明显上调(均P<0.01);Western blot检测显示:XPD、DNp73以及GADD45β蛋白相对表达量在各组间的差异与其mRNA各组间差异一致;MTT检测示:SMMC-7721细胞空白对照组、脂质体组、N2组、XPD组的吸光度(A)值分别为0.633±0.012,0.623±0.009,0.628±0.016,0.384±0.011,XPD组低于其他3组,差异均有统计学意义(均P<0.01),表明转染XPD后SMMC-7721细胞的增殖能力减弱.流式细胞仪检测SMMC-7721肝癌细胞凋亡:转染XPD的SMMC-7721细胞凋亡显著,凋亡率达56.53%,而其他3组均未见明显凋亡.结论:XPD基因在肝癌的发生发展中起抑制作用,癌基因DNp73的表达随XPD表达增加而降低,抑癌基因GADD45β则随XPD表达增加而增加,提示两者可能在XPD抑制肝癌细胞的生长机制中起重要作用.  相似文献   

16.
Tumor promotion by caspase-resistant retinoblastoma protein   总被引:1,自引:0,他引:1       下载免费PDF全文
The retinoblastoma (RB) protein regulates cell proliferation and cell death. RB is cleaved by caspase during apoptosis. A mutation of the caspase-cleavage site in the RB C terminus has been made in the mouse Rb-1 locus; the resulting Rb-MI mice are resistant to endotoxin-induced apoptosis in the intestine. The Rb-MI mice do not exhibit increased tumor incidence, because the MI mutation does not disrupt the Rb tumor suppressor function. In this study, we show that Rb-MI can promote the formation of colonic adenomas in the p53-null genetic background. Consistent with this tumor phenotype, Rb-MI reduces colorectal epithelial apoptosis and ulceration caused by dextran sulfate sodium. By contrast, Rb-MI does not affect the lymphoma phenotype of p53-null mice, in keeping with its inability to protect thymocytes and splenocytes from apoptosis. The Rb-MI protein is expressed and phosphorylated in the tumors, thereby inactivating its growth suppression function. These results suggest that RB tumor suppressor function, i.e., inhibition of proliferation, is inactivated by phosphorylation, whereas RB tumor promoting function, i.e., inhibition of apoptosis, is inactivated by caspase cleavage.  相似文献   

17.
The tumor suppressor gene p53 is perhaps the most commonly mutated gene in human cancer, being mutated in a high percentage of colon, breast, skin, bladder, and many cancers of the aerodigestive tract. Individuals with Li-Fraumeni syndrome, who routinely have a germline mutation in the p53 tumor suppressor gene, are at high risk for lung cancer, confirming its intimate role in lung tumorigenesis in humans. In contrast, the majority of chemically induced or spontaneous cancers in rodents do not contain mutations in p53. Therefore, we examined a transgenic mouse that contains a dominant negative mutation (Arg135Val) in the p53 gene placed under the control of its own endogenous promoter. The resulting mice have 3 copies of the mutated transgene as well as 2 normal p53 alleles. In the chemical carcinogenesis studies, we employed mice containing the mutated p53 gene to examine for carcinogen susceptibility. We found that mice with the p53 mutation, on an A/J F1 background, were more susceptible to a number of potential lung carcinogens, including N-methyl-N-nitrosourea (MNU) and the known tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo(a)pyrene (BP). Mice with a mutant p53 developed larger tumors and roughly 3 times as many tumors, emphasizing the potential effects of a p53 mutation both on tumor initiation and progression. In addition, we examined 2 nonlung carcinogens, 1,2-dimethylhydrazine (DMH), a colon carcinogen, and N-butyl-N-(4-hydroxybutyl)-nitrosamine (OHBBN), a bladder carcinogen. Interestingly a germline p53 mutation increased the incidence of DMH-induced colon, lung, hepatic, and uterine tumors, while having limited effects on OHBBN-induced bladder tumors. Because of its heightened susceptibility we are examining the use of this model in smoke-induced tumorigenesis in A/J mice as well. Employing the lung adenomas induced by NNK, we found that mice with or without a p53 mutation were equally susceptible to the chemopreventive effects of dexamethasone plus myo-inisitol and green tea. These tumors, which arise in a highly reproducible manner in p53 transgenic mice following carcinogen treatment, have mutations in both p53 and the K-ras oncogene. Thus, this model appears useful for examining for potential chemotherapeutic agents. p53-mutated or wild-type mice were equally susceptible to the therapeutic effects of Taxol or Adriamycin. Interestingly, piroxicam was similarly effective in inhibiting colon tumor formation by DMH in mice with or without a mutation in the p53 tumor suppressor gene. In contrast, lung and uterine tumors developing in these mice were not susceptible to the chemopreventive effects of piroxicam. In summary, mice with mutations in the p53 tumor suppressor gene appear to be particularly applicable for basic mechanistic studies, for screening for potential carcinogens, and for screening for chemopreventive or chemotherapeutic agents.  相似文献   

18.
Targeted tumorigenesis in transgenic mice has been a powerful tool for the study of gene expression and oncogenesis, as well as for the production of differentiated immortal cell lines from rare cell types. Follicle-stimulating hormone (FSH) is secreted by the gonadotrope cells of the anterior pituitary gland and plays a pivotal role in mammalian reproduction. Here we have used the regulatory region of the ovine FSH beta gene to direct expression of the SV40 T antigen oncogene to gonadotrope cells in the pituitary of transgenic mice. Two of five transgenic mouse lines bearing this fusion gene rapidly developed pituitary tumors, with appearance of adenomatous foci as early as 6 weeks of age, resulting in death by 12 weeks of age in both genders. Histologic examination of tumor development over time revealed that increases in cell proliferation and dysplasia were accompanied by decreases in synthesis of pituitary hormones, indicating dedifferentiation of the pituitary cells. Histological features observed in these tumors were in agreement with this rapid transformation of cell phenotype. Tumors were multifocal in origin, and the most highly transformed cell types observed consisted of giant pale basophilic cells with enormous hyperploid nuclei associated with infiltrating neuronal-like cells, which were very abundant at later stages of tumor development. Mitotic indices were much higher in transgenic than wild-type pituitaries, as expected. Morphologic analysis of the gonads of these transgenic mice showed no major developmental differences, as compared to wild-type littermates, however the length of the seminiferous tubules in transgenic males was greater than age-matched wild-type animals. Despite this phenotype difference, both genders were fertile, with normal sperm development observed in males and normal estrous cycle stages in females. Moreover, while 8 -- 10-week-old transgenic males had much lower blood levels of FSH than littermates, transgenic female FSH levels were the same as those of wild-type females. These animals offer a unique and potentially useful model of organ-specific tumorigenesis, where a multistage pathway of tumor development is evident, both histologically and temporally. Study of such models will advance our knowledge on the physiological and molecular mechanisms involved in gene expression as well as tumor formation.  相似文献   

19.
Transgenic mice with both alleles of the p53 tumor suppressor gene (frequently mutated in human tumors) knocked out by gene targeting provide a potentially useful tumorigenesis model because these mice rapidly develop spontaneous tumors. To determine whether tumorigenesis in p53-knockout mice is sensitive to experimental manipulation, tumor development in response to calorie restriction (CR; a potent inhibitor of rodent tumors) was evaluated. Tumor development was monitored for 48 weeks in male nullizygous p53-knockout and wild-type littermate mice (28-30 per treatment group) fed ad libitum (AL) or restricted to 60% of AL carbohydrate calorie intake. CR:p53-knockout mice (median survival = 25 weeks) experienced a delay in tumor onset and subsequent mortality (P = 0.0002) relative to AL:p53-knockout mice (median survival = 16 weeks). Tumor development and mortality in wild-type littermates on either diet treatment were < 4% through 48 weeks. Cell cycle analyses were performed on splenocytes from p53-knockout mice and wild-type littermates after 4 weeks of AL feeding or CR (5 per group). The percentage of splenocytes in S phase of the cell cycle was 3-fold higher for p53-knockout mice than wild-type mice (P < 0.001), and CR reduced the percentage of S-phase splenocytes in both p53-knockout and wild-type mice (P = 0.012). These data demonstrate that tumor development in p53-knockout mice genetically predisposed to tumors can be delayed by CR (possibly via cell cycle modulation) and suggest that these mice provide a very useful model of spontaneous tumorigenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号