首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L N Hazrati  A Parent 《Brain research》1991,567(2):212-223
Unilateral injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in the internal segment of the pallidum (GPi) of the squirrel monkey (Saimiri sciureus) led to anterograde labeling of fibers ipsilaterally in the following thalamic nuclei: ventral anterior (VA), ventral lateral (VL), centromedian (CM), and lateral habenula (Hbl). The labeled fibers reached these ipsilateral thalamic nuclei by coursing along or through the ansa lenticularis, the lenticular and thalamic fasciculi, and the Forel's fields. They arborized profusely in VA/VL nuclei where they displayed small glomerule-like formations. Numerous labeled fibers also occurred in the CM. Most of them were long, varicose and gave rise to shorter fibers that formed a dense terminal field covering a large portion of the CM. A small but dense terminal field composed of delicate fibers and extremely fine terminals was noted in the Hbl. A large contingent of labeled fibers were seen to cross the midline, principally at the rostral pole of the CM and in the supramammillary decussation, to reach the contralateral thalamus where they arborized profusely in the VA/VL and CM nuclei, but not in the Hbl. The patterns of termination of these contralateral pallidothalamic fibers were strikingly similar to those observed ipsilaterally. Other anterogradely labeled fibers were also noted bilaterally in the pedunculopontine nucleus (TPP) and ipsilaterally in the external segment of the pallidum (GPe) and in the putamen. Complementary, double-labeling, retrograde studies involving the injection of nuclear yellow in the VA/VL and CM nuclei and Fast blue in the TPP, confirmed the existence of contralateral pallidothalamic and pallidotegmental projections. The number of retrogradely labeled cells in the contralateral GPi amounted approximately to 10-20% that in the ipsilateral GPi. These experiments further indicated that contralaterally projecting pallidothalamic neurons exhibited a high degree of axonal collateralization, the majority of its neurons projecting also to the contralateral TPP. Cells retrogradely labeled with the tracer injected into the thalamus were also encountered bilaterally in the thalamic reticular nucleus. Taken together, the results of these anterograde and retrograde investigations indicate that the contralateral pallidothalamic projection involves a relatively small population of GPi neurons, but that these neurons arborize extensively in their contralateral thalamic targets. Furthermore, the presence of retrogradely labeled cells in the ipsi- and contralateral reticular thalamic nucleus indicates that the VA/VL and CM nuclei, which receive a massive input from the GPi, are under the bilateral influence of this perithalamic nucleus. Such contralateral projections could play a major role in the subcortical organization of the bilateral aspect of normal basal ganglia function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have shown previously that the zona incerta (ZI), a small nucleus deriving from the ventral thalamus, has extensive ipsilateral connections with the higher order and intralaminar nuclei of the dorsal thalamus and that there are many ipsilateral interconnections between the different cytoarchitectonic sectors of the ZI. In this study, we explore the contralateral connections that the ZI has with its opposing nucleus as well as with the other nuclei of the thalamus. Injections of biotinylated dextran or cholera toxin subunit B were made into each of the different ZI sectors (rostral, dorsal, ventral, and caudal) and into intralaminar and higher order dorsal thalamic nuclei of Sprague-Dawley rats by using stereotaxic coordinates. Brains were fixed in aldehyde and processed using standard methods. Our results show that, after injections limited to a given ZI sector, labelled terminal-like elements and cells were seen across the other sectors of the ZI of the contralateral side. Furthermore, after each of these ZI injections, labelling was seen in the intralaminar (e.g., parafascicular, central lateral, and central medial) and higher order (e.g., posterior thalamic, lateral posterior, and lateral dorsal) nuclei of the contralateral side. These patterns of labelling were confirmed after tracer injections into intralaminar and higher order nuclei; after such injections, labelling was seen in the contralateral ZI. In all cases, there was labelling on the ipsilateral side as well, and this was generally heavier than on the contralateral side. Overall, our results indicate that there is a network of interconnections between the ZI of both sides of the thalamus and that the ZI has contralateral connections with the intralaminar and higher order nuclei. Hence, the ZI furnishes a substrate that spreads activity to both sides of the brain.  相似文献   

3.
VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual‐fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1‐ and VGLUT2‐expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1‐, VGLUT2‐, and VGLUT1/VGLUT2‐expressing ones, remain unsettled. J. Comp. Neurol. 518:3149–3168, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Electron microscopic study of the rubrocerebellar projection in the cat   总被引:1,自引:0,他引:1  
Rubral neurons sending axons to the cerebellar anterior interpositus nucleus (AIN) in the cat were identified light microscopically by labeling them with horseradish peroxidase (HRP). The synaptic organization of these rubral neurons and of their afferents from the cerebral motor cortex and the AIN was also analyzed electron microscopically by combined anterograde degeneration and retrograde HRP-labeling techniques. In the light microscopic study, either HRP or a mixture of HRP and kainic acid was injected into the AIN. Both of the injections resulted in retrograde labeling of rubrocerebellar projection neurons in the red nucleus on the contralateral side. The labeled neurons were distributed throughout the rostrocaudal extent of the red nucleus: some lay in clusters. Most labeled neurons were small to medium-sized, although some were large. The injection of HRP into the AIN also resulted in anterograde labeling of cerebellorubral projection fibers terminating in a wider area of the red nucleus on the contralateral side of the injection, whereas the injection of a mixture of HRP and kainic acid showed no anterograde labeling of fibers or terminals. In one set of electron microscopic observations, HRP injections into the AIN were combined with ablation of the motor cortex. Degenerating axon terminals were occasionally found to synapse with both dendrites and neuronal somata labeled with HRP retrogradely. In another set of electron microscopic observations, a mixture of HRP and kainic acid was injected into the AIN in order to label rubrocerebellar projection neurons retrogradely and to bring about degeneration in the cerebellorubral projection fibers anterogradely. Abundant degenerating axon terminals were observed to make axosomatic synaptic contacts with rubral neurons labeled with HRP retrogradely and also with unlabeled rubral neurons. These results indicate that cerebrorubrocerebellar and rubrocerebellorubral monosynaptic circuitries exist which constitute one of the cerebrocerebellar linkages, as well as those linkages via the inferior olivary complex and the pontine nuclei.  相似文献   

5.
The origin of nerve growth factor receptor-immunoreactive (NGFr-ir) fibers innervating the thalamic reticular nucleus (Rt) was here investigated in the rat using retrograde tracers in combination with immunocytochemistry. Neurons retrogradely labeled from Rt were scattered ipsilaterally throughout the medial septal nucleus and the other cell groups of the basal forebrain, which contained NGFr-ir cells; 10–20% of these retrogradely labeled neurons were also NGFr-ir. Furthermore, a few retrogradely labeled NGFr-ir cells were detected in the basal forebrain on the contralateral side. Retrograde tracing combined with a double immunocytochemical procedure revealed that all the NGFr-ir neurons labeled from Rt also displayed immunoreactivity for choline acetyltransferase. The present results demontrate that the NGFr-ir neurons of the basal forebrain which project to Rt are cholinergic. The possible functional implications of these findings are discussed.  相似文献   

6.
Anatomical connections of the nucleus prepositus of the cat   总被引:5,自引:0,他引:5  
The afferent and efferent connections of the nucleus prepositus hypoglossi with brainstem nuclei were studied using anterograde and retrograde axonal transport techniques, and by intracellular recordings and injections of horseradish peroxidase into prepositus hypoglossi neurons. The results of experiments in which horseradish peroxidase was injected into the prepositus hypoglossi suggest that the major inputs to the prepositus hypoglossi arise from the ipsi- and contralateral perihypoglossal nuclei (particularly the prepositus hypoglossi and intercalatus), vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei), the paramedian medullary and pontine reticular formation, and from the cerebellar cortex (flocculus, paraflocculus, and crus I; the nodulus was not available for study). Regions containing fewer labeled cells included the interstitial n. of Cajal, the rostral interstitial n. of the medial longitudinal fasciculus, the n. of the posterior commissure, the superior colliculus, the n. of the optic tract, the extraocular motor nuclei, the spinal trigeminal n., and the central cervical n. The efferent connections of the prepositus hypoglossi were studied by injecting 3H-leucine into the prepositus hypoglossi, and by following the axons of intracellularly injected prepositus hypoglossi neurons. The results suggest that in addition to the cerebellar cortex, the most important extrinsic targets of prepositus hypoglossi efferents are the vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei, and the area X), the inferior olive (contralateral dorsal cap of Kooy and ipsilateral subnucleus b of the medial accessory olive), the paramedian medullary and pontine reticular formation, the reticular formation surrounding the parabigeminal n., the contralateral superior colliculus and pretectum, the extraocular motor nuclei (particularly the contralateral abducens nucleus and the ipsilateral medial rectus subdivision of the oculomotor nucleus), the ventral lateral geniculate n., and the central lateral thalamic nucleus. Other areas which were lightly labeled in the autoradiographic experiments were the contralateral spinal trigeminal n., the n. raphe pontis, the Edinger Westphal n., the zona incerta, and the paracentral thalamic n. Many of the efferent connections of the prepositus hypoglossi appear to arise from principal prepositus hypoglossi neurons whose axons collateralize extensively in the brainstem. On the other hand, small prepositus hypoglossi neurons project to the inferior olive, and multidendritic neurons project to the cerebellar flocculus, apparently without collateralizing in the brainstem.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We have conducted a systematic comparison of the ipsilateral (uncrossed) and contralateral (crossed) thalamic connections of prefrontal cortex in macaque monkeys, using cortical implants of horseradish peroxidase pellets and tetramethyl benzidine histochemistry to demonstrate anterograde and retrograde thalamic labeling. Contrary to the prevailing belief that thalamocortical projections are entirely uncrossed, our findings indicate that a modest crossed projection to prefrontal cortex arises from the mesial thalamus, principally the anteromedial and midline nuclei. Also, while confirming that corticothalamic projections are bilateral, we found that the pattern of crossed projections differs from that of uncrossed projections. Projections to mesial thalamic nuclei, specifically to the anteromedial nucleus, the midline nuclei, and the magnocellular part of the mediodorsal nucleus are bilateral, the contralateral projection being nearly as dense as the ipsilateral projection. Projections to the parvicellular part of the mediodorsal and ventral anterior nuclei are also bilateral, but the contralateral projection is much weaker than the ipsilateral projection. Prefrontal projections to the reticular nucleus, medial pulvinar, suprageniculate nucleus, and limitans nucleus appear to be exclusively ipsilateral. These results indicate that prefrontal cortex has prominent bilateral and reciprocal connections with the nuclei of the mesial thalamic region. As this region of the diencephalon has been implicated by anatomical and behavioral studies in memory functions, our findings suggest that prefrontal cortex, through its connections with this region, may be involved in the bilateral integration of mnemonic systems.  相似文献   

8.
These studies were designed to investigate projections of the interstitial nucleus of Cajal (INC) to the region of the contralateral Probst's tract (PrTr). In electrophysiological experiments, INC neurons were antidromically activated from the contralateral PrTr, the medial longitudinal fasciculus (MLF) at medullary levels and the MLF at spinal cord levels. Some INC cells could be antidromically activated only from PrTr and others from both PrTr and the MLF. Anatomical experiments confirmed the existence of an INC projection into the region of the contralateral PrTr. Following injections of fluorescent dyes into the PrTr area, retrogradely labeled neurons were observed in the contralateral INC, with only occasional labeling ipsilaterally. Injections which included the medial vestibular nucleus labeled a greater number of INC cells ipsilaterally. After injections of dyes into the medullary MLF, retrogradely labeled cells were observed bilaterally in INC, although in greater numbers ipsilaterally. In experiments in which different dyes were injected into PrTr and the MLF, double labeled cells were found in the contralateral INC.  相似文献   

9.
The motor nuclei of the oculomotor, trochlear, and abducens nerves of the reptile Varanus exanthematicus and the neurons that subserve the sensory innervation of the extraocular muscles were identified and localized by retrograde and anterograde transport of horseradish peroxidase (HRP). The highly differentiated oculomotor nuclear complex, located dorsomedially in the tegmentum of the midbrain, consists of the accessory oculomotor nucleus and the dorsomedial, dorsolateral, intermediate, and ventral subnuclei. The accessory oculomotor nucleus projects ipsilaterally to the ciliary ganglion. The dorsomedial, dorsolateral, and intermediate subnuclei distribute their axons to the ipsilateral orbit, whereas the ventral subnucleus, which innervates the superior rectus muscle, has a bilateral, though predominantly contralateral projection. The trochlear nucleus, which rostrally overlaps the oculomotor nuclear complex, is for the greater part a comma-shaped cell group situated lateral, dorsal, and medial to the medial longitudinal fasciculus. Following HRP application to the trochlear nerve, almost all retrogradely labeled cells were found in the contralateral nucleus. The nuclear complex of the abducens nerve consists of the principal and accessory abducens nuclei, both of which project ipsilaterally. The principal abducens nucleus is located just beneath the fourth ventricle laterally adjacent to the medial longitudinal fasciculus and innervates the posterior rectus muscle. The accessory abducens nucleus has a ventrolateral position in the brainstem in close approximation to the ophthalmic fibers of the descending trigeminal tract. It innervates the retractor bulbi and bursalis muscles. The fibers arising in the accessory abducens muscles form a loop in or just beneath the principal abducens nucleus before they join the abducens nerve root. The afferent fibers conveying sensory information from the extraocular muscles course in the oculomotor nerve and have their perikarya in the ipsilateral trigeminal ganglion, almost exclusively in its ophthalmic portion.  相似文献   

10.
Connections of the retrosplenial granular a cortex in the rat   总被引:4,自引:0,他引:4  
Although the retrosplenial granular a cortex (Rga) is situated in a critical position between the hippocampal formation and the neocortex, few studies have examined its connections. The present experiments use both retrograde and anterograde tracing techniques to characterize the afferent and efferent connections of Rga. Cortical projections to Rga originate in the ipsilateral area infraradiata, the retrosplenial agranular and granular b cortices, the ventral subiculum, and the contralateral Rga. Subcortical projections originate in the claustrum, the diagonal band of Broca, the thalamus, the midbrain raphe nuclei, and the locus coeruleus. The thalamic projections to Rga originate mainly in the anterodorsal (AD) and laterodorsal (LD) nuclei with sparse projections arising in the anteroventral (AV) and reuniens nuclei. Each projection to Rga terminates in distinct layers of the cortex. The thalamic projection from AD terminates primarily in layers I, III, and IV of Rga, whereas the axons arising from the LD nucleus have a dense terminal plexus only in layer 1. The projections arising from the subiculum end predominantly in layer II, whereas the postsubiculum projects to layers I and III-V. Axons from the contralateral Rga form a dense terminal plexus in layers IV and V, with a smaller number of terminals in layers I and VI. Rga projects ipsilaterally to the AV and LD nuclei of the thalamus and to the anterior cingulate, retrosplenial agranular,a and postsubicular cortices. Contralaterally it projects to the retrosplenial agranular and Rga cortices. Rga projections to the thalamus terminate ipsilaterally in the dorsal part of LD and bilaterally in AV. Together, these data suggest that Rga integrates thalamic with limbic information.  相似文献   

11.
The projections of the trigeminal (V) sensory nuclei (VSN) and the dorsal column nuclei (DCN) to the anterior pretectal nucleus (APT) of the rat were investigated by the use of anterograde and retrograde transport of wheat-germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into the APT retrogradely labeled neurons in the contralateral VSN and DCN. The labeled neurons in the VSN were most concentrated in the rostral V subnucleus interpolaris (Vi), but were also found in caudal V subnucleus oralis (Vo). No labeled neurons were seen in V subnucleus caudalis. In the DCN, retrogradely labeled neurons were observed in rostral portions of both the cuneate (Cu) and gracile (Gr) nuclei. Injections of WGA-HRP into the rostral Vi or caudal Vo resulted in dense anterograde terminal labeling in the ventral two-thirds of the APT; the labeling was maximal in the ventromedial part of the caudal half of the APT and did not extend into its most rostral portion. Labeling resulting from injections of tracer into Cu or Gr was located primarily in the ventral half of the APT, was maximal in the mid-levels of the nucleus and extended into its rostral portions. These results indicate the existence of prominent somatosensory projections to the APT and are consistent with recent findings suggesting a role for the APT in sensorimotor integration.  相似文献   

12.
A combined study of anterograde axonal degeneration and HRP retrograde labeling has shown that there exist monosynaptic connections between afferent fibers from the mediodorsal thalamic nucleus (MD) and callosal cells in the prelimbic cortex of the rat. Degenerating axon terminals from MD made asymmetrical synaptic contacts with dendritic spines from apical dendrites of layer III pyramidal cells that were retrogradely labeled with HRP after its injection into the prelimbic cortex contralateral to MD lesions.  相似文献   

13.
The connections of the posterior part of the medial prefrontal cortex with the thalamic lateral posterior nucleus in rats were studied using anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and tritiated leucine. After injections of WGA-HRP into the medial prefrontal cortex, an area confirmed to receive direct projections from the visual cortex, retrogradely labeled neurons were observed ipsilaterally in the lateral posterior nucleus of the thalamus, as well as in the mediodorsal, anteromedial, ventromedial, ventrolateral, laterodorsal, centrolateral, paracentral, rhomboid, parafascicular and posterior nuclei. In the lateral posterior nucleus, the labeled cells were located mainly in the lateroventral portion of its anterior half. In contrast, the posterior half of this nucleus was free of label. Axons labeled by the anterograde transport of tritiated leucine were dispersed over the same region which contained retrogradely labeled cells. The functional significance of these connections is discussed with special reference to their possible role in visuomotor integration in rats.  相似文献   

14.
The retrograde transport of horseradish peroxidase (HRP) and fluorescent tracers after injections in various thalamic nuclei was used to investigate the relative density of retrogradely labeled cells in different districts of reticularis thalami (RE) nuclear complex of cat. The RE nucleus was left virtually free of labeling only after injections localized into the anterior nuclear group; in those experiments, heavy retrograde labeling was obtained in mammillary nuclei. The major targets of RE cells proved to be centralis lateralis-paracentralis (CL-PC) and centrum medianum-parafascicularis (CM-PF) intralaminar nuclei. The projections to various intralaminar nuclei mainly arise in the rostral pole and rostrolateral part of RE nucleus and are reciprocal to intralaminar-RE pathways disclosed by Jones ('75). The RE territories labeled following injections in relay and associational nuclei are more restricted and are located contiguously and slightly anteriorly to a given nucleus. There was a very small proportion of doubly labeled RE cells after injections with fluorescent tracers in different nuclei. This was not due to a technical failure since many double-labeled neurons were found in the same material in medial globus pallidum after thalamic and midbrain injections (see companion paper by Parent and Steriade, '84). We conclude that most individual RE axons arborize in only one thalamic nucleus or nuclear group. An additional finding was the existence of intralaminar-to-relay (CL-PC to VA-VL) projections.  相似文献   

15.
Layer I of the neocortex is a dense synaptic zone consisting of horizontal corticocortical and widespread layer VII projections, in addition to thalamic inputs. In order to determine the origin and extent of corticocortical and thalamocortical projections to layer I of the frontal/premotor area M2 of the rat neocortex, we have used fluorescent anatomical tracing methods to determine the precise sources of cortical and thalamic input to the rostral and caudal aspects of layer I of M2. Retrograde tracer diamidino yellow (DY), applied directly to the pial surface on rostral or caudal areas of rat M2 (RM2 and CM2, respectively) labeled cells ipsilaterally throughout layers II/III, V, and VII of the adjacent primary motor area and the parietal areas (SI and SII). In addition, retrograde transport labeled contralateral CM2 or RM2 in layers II/III and V at sites homotopic to either CM2 or RM2 application sites. Contralateral layer VII was retrogradely labeled by the application to layer I of CM2, but not by the RM2 application. Retrograde DY transport from layer I of RM2 or CM2 of was seen in the ventral medial (VM), ventral lateral (VL), and posterior (Po) thalamic nuclei. However layer I transport from CM2 additionally labeled the thalamic central medial (CM) nucleus, while the RM2 labeled the mediodorsal (MD) thalamic nucleus. Upon determination that thalamic nuclei VM and VL were of primary interest in this study, due to their dense retrograde labeling, injections of anterograde tracer rhodamine dextranamine (RDA) into VM or VL were performed in order to study the projection patterns of these nuclei to layer I of the frontal cortex. RDA injections into VM labeled fibers extending through layer I of both RM2 and CM2 and throughout the cingulate cortex. Injections of RDA into VL consistently labeled dense fibers in layer I of both CM2 and RM2, although labeling was sharply decreased anterior to CM2. This study adds to a growing body of evidence that projections to layer I from all sources of cortical input make a significant contribution to integration throughout the neocortex.  相似文献   

16.
The projection from the nucleus centralis (an intralaminar thalamic nucleus) to the primary visual cortex was examined with anterograde and retrograde tracing techniques. After large injections of horseradish peroxidase into areas 17 and 18 almost one-half of the neurons in the nucleus centralis were retrogradely labeled. An injection of 3H-proline into the nucleus centralis led to sparse anterograde labeling in layers 5 and 6 of areas 17 and 18. Large injections of peroxidase-conjugated wheat germ agglutinin (WGA) into the nucleus centralis led to similar anterograde labeling of layers 5 and 6 and, in addition, to a band in layer 1. No retrogradely labeled cells were seen in areas 17 or 18. The WGA-labeled terminals in area 17 were examined in the electron microscope: they formed type 1 (asymmetric) synapses on dendritic spines. These observations suggest that the afferents from the nucleus centralis primarily contact pyramidal cells that project to subcortical targets. The findings are consistent with physiological studies suggesting that the nucleus centralis is involved in the modulation of cortical outflow with varying levels of arousal.  相似文献   

17.
Tsumori T  Yokota S  Lai H  Yasui Y 《Brain research》2000,858(2):429-435
We examined a direct pathway and an indirect pathway via the reticular thalamic nucleus (RT) from the substantia nigra pars reticulata (SNr) to the parafascicular thalamic nucleus (PF) by using anterograde and retrograde tract tracing methods. After biotinylated dextranamine (BDA) injection into the dorsolateral part of the SNr, many labeled fibers and axon terminals were distributed in the ventral part of the RT, as well as in the ventrolateral part of the PF, bilaterally with an ipsilateral dominance. After BDA injection into the ventral part of the RT, a plexus of labeled axons was found bilaterally with an ipsilateral dominance in the ventrolateral part of the PF. After combined injections of BDA into the dorsolateral part of the SNr and cholera toxin B subunit (CTb) into the ventrolateral part of the PF on the same side, overlapping distribution of BDA-labeled fibers and CTb-labeled neurons was observed in the ventral part of the RT ipsilateral to the injection sites, where the BDA-labeled axon terminals made symmetrical synaptic contacts with soma and dendrites of the CTb-labeled neurons.  相似文献   

18.
Although retrograde and anterograde degeneration studies have provided important information concerning brain stem afferents to the fastigal nucleus (FN), these data may be incomplete and should be confirmed by axonal transport methods. Attempts were made to inject horseradish peroxidase (HRP) unilaterally into the FN in a series of adult cats. Animals were perfused with dextran and a fixative solution of paraformaldehyde and glutaraldehyde in 0.1 M phospate buffer. Representative sections were treated by the Graham and Karnovsky ('66) method. Selective HRP injections in one FN resulted in retrograde transport of the marker to Purkinje cells of the ipsilateral vermis and distinctive appendages of the contralateral medial accessory olivary (MAO) nucleus (nucleus beta and the dorso-medial cell column). Retrograde transport of the label was found bilaterally in cells of the medial (MVN) and inferior (IVN) vestibular nuclei, in cell group x and in the nucleus prepositus (PP). Labeled vestibular neurons, most numerous in MVN, were identified in dorsal, caudal and lateral regions, with a slight ipsilateral preponderance. Only a few neurons in caudal, dorsal and lateral regions of the IVN were labeled and none of these included cells of group f. Labeled cells in the caudal third of PP were greatest ipsilaterally. Rostral and caudal injections of FN labeled smaller numbers of cells in MVN, IVN, cell group x and PP. HRP injections of FN and portions of lobules VIII and IX resulted in bilateral retrograde labeling of larger numbers of cells in MVN, IVN and cell group x, and ipsilateral labeling of cells in group y and the interstitial nucleus of the vestibular nerve. Injections of HRP into basal folia of lobules V and VI resulted in retrograde transport of the marker to cells of the medial and dorsal accessory olivary nuclei contralaterally, and to cells of the ipsilateral accessory cuneate nucleus. Transport of label injected into portions of the pyramis was detected in parts of the contralateral MAO and bilaterally in parts of the pontine and reticulotegmental nuclei. This study suggests that the principal afferents of the fastigial nucleus arise from: (1) Purkinje cells of the ipsilateral vermis, (2) restricted portions of the contralateral MAO (nucleus beta and dorsomedial cell column), (3) portions of the MVN and IVN (bilaterally) and (4) caudal parts of the PP. Secondary vestibular inputs to the fastigial nucleus probably are relayed mainly by Purkinje cells in the cerebellar cortex.  相似文献   

19.
The terminal areas and the cells of origin of the projection from the sensory trigeminal nuclei to the mesencephalon were investigated, using the method of anterograde and retrograde transport of horseradish peroxidase or wheat germ agglutinin-horseradish peroxidase conjugate. Injection of tracer into the nucleus interpolaris or nucleus oralis (in the latter cases with involvement of the nucleus principalis) resulted in dense anterograde labeling in the deep and intermediate gray layers of the contralateral superior colliculus, extending throughout the rostrocaudal extent of the colliculus with the exception of its caudalmost part, which was not labeled. Minor projections to the intercollicular nucleus, posterior pretectal nucleus and nucleus of Darkschewitsch were found. Injection of tracer into the nucleus caudalis yielded a completely different result; terminal labeling in the midbrain was now present only in the periaqueductal gray matter, in its rostral and middle parts. The retrograde labeling observed after injection of tracer into the midbrain terminal areas showed that the cells of origin were located mainly in the alaminar spinal trigeminal nucleus, and the highest density of labeled neurons was found in the rostral part (subnucleus y) of the nucleus oralis. The retrograde labeling in the nucleus principalis was very sparse and almost exclusively involved peripherally located neurons. In the nucleus caudalis the overwhelming majority of the retrogradely labeled neurons were situated in its marginal layer. The functional implications of the above observations are discussed in relation to the findings in previous studies of the projections from the dorsal column nuclei and spinal cord to the midbrain. The combined results suggest that the trigeminal projections to the superior colliculus may be involved in the mechanisms of orientational behavior. The observation that the projection to the periaqueductal gray matter originates in the marginal layer suggests that it transmits information related to noxious stimuli.  相似文献   

20.
The anterior pretectal nucleus (APT) and the zona incerta (ZI) are diencephalic nuclei that exert a strong inhibitory influence selectively in higher order thalamic relays. The APT is also known to project to the ZI as well as the thalamus, but anatomical details of the APT-ZI projection have not been described. In the present study, the efferent pathways of the APT were examined in the APT-ZI-thalamus network by using anterograde and retrograde tracing in combination with pre- and postembedding immunocytochemical stainings and in situ hybridization. The vast majority of APT fibers selectively innervated the parvalbumin-positive, ventral part of the ZI, which contains ZI neurons with axons projecting to higher order thalamic nuclei. The APT-ZI pathway consisted of both gamma-aminobutyric acid (GABA)-negative and GABA-positive components; 38.2% of the terminals in the ZI contained GABA, and 8.6% of the projecting somata in the APT were glutamic acid decarboxylase 67 (GAD67) mRNA positive. The combination of parvalbumin immunostaining with retrograde tracing showed that strongly and weakly parvalbumin-positive as well as parvalbumin-negative neurons were all among the population of APT cells projecting to the ZI. Similar heterogeneity was found among the APT cells projecting to the thalamus. Double retrograde tracing from higher order thalamic nuclei and their topographically matched ZI regions revealed hardly any APT neuron with dual projections. Our data suggest that both ZI and the higher order thalamic relays are innervated by distinct, physiologically heterogeneous APT neurons. These various efferent pathways probably interact via the rich recurrent collaterals of the projecting APT cells. Therefore, the powerful, GABAergic APT and ZI outputs to the thalamus are apparently co-modulated in a synergistic manner via dual excitatory and inhibitory APT-ZI connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号