首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumours (malignant gliomas). The mechanism of TMZ-induced glioma cell death is unknown. Here, we show that malignant glioma cells undergo apoptosis following treatment with the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and TMZ. Cell death determined by colony formation and apoptosis following methylation is greatly stimulated by p53. Transfection experiments with O(6)-methylguanine-DNA methyltransferase (MGMT) and depletion of MGMT by O(6)-benzylguanine showed that, in gliomas, the apoptotic signal originates from O(6)-methylguanine (O(6)MeG) and that repair of O(6)MeG by MGMT prevents apoptosis. We further demonstrate that O(6)MeG-triggered apoptosis requires Fas/CD95/Apo-1 receptor activation in p53 non-mutated glioma cells, whereas in p53 mutated gliomas the same DNA lesion triggers the mitochondrial apoptotic pathway. This occurs less effectively via Bcl-2 degradation and caspase-9, -2, -7 and -3 activation. O(6)MeG-triggered apoptosis in gliomas is a late response (occurring >120 h after treatment) that requires extensive cell proliferation. Stimulation of cell cycle progression by the Pasteurella multocida toxin promoted apoptosis whereas serum starvation attenuated it. O(6)MeG-induced apoptosis in glioma cells was preceded by the formation of DNA double-strand breaks (DSBs), as measured by gammaH2AX formation. Glioma cells mutated in DNA-PK(cs), which is involved in non-homologous end-joining, were more sensitive to TMZ-induced apoptosis, supporting the involvement of DSBs as a downstream apoptosis triggering lesion. Overall, the data demonstrate that cell death induced by TMZ in gliomas is due to apoptosis and that determinants of sensitivity of gliomas to TMZ are MGMT, p53, proliferation rate and DSB repair.  相似文献   

2.
In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment.  相似文献   

3.
Acquired resistance to antineoplastic agents is a frequent obstacle in tumor therapy. Malignant melanoma cells are particularly well known for their unresponsiveness to chemotherapy; only about 30% of tumors exhibit a transient clinical response to treatment. In our study, we investigated the molecular mechanism of acquired resistance of melanoma cells (MeWo) to the chloroethylating drug fotemustine. Determination of O(6)-methylguanine-DNA methyltransferase (MGMT) activity showed that MeWo cells that acquired resistance to fotemustine upon repeated treatment with the drug display high MGMT activity, whereas the parental cell line had no detectable MGMT. The resistant cell lines exhibit cross-resistance to other O(6)-alkylating agents, such as N-methyl-N'-nitro-N-nitrosoguanidine. Acquired resistance to fotemustine was alleviated by treatment with the MGMT inhibitor O(6)-benzylguanine demonstrating that reactivation of MGMT is the main underlying cause of acquired alkylating drug resistance. As compared with control cells, both MGMT mRNA and MGMT protein were expressed at a high level in fotemustine resistant cells. Southern blot analysis proved that the MGMT gene was not amplified. There was also only an insignificant difference in the CpG methylation pattern of the MGMT promoter whereas a clear hypermethylation in the body of the gene was observed in fotemustine resistant cells. The conclusion that hypermethylation is responsible for reactivation of the MGMT gene gained support by the finding that MGMT activity significantly declined and cells reverted (partially) to the parental sensitive phenotype upon treatment with 5-azacytidine. This is the first report of acquired resistance to a chloroethylating antineoplastic drug of melanoma cells due to gene hypermethylation.  相似文献   

4.
Temozolomide (TMZ) is commonly used in the treatment of glioblastoma (GBM). The MGMT repair enzyme (O 6-methylguanine-DNA methyltransferase) is an important factor causing chemotherapeutic resistance. MGMT prevents the formation of toxic effects of alkyl adducts by removing them from the DNA. Therefore, MGMT inhibition is an interesting therapeutic approach to circumvent TMZ resistance. The aim of the study was to investigate the effect of the combination of lomeguatrib (an MGMT inactivator) with TMZ, on MGMT expression and methylation. Primary cell cultures were obtained from GBM tumor tissues. The sensitivity of primary GBM cell cultures and GBM cell lines to TMZ, and to the combination of TMZ and lomeguatrib, was determined by a cytotoxicity assay (MTT). MGMT and p53 expression, and MGMT methylation were investigated after drug application. In addition, the proportion of apoptotic cells and DNA fragmentation was analyzed. The combination of TMZ and lomeguatrib in primary GBM cell cultures and glioma cell lines decreased MGMT expression, increased p53 expression, and did not change MGMT methylation. Moreover, apoptosis was induced and DNA fragmentation was increased in cells. In addition, we also showed that lomeguatrib–TMZ combination did not have any effect on the cell cycle. Finally, we determined that the sensitivity of each primary GBM cells and glioma cell lines to the lomeguatrib–TMZ combination was different and significantly associated with the structure of MGMT methylation. Our study suggests that lomeguatrib can be used with TMZ for GBM treatment, although further clinical studies will be needed so as to determine the feasibility of this therapeutic approach.  相似文献   

5.
Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.  相似文献   

6.
Hyperthermic isolated limb perfusion (HILP) with L-phenylalanine mustard (L-PAM) represents an effective treatment for locally advanced melanoma of the limbs. However, regional chemotherapy of melanoma still needs to be improved. Temozolomide (TMZ) is a methylating agent that spontaneously decomposes into the active metabolite of dacarbazine, the most effective agent for the systemic treatment of melanoma. Tumor cells with high levels of O6-methylguanine-DNA methyltransferase (MGMT) and/or with a defective DNA mismatch repair (MMR) are resistant to TMZ. Inhibition of MGMT activity increases TMZ sensitivity of MMR-proficient, but not of MMR-deficient cells, while inhibition of base excision repair (BER) potentiates TMZ cytotoxicity in both cell types. Recent studies, performed in an animal model, have shown that TMZ is more effective than L-PAM when applied regionally and that hyperthermia can increase the antitumor activity of TMZ. In this study, three thermoresistant human melanoma cell lines, endowed with different MGMT activity and functional status of the MMR system, were treated with TMZ at 37 degrees C or 41.5 degrees C for 90 min, and then analyzed for cell growth and MGMT activity. Hyperthermia significantly enhanced TMZ cytotoxicity in MMR-proficient cells, either endowed or not with MGMT activity, and in MMR-deficient cells. Endogenous MGMT activity was not affected by hyperthermia that, however, enhanced the enzyme depletion induced by TMZ treatment. Moreover, MGMT recovery after drug removal was delayed in cells that had been treated at 41.5 degrees C. Taken together, these findings confirm the therapeutic potential of a combined treatment of hyperthermia and TMZ. They also suggest that inhibition of BER and/or increased DNA methylation may be involved in the thermal enhancement of TMZ cytotoxicity. Additional studies are necessary to better clarify the mechanisms underlying hyperthermia-induced potentiation of TMZ activity. However, the present investigation provides further support to the development of clinical trials of HILP with TMZ.  相似文献   

7.
Temozolomide (TMZ), a DNA alkylating agent used in the treatment of melanoma, is believed to mediate its effect by addition of a methyl group to the O(6) position of guanine in DNA. Resistance to the agent may be in part due to the activity of O(6)-methylguanine-DNA methyl transferase (MGMT). In the present study, we show that sensitivity of melanoma cells to TMZ was dependent on their p53 status and levels of MGMT. Analysis of the mechanisms underlying reduced viability showed no evidence for induction of apoptosis even though marked levels of apoptosis was seen in TK6 lymphoma cells. Sensitivity of melanoma cells was associated with p53-dependent G2/M cell cycle arrest and induction of senescence. To verify the role of p53, the assays were repeated in presence of pifithrin-alpha, an inhibitor of p53. This resulted in increased viability of melanoma cells with wild-type p53 and reversed G2/M cell cycle arrest. Paradoxically, apoptosis was increased in melanoma but decreased as expected in TK6 lymphoma cells. These results are consistent with the view that TMZ is relatively ineffective against melanoma due to defective apoptotic signalling resulting from activation of p53. The nature of the defects in apoptotic signalling remains to be explored.  相似文献   

8.
DNA double-strand breaks (DSBs) are potent killing lesions, and inefficient repair of DSBs does not only lead to cell death but also to genomic instability and tumorigenesis. DSBs are repaired by non-homologous end-joining and homologous recombination (HR). A key player in HR is Xrcc2, a Rad51-like protein. Cells deficient in Xrcc2 are hypersensitive to X-rays and mitomycin C and display increased chromosomal aberration frequencies. In order to elucidate the role of Xrcc2 in resistance to anticancer drugs, we compared Xrcc2 knockout (Xrcc2-/-) mouse embryonic fibroblasts with the corresponding isogenic wild-type and Xrcc2 complemented knockout cells. We show that Xrcc2-/- cells are hypersensitive to the killing effect of the simple methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). They undergo apoptosis after MNNG treatment while necrosis is only marginally enhanced. Complementation of Xrcc2 deficient cells by Xrcc2 cDNA transfection conferred resistance to the cytotoxic and apoptosis-inducing effect of MNNG. The hypersensitivity of Xrcc2-/- cells to MNNG prompted us to investigate their killing and apoptotic response to various methylating, chloroethylating and crosslinking drugs used in anticancer therapy. Xrcc2 deficient cells were found to be hypersensitive to temozolomide, fotemustine and mafosfamide. They were also hypersensitive to cisplatin but not to taxol. The data reveal that Xrcc2 plays a role in the protection against a wide range of anticancer drugs and, therefore, suggest Xrcc2 to be a determinant of anticancer drug resistance. They also indicate that HR is involved in the processing of DNA damage induced by simple alkylating agents.  相似文献   

9.
Background: The DNA repair protein O6-alkylguanine-DNA alkyl transferase (AT) mediates resistance to chloroethylnitrosoureas. Agents depleting AT such as DTIC and its new analogue temozolomide (TMZ) can reverse resistance to chloroethylnitrosoureas. We report the results of a dose finding study of TMZ in association with fotemustine.Patients and methods: Twenty-four patients with metastatic melanoma or recurrent glioma were treated with escalating dose of oral or intravenous TMZ ranging from 300 to 700 mg/m2, divided over two days. Fotemustine 100 mg/m2 was given intravenously on day 2, 4 hours after TMZ. AT depletion was measured in peripheral blood mononuclear cells (PBMCs) and in selected cases in melanoma metastases and was compared to TMZ pharmacokinetics.Results: The maximum tolerated dose (MTD) of TMZ was 400 mg/m2 (200 mg/m2/d) when associated with fotemustine the 2nd day with myelosuppression as dose limiting toxicity. The decrease of AT level in PBMCs was progressive and reached 34% of pretreatment values on day 2. There was however wide interindividual variability. AT reduction was neither dose nor route dependent and did not appear to be related to TMZ systemic exposure (AUC). In the same patients, AT depletion in tumour did not correlate with the decrease of AT observed in PBMCs.Conclusions: PBMCs may not be used as a surrogate of tumour for AT depletion. Further study should concentrate on the pharmacokinetic pharmacodynamic relationship in tumour to provide the basis for individually tailored therapy.  相似文献   

10.
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) removes alkyl groups from the O6 position of guanine in DNA and thus may protect cells against genotoxic effects of agents inducing this lesion. To analyze quantitatively the level of protection mediated by MGMT against antineoplastic drugs, we determined the cytotoxic and recombinogenic (sister-chromatid exchange inducing) effects of various chemotherapeutic agents in a pair of isogenic Chinese hamster cell lines deficient and proficient for MGMT, generated upon transfection with human MGMT cDNA. Furthermore, we compared the responses of the human cell lines HeLa MR (MGMT deficient) and HeLa S3 (MGMT proficient) to the various agents. It is shown that: (1) MGMT proficient cells are resistant in cell killing to the methylating drug streptozotocin and all the chloroethylating nitrosoureas tested. There was a marked agent specificity in protection. The level of resistance provoked by MGMT increased in the order BCNU < CCNU < ACNU < HeCNU < streptozotocin. (2) MGMT did not protect cells against killing induced by chlorambucil, cisplatin, melphalan, activated cyclophosphamide (mafosfamide) and activated ifosfamide (4-hydroperoxy-ifosfamide). (3) MGMT caused protection against the recombinogenic effect of all nitrosoureas tested. The lowest level of protection was again observed for BCNU, followed by CCNU, ACNU < HeCNU < streptozotocin. (4) MGMT proficient cells did not exhibit resistance in SCE induction towards cyclophosphamide (activated by microsomes), 4-hydroperoxy-ifosfamide, mafosfamide, chlorambucil and melphalan. Some protection was afforded, however, against cisplatin (and transplatin). This effect was abolished by pretreatment of cells with O6-benzylguanine, which depletes MGMT, indicating that some lesion(s) induced by cisplatin giving rise to SCEs can be repaired by MGMT. Taken together, these results indicate that streptozotocin, HeCNU and ACNU are more selective than CCNU and BCNU in killing MGMT deficient cells, and that in the cases of cyclophosphamide, ifosfamide, chlorambucil, cisplatin and melphalan MGMT is not involved in mediating cytotoxic drug resistance. © 1996 Wiley-Liss, Inc.  相似文献   

11.
We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment.  相似文献   

12.
Glioblastoma multiforme is the most severe form of brain cancer. First line therapy includes the methylating agent temozolomide and/or the chloroethylating nitrosoureas [1-(2-chloroethyl)-1-nitrosourea; CNU] nimustine [1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea; ACNU], carmustine [1,3-bis(2-chloroethyl)-1-nitrosourea; BCNU], or lomustine [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; CCNU]. The mechanism of cell death after CNU treatment is largely unknown. Here we show that ACNU and BCNU induce apoptosis in U87MG [p53 wild-type (p53wt)] and U138MG [p53 mutant (p53mt)] glioma cells. However, contrary to what we observed previously for temozolomide, chloroethylating drugs are more toxic for p53-mutated glioma cells and induce both apoptosis and necrosis. Inactivation of p53 by pifithrin-alpha or siRNA down-regulation sensitized p53wt but not p53mt glioma cells to ACNU and BCNU. ACNU and BCNU provoke the formation of DNA double-strand breaks (DSB) in glioma cells that precede the onset of apoptosis and necrosis. Although these DSBs are repaired in p53wt cells, they accumulate in p53mt cells. Therefore, functional p53 seems to stimulate the repair of CNU-induced cross-links and/or DSBs generated from CNU-induced lesions. Expression analysis revealed an up-regulation of xpc and ddb2 mRNA in response to ACNU in U87MG but not U138MG cells, indicating p53 regulates a pathway that involves these DNA repair proteins. ACNU-induced apoptosis in p53wt glioma cells is executed via both the extrinsic and intrinsic apoptotic pathway, whereas in p53mt glioma cells, the mitochondrial pathway becomes activated. The data suggest that p53 has opposing effects in gliomas treated with methylating or chloroethylating agents and, therefore, the p53 status should be taken into account when deciding which therapeutic drug to use.  相似文献   

13.
O6-methylguanine-DNA methyltransferase (MGMT) is a major determinant of susceptibility to methylating carcinogens and of tumor resistance to anticancer methylating and chloroethylating drugs. The silencing of MGMT expression that occurs in 20-30% of human tumor lines is tightly linked to methylation within the MGMTgene 5'CpG island. Previous studies on a very limited number of cell lines showed that such methylation was uneven, with hot-spots where methylation almost invariably occurred and intervening regions with very low incidences of methylation. To ascertain if such hot-spot methylation is in fact a ubiquitous hallmark of MGMT-silenced cells, we determined the methylation status of selected hot-spot CpGs in an extensive panel of MGMT-expressing and -silenced cell lines and xenografts. Using two simple and rapid bisulfite-polymerase chain reaction-based assays, we confirmed that in MGMT-silenced cells, methylation occurred at these sites whereas it was essentially absent in MGMT-expressing cells.  相似文献   

14.
Abstract

Temozolomide (TMZ) exerts its cytotoxic effects by methylating guanine in DNA, resulting in a mismatch with thymine. We studied possible enhancement of the cytotoxic activity of several other targeted drugs in four lung cancer cell lines by TMZ. The data are in relation to O6-alkylguanine-DNA-alkyltransferase (AGT) expression, gene methylation, cell cycle distribution and adduct formation. Synergism/additivity was found with O6-benzylguanine (O6-BG), gemcitabine, lonafarnib and paclitaxel, but not with platinum analogs and topoisomerase-inhibitors. O6-bG enhanced TMZ-induced accumulation in the G2/m-phase by increasing formation and retention of the O6- methyldeoxyguanosine adducts. TMZ combinations with drugs showing a different individual effect on the cell cycle (e.g. gemcitabine-induced S-phase) were most effective. The results show that O6-BG enhanced the TMZ effect in all cell lines. TMZ enhanced the cytotoxicity of gemcitabine, paclitaxel and lonafarnib in most cell lines, possibly by affecting the cell cycle, supporting possible application of TMZ in the treatment of lung cancer.  相似文献   

15.
目的 评价接受替莫唑胺+铂类+生物治疗及传统药物达卡巴嗪+铂类+生物治疗不同方案治疗晚期黑色素瘤1年中脑转移情况; 探讨O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)表达与替莫唑胺疗效的关系。方法 88例晚期黑色素瘤患者中52例接受替莫唑胺+顺铂化疗6周期,36例患者接受达卡巴嗪+顺铂化疗6周期,观察治疗1年后两组脑转移发生率及MGMT表达与替莫唑胺疗效的关系。结果 替莫唑胺组治疗1年后仅有2名患者发生脑转移,发生率为3.85%;达卡巴嗪组6名患者发生脑转移,发生率为16.67%。MGMT (-)组疾病控制率为80%,MGMT(+~++)组40.91%。结论 替莫唑胺治疗组脑转移率明显下降。MGMT表达与替莫唑胺药效有关,MGMT表达阴性治疗有效率更高。治疗前检测MGMT的表达情况,可预测化疗敏感性,制定个体化治疗方案,克服耐药,提高治疗效果。  相似文献   

16.

Background:

The combination of temozolomide (TMZ) and irinotecan is a regimen used in neuroblastoma patients with recurrent disease. O6-methylguanine-DNA methyltransferase (MGMT) may have a function in resistance to TMZ. Using neuroblastoma pre-clinical models, we determined whether the inhibition of MGMT by O6-benzylguanine (O6-BG) could enhance the anti-tumour activity of TMZ and irinotecan.

Methods:

The cytotoxicity of TMZ and irinotecan, either alone or in combination, was measured in five neuroblastoma cell lines in the presence or absence of O6-BG with a fluorescence-based cell viability assay (DIMSCAN). Anti-tumour activity was measured in three neuroblastoma xenograft models.

Results:

MGMT mRNA and protein were expressed in 9 out of 10 examined cell lines. Pretreatment of cells with 25 μ O6-BG decreased MGMT protein expression and enhanced The TMZ cytotoxicity by up to 0.3–1.4 logs in four out of five tested cell lines. TMZ (25 mg kg−1 per day for 5 days every 3 weeks for four cycles) did not significantly improve mice survival, whereas the same schedule of irinotecan (7.5 mg kg−1 per day) significantly improved survival (P<0.0001) in all three xenograft models. Combining O6-BG and/or TMZ with irinotecan further enhanced survival.

Conclusion:

Our in vitro and in vivo findings suggest that irinotecan drives the activity of irinotecan and TMZ in recurrent neuroblastoma. Inhibitors of MGMT warrant further investigation for enhancing the activity of regimens that include TMZ.  相似文献   

17.

Background

Temozolomide (TMZ) is important chemotherapy for glioblastoma multiforme (GBM), but the optimal dosing schedule is unclear.

Methods

The efficacies of different clinically relevant dosing regimens were compared in a panel of 7 primary GBM xenografts in an intracranial therapy evaluation model.

Results

Protracted TMZ therapy (TMZ daily M–F, 3 wk every 4) provided superior survival to a placebo-treated group in 1 of 4 O6-DNA methylguanine-methyltransferase (MGMT) promoter hypermethylated lines (GBM12) and none of the 3 MGMT unmethylated lines, while standard therapy (TMZ daily M–F, 1 wk every 4) provided superior survival to the placebo-treated group in 2 of 3 MGMT unmethylated lines (GBM14 and GBM43) and none of the methylated lines. In comparing GBM12, GBM14, and GBM43 intracranial specimens, both GBM14 and GBM43 mice treated with protracted TMZ had a significant elevation in MGMT levels compared with placebo. Similarly, high MGMT was found in a second model of acquired TMZ resistance in GBM14 flank xenografts, and resistance was reversed in vitro by treatment with the MGMT inhibitor O6-benzylguanine, demonstrating a mechanistic link between MGMT overexpression and TMZ resistance in this line. Additionally, in an analysis of gene expression data, comparison of parental and TMZ-resistant GBM14 demonstrated enrichment of functional ontologies for cell cycle control within the S, G2, and M phases of the cell cycle and DNA damage checkpoints.

Conclusions

Across the 7 tumor models studied, there was no consistent difference between protracted and standard TMZ regimens. The efficacy of protracted TMZ regimens may be limited in a subset of MGMT unmethylated tumors by induction of MGMT expression.  相似文献   

18.
DNA mismatch repair (MMR) deficiency and increased O6-methylguanine-DNA methyltransferase (MGMT) activity have been related to resistance to O6-guanine methylating agents in tumour cell lines. However, the clinical relevance of MMR and MGMT as drug resistance factors is still unclear. In a retrospective study, the expression levels of the MMR proteins, hMSH2, hMSH6 and hMLH1, were analysed by immunohistochemistry in melanoma metastases from 64 patients, who had received dacarbazine (DTIC) based chemotherapy. More than half of the melanoma patients had tumours with no nuclear staining for either hMSH2 or hMSH6 or both, while all tumours showed positive nuclear staining for hMLH1. The response rates were similar in patients with hMSH2 and/or hMSH6 positive tumours to these in patients with negative tumours. By combination of MMR with previously obtained MGMT data, only 2 of 12 responders had tumours with low MGMT and positive MMR expression. Still all except 3 of the non-responders were identified by having either high MGMT expression or absent staining for hMSH2 or hMSH6 or both in their tumours. However, there was no significant correlation of MMR expression alone or combined with MGMT levels with clinical response to DTIC-based chemotherapy in metastatic melanoma.  相似文献   

19.
目的 探讨姜黄素对高水平O6-甲基鸟嘌呤DNA甲基转移酶(MGMT)的调控作用及其对恶性胶质瘤化疗敏感性的影响.方法 通过实时荧光定量PCR(qRT-PCR)测定姜黄素、替莫唑胺单药和二者联合对MGMT表达阳性恶性胶质瘤C6及U87细胞株、复发或耐药恶性胶质瘤原代细胞MGMT表达水平的影响.CCK-8检测细胞增殖变化,流式细胞检测细胞凋亡的变化.结果 与姜黄素(C6:0.64 ±0.03;U87:0.63±0.06;原代细胞:0.51±0.07)、替莫唑胺(C6:0.53 ±0.06;U87:0.51±0.04;原代细胞:0.79±0.03)单药比较,姜黄素、替莫唑胺二者联合(C6:0.14±0.01;U87:0.12±0.03;原代细胞:0.29±0.02)能明显降低C6及U87细胞株、复发或耐药恶性胶质瘤原代细胞株中MGMT的表达,组间差异具有统计学意义(C6:F=23.675,P=0.006;U87:F=29.021,P=0.001;原代细胞株:F=25.534,P=0.001).与姜黄素、替莫唑胺单药比较,二者联合均能抑制细胞的增殖,半数抑制浓度(IC50)值降低,差异具有统计学意义(C6:F=6.731,P=0.012;U87:F=17.321,P=0.008;原代细胞株:F=18.857,P=0.007).姜黄素和替莫唑胺二者联合作用后细胞的凋亡率较单药作用后明显增加,组间差异具有统计学意义(C6:F=25.871,P=0.001;U87:F=6.847,P=0.009;原代细胞株:F =36.641,P=0.000).结论 姜黄素与替莫唑胺能协同降低MGMT的表达,增强恶性胶质瘤对替莫唑胺的化疗敏感性,为替莫唑胺耐药的恶性胶质瘤的治疗提供新的思路和方法.  相似文献   

20.
To assess the possible role of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) in resistance of brain neoplasms to the clinically important chloroethylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), we quantitated MGMT activity, BCNU survival, and the effect of ablating MGMT activity on the sensitivity of 14 human medulloblastoma- and glioma-derived cell lines. BCNU resistance, measured as 10% survival dose (LD10), differed eightfold among the lines. Elimination of measurable MGMT activity with the substrate analogue inhibitor O6-benzylguanine (O6-BG) revealed a variable but limited contribution of MGMT to survival. In no case did O6-BG reduce LD10 by more than 3.4-fold. In contrast, 06-BG reduced the LD10 for N-methyl-N′-nitro-N-nitrosoguanidine up to 31-fold in the same cell lines (Bobola MS, Blank A, Berger MS, Silber JR, Mol Carcinog 13:70–80, 1995). Variability in BCNU survival, manifested as a sevenfold range of LD10, persists after measurable MGMT was eliminated, indicating that another mechanism or mechanisms is operating to limit cytotoxicity. Cells alkylated while suspended in growth medium are more resistant to BCNU and display less dependence on MGMT than cells treated while proliferating on a plastic substratum. When alkylated in suspension, most of the lines are either unresponsive to O6-BG or contain a subpopulation that did not respond to O6-BG. Our results demonstrate that BCNU resistance is multifactorial and that MGMT makes a modest contribution to resistance in our lines. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号