首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionIn KRAS-mutant NSCLC, co-occurring alterations in LKB1 confer a negative prognosis compared with other mutations such as TP53. LKB1 is a tumor suppressor that coordinates several signaling pathways in response to energetic stress. Our recent work on pharmacologic and genetic inhibition of histone deacetylase 6 (HDAC6) revealed the impaired activity of numerous enzymes involved in glycolysis. On the basis of these previous findings, we explored the therapeutic window for HDAC6 inhibition in metabolically-active KRAS-mutant lung tumors.MethodsUsing cell lines derived from mouse autochthonous tumors bearing the KRAS/LKB1 (KL) and KRAS/TP53 mutant genotypes to control for confounding germline and somatic mutations in human models, we characterize the metabolic phenotypes at baseline and in response to HDAC6 inhibition. The impact of HDAC6 inhibition was measured on cancer cell growth in vitro and on tumor growth in vivo.ResultsSurprisingly, KL-mutant cells revealed reduced levels of redox-sensitive cofactors at baseline. This is associated with increased sensitivity to pharmacologic HDAC6 inhibition with ACY-1215 and blunted ability to increase compensatory metabolism and buffer oxidative stress. Seeking synergistic metabolic combination treatments, we found enhanced cell killing and antitumor efficacy with glutaminase inhibition in KL lung cancer models in vitro and in vivo.ConclusionsExploring the differential metabolism of KL and KRAS/TP53-mutant NSCLC, we identified decreased metabolic reserve in KL-mutant tumors. HDAC6 inhibition exploited a therapeutic window in KL NSCLC on the basis of a diminished ability to compensate for impaired glycolysis, nominating a novel strategy for the treatment of KRAS-mutant NSCLC with co-occurring LKB1 mutations.  相似文献   

2.
In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.  相似文献   

3.
《Annals of oncology》2013,24(9):2371-2376
BackgroundMeta-analyses were conducted to characterize patterns of mutation incidence in non small-cell lung cancer (NSCLC).DesignNine genes with the most complete published mutation coincidence data were evaluated. One meta-analysis generated a ‘mutMap’ to visually represent mutation coincidence by ethnicity (Western/Asian) and histology (adenocarcinoma [ADC] or squamous cell carcinoma). Another meta-analysis evaluated incidence of individual mutations. Extended analyses explored incidence of EGFR and KRAS mutations by ethnicity, histology, and smoking status.ResultsGenes evaluated were TP53, EGFR, KRAS, LKB1, EML4-ALK, PTEN, BRAF, PIK3CA, and ErbB2. The mutMap highlighted mutation coincidences occurring in ≥5% of patients, including TP53 with KRAS or EGFR mutations in patients with ADC, and TP53 with LKB1 mutation in Western patients. TP53 was the most frequently mutated gene overall. Frequencies of TP53, EGFR, KRAS, LKB1, PTEN, and BRAF mutations were influenced by histology and/or ethnicity. Although EGFR mutations were most frequent in patients with ADC and never/light smokers from Asia, and KRAS mutations were most frequent in patients with ADC and ever/heavy smokers from Western countries, both were detected outside these subgroups.ConclusionsPotential molecular pathology segments of NSCLC were identified. Further studies of mutations in NSCLC are warranted to facilitate more specific diagnoses and guide treatment.  相似文献   

4.

Introduction

We hypothesized that activating KRAS mutations and inactivation of the liver kinase B1 (LKB1) oncosuppressor can cooperate to sustain NSCLC aggressiveness. We also hypothesized that the growth advantage of KRAS/LKB1 co-mutated tumors could be balanced by higher sensitivity to metabolic stress conditions, such as metformin treatment, thus revealing new strategies to target this aggressive NSCLC subtype.

Methods

We retrospectively determined the frequency and prognostic value of KRAS/LKB1 co-mutations in tissue specimens from NSCLC patients enrolled in the TAILOR trial. We generated stable LKB1 knockdown and LKB1-overexpressing isogenic H1299 and A549 cell variants, respectively, to test the in vitro efficacy of metformin. We also investigated the effect of metformin on cisplatin-resistant CD133+ cells in NSCLC patient-derived xenografts.

Results

We found a trend towards worse overall survival in patients with KRAS/LKB1 co-mutated tumors as compared to KRAS-mutated ones (hazard ratio: 2.02, 95% confidence interval: 0.94–4.35, p = 0.072). In preclinical experiments, metformin produced pro-apoptotic effects and enhanced cisplatin anticancer activity specifically in KRAS/LKB1 co-mutated patient-derived xenografts. Moreover, metformin prevented the development of acquired tumor resistance to 5 consecutive cycles of cisplatin treatment (75% response rate with metformin-cisplatin as compared to 0% response rate with cisplatin), while reducing CD133+ cells.

Conclusions

LKB1 mutations, especially when combined with KRAS mutations, may define a specific and more aggressive NSCLC subtype. Metformin synergizes with cisplatin against KRAS/LKB1 co-mutated tumors, and may prevent or delay the onset of resistance to cisplatin by targeting CD133+ cancer stem cells. This study lays the foundations for combining metformin with standard platinum-based chemotherapy in the treatment of KRAS/LKB1 co-mutated NSCLC.  相似文献   

5.
KRAS mutations are the most common mutations in non-small cell lung cancer (NSCLC) with adenocarcinoma histology. KRAS mutations result in the activation of the RAF–MEK–ERK pathway, and agents that target RAF–MEK–ERK pathways have been investigated in KRAS mutant NSCLC. The two agents furthest in development are selumetinib and trametinib. Trametinib has greater binding for the MEK1/2 allosteric site, and generally has superior pharmacokinetics. A randomized phase II trial of docetaxel with and without selumetinib revealed that the combination resulted numerically superior overall survival, and a statistically significant improvement in progression-free survival and objective response rate. However, a concerning rate of hospital admission, grade 3 or 4 neutropenia, and febrile neutropenia was observed with the combination. Trials have investigated MEK inhibitors as single agents and in combination with erlotinib, and the data do not support the further development. The activity of MEK inhibitors appears to be similar in patients with KRAS mutant and wild-type NSCLC suggesting KRAS mutation status is not a reliable biomarker for efficacy. It is possible that mutations of genes in addition to KRAS mutations impact the activity of MEK inhibitors, or specific subsets of KRAS mutations may be resistant or susceptible to MEK inhibition. Other potential explanations are gene amplifications, alternative RNA splicing of genes resulting in activation of their protein products, and deregulation of noncoding RNAs and consequent altered protein expression.  相似文献   

6.
《Annals of oncology》2015,26(5):894-901
KRAS mutations in non-small-cell lung cancer (NSCLC) are associated with poor prognosis. Trametinib, a selective inhibitor of MEK1/MEK2, demonstrated similar efficacy to docetaxel in patients with advanced KRAS-mutant NSCLC, with median progression-free survival of 12 and 11 weeks, respectively. With moderate activity as a monotherapy, trametinib-based combination regimens may show improve efficacy.BackgroundKRAS mutations are detected in 25% of non-small-cell lung cancer (NSCLC) and no targeted therapies are approved for this subset population. Trametinib, a selective allosteric inhibitor of MEK1/MEK2, demonstrated preclinical and clinical activity in KRAS-mutant NSCLC. We report a phase II trial comparing trametinib with docetaxel in patients with advanced KRAS-mutant NSCLC.Patients and methodsEligible patients with histologically confirmed KRAS-mutant NSCLC previously treated with one prior platinum-based chemotherapy were randomly assigned in a ratio of 2 : 1 to trametinib (2 mg orally once daily) or docetaxel (75 mg/m2 i.v. every 3 weeks). Crossover to the other arm after disease progression was allowed. Primary end point was progression-free survival (PFS). The study was prematurely terminated after the interim analysis of 92 PFS events, which showed the comparison of trametinib versus docetaxel for PFS crossed the futility boundary.ResultsOne hundred and twenty-nine patients with KRAS-mutant NSCLC were randomized; of which, 86 patients received trametinib and 43 received docetaxel. Median PFS was 12 weeks in the trametinib arm and 11 weeks in the docetaxel arm (hazard ratio [HR] 1.14; 95% CI 0.75–1.75; P = 0.5197). Median overall survival, while the data are immature, was 8 months in the trametinib arm and was not reached in the docetaxel arm (HR 0.97; 95% CI 0.52–1.83; P = 0.934). There were 10 (12%) partial responses (PRs) in the trametinib arm and 5 (12%) PRs in the docetaxel arm (P = 1.0000). The most frequent adverse events (AEs) in ≥20% of trametinib patients were rash, diarrhea, nausea, vomiting, and fatigue. The most frequent grade 3 treatment-related AEs in the trametinib arm were hypertension, rash, diarrhea, and asthenia.ConclusionTrametinib showed similar PFS and a response rate as docetaxel in patients with previously treated KRAS-mutant-positive NSCLC.Clinicaltrials.gov registration numberNCT01362296.  相似文献   

7.

Background

Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC.

Materials and methods

Patients treated at University of North Carolina Hospital from 1990 to 2009 with NSCLC provided frozen, surgically extracted tumors for analysis. GE was measured using Agilent 44,000 custom-designed arrays, CN was assessed by Affymetrix GeneChip Human Mapping 250K Sty Array or the Genome-Wide Human SNP Array 6.0 and gene mutation was detected using ABI sequencing. Integrated analysis was conducted to assess the relationship between these genetic markers and brain metastasis. A model was proposed for brain metastasis prediction using these genetic measurements.

Results

17 of the 174 patients developed brain metastasis. LKB1 wild type tumors had significantly higher LKB1 CN (p < 0.001) and GE (p = 0.002) than the LKB1 mutant group. KRAS wild type tumors had significantly lower KRAS GE (p < 0.001) and lower CN, although the latter failed to be significant (p = 0.295). Lower LKB1 CN (p = 0.039) and KRAS mutation (p = 0.007) were significantly associated with more brain metastasis. The predictive model based on nodal (N) stage, patient age, LKB1 CN and KRAS mutation had a good prediction accuracy, with area under the ROC curve of 0.832 (p < 0.001).

Conclusion

LKB1 CN in combination with KRAS mutation predicted brain metastasis in NSCLC.  相似文献   

8.
IntroductionPreclinical models recently unveiled the vulnerability of LKB1/KRAS comutated NSCLC to metabolic stress-based treatments. Because miR-17 is a potential epigenetic regulator of LKB1, we hypothesized that wild-type LKB1 (LKB1WT) NSCLC with high miR-17 expression may be sensitive to an energetic stress condition, and eligible for metabolic frailties-based therapeutic intervention.MethodsWe took advantage of NSCLC cell lines with different combinations of KRAS mutation and LKB1 deletion and of patient-derived xenografts (PDXs) with high (LKB1WT/miR-17 high) or low (LKB1WT/miR-17 low) miR-17 expression. We evaluated LKB1 pathway impairment and apoptotic response to metformin. We retrospectively evaluated LKB1 and miR-17 expression levels in tissue specimens of patients with NSCLC and PDXs. In addition, a lung cancer series from The Cancer Genome Atlas data set was analyzed for miR-17 expression and potential correlation with clinical features.ResultsWe identified miR-17 as an epigenetic regulator of LKB1 in NSCLC and confirmed targeting of miR-17 to LKB1 3′ untranslated region by luciferase reporter assay. We found that miR-17 overexpression functionally impairs the LKB1/AMPK pathway. Metformin treatment prompted apoptosis on miR-17 overexpression only in LKB1WT cell lines, and in LKB1WT/miR-17 high PDXs. A retrospective analysis in patients with NSCLC revealed an inverse correlation between miR-17 and LKB1 expression and highlighted a prognostic role of miR-17 expression in LKB1WT patients, which was further confirmed by The Cancer Genome Atlas data analysis.ConclusionsWe identified miR-17 as a mediator of LKB1 expression in NSCLC tumors. This study proposes a miR-17 expression score potentially exploitable to discriminate LKB1WT patients with NSCLC with impaired LKB1 expression and poor outcome, eligible for energy-stress-based treatments.  相似文献   

9.
Five-year survival rates for non-small cell lung cancer (NSCLC) have seen minimal improvement despite aggressive therapy with standard chemotherapeutic agents, indicating a need for new treatment approaches. Studies show inactivating mutations in the LKB1 tumor suppressor are common in NSCLC. Genetic and mechanistic analysis has defined LKB1-deficient NSCLC tumors as a phenotypically distinct subpopulation of NSCLC with potential avenues for therapeutic gain. In expanding on previous work indicating hypersensitivity of LKB1-deficient NSCLC cells to 2-deoxy-D-glucose (2DG), we find that 2DG has in vivo efficacy in LKB1-deficient NSCLC using transgenic murine models of NSCLC. Deciphering of the molecular mechanisms behind this phenotype reveals that loss of LKB1 in NSCLC cells imparts increased sensitivity to pharmacological compounds that aggravate ER stress. In comparison to NSCLC cells with functional LKB1, treatment of NSCLC cells lacking LKB1 with the ER stress activators (ERSA), tunicamycin, brefeldin A or 2DG, resulted in aggravation of ER stress, increased cytotoxicity, and evidence of ER stress-mediated cell death. Based upon these findings, we suggest that ERSAs represent a potential treatment avenue for NSCLC patients whose tumors are deficient in LKB1.  相似文献   

10.
IntroductionSerine/threonine kinase 11 (LKB1/STK11) is one of the most mutated genes in NSCLC accounting for approximately one-third of cases and its activity is impaired in approximately half of KRAS-mutated NSCLC. At present, these patients cannot benefit from any specific therapy.MethodsThrough CRISPR/Cas9 technology, we systematically deleted LKB1 in both wild-type (WT) and KRAS-mutated human NSCLC cells. By using these isogenic systems together with genetically engineered mouse models we investigated the cell response to ERK inhibitors both in vitro and in vivo.ResultsIn all the systems used here, the loss of LKB1 creates vulnerability and renders these cells particularly sensitive to ERK inhibitors both in vitro and in vivo. The same cells expressing a WT LKB1 poorly respond to these drugs. At the molecular level, in the absence of LKB1, ERK inhibitors induced a marked inhibition of p90 ribosomal S6 kinase activation, which in turn abolished S6 protein activation, promoting the cytotoxic effect.ConclusionsThis work shows that ERK inhibitors are effective in LKB1 and LKB1/KRAS-mutated tumors, thus offering a therapeutic strategy for this prognostically unfavorable subgroup of patients. Because ERK inhibitors are already in clinical development, our findings could be easily translatable to the clinic. Importantly, the lack of effect in cells expressing WT LKB1, predicts that treatment of LKB1-mutated tumors with ERK inhibitors should have a favorable toxicity profile.  相似文献   

11.
Treatment of advanced stage anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) with ALK tyrosine kinase inhibitors (TKIs) has been shown to be superior to standard platinum-based chemotherapy. However, secondary progress of disease frequently occurs under ALK inhibitor treatment. The clinical impact of re-biopsies for treatment decisions beyond secondary progress is, however, still under debate. Here, we report on two novel subsequent polyclonal on- and off-target resistance mutations in a patient with ALK-fused NSCLC under ALK inhibitor treatment. A 63-year-old male patient with an advanced stage EML4-ALK fused pulmonary adenocarcinoma was initially successfully treated with the second-generation ALK inhibitor alectinib and upon progressions subsequently with brigatinib, lorlatinib and chemoimmunotherapy (CIT). Progress to alectinib was associated with a so far undescribed ALK mutation (p.A1200_G1201delinsW) which was, however, tractable by brigatinib. An off-target KRAS-mutation (p.Q61K) occurred in association with subsequent progression under second-line TKI treatment. Third-line lorlatinib showed limited efficacy but chemoimmunotherapy resulted in disappearance of the KRAS mutant clone and clinical tumor control for another eight months. In conclusion, we suggest molecular profiling of progressive tumor disease also for ALK-positive NSCLC to personalize treatment in a subgroup of ALK-positive patients.  相似文献   

12.
Activating mutations of the KRAS gene are one of the major genomic alterations associated with tumorigenesis of non-small cell lung cancer (NSCLC). Thus far, treatment of KRAS-mutant NSCLC remains an unmet medical need. We determined the in vivo treatment responses of 13 KRAS mutant and 14 KRAS wild type NSCLC patient-derived xenografts (PDXs) to agents that target known NSCLC vulnerabilities: the MEK inhibitor trametinib, the MDM2 inhibitor KRT-232, and the BCL-XL/BCL-2 inhibitor navitoclax. The results showed that the tumor regression rate after single agent therapy with KRT-232, trametinib and navitoclax was 11%, 10% and 0%, respectively. Combination therapies of trametinib plus KRT-232 and trametinib plus navitoclax led to improved partial response rates over single-agent activity in a subset of PDX models. Tumor regression was observed in 23% and 50% of PDXs after treatment with trametinib plus KRT-232 and trametinib plus navitoclax, respectively. The disease control rates in KRAS-mutant PDXs tested were 90%-100% after treatment with trametinib plus KRT-232 or plus navitoclax. A correlation analysis of treatment responses and genomic and proteomic biomarkers revealed that sensitivity to KRT-232 was significantly associated with TP53 wild-type or STK11 mutant genotypes (P<0.05). The levels of several proteins, including GSK3b, Nrf2, LKB1/pS334, and SMYD3, were significantly associated with sensitivity to trametinib plus navitoclax. Thus, the combination of trametinib plus KRT-232 or navitoclax resulted in improved efficacy compared with the agents alone in a subgroup of NSCLC PDX model with KRAS mutations. Expanded clinical trials of these targeted drug combinations in NSCLC are warranted.  相似文献   

13.
14.
Leptomeningeal carcinomatosis (LMC) occurs frequently in non–small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations and is associated with acquired resistance to EGFR tyrosine kinase inhibitors (EGFR‐TKIs). However, the mechanism by which LMC acquires resistance to osimertinib, a third‐generation EGFR‐TKI, is unclear. In this study, we elucidated the resistance mechanism and searched for a novel therapeutic strategy. We induced osimertinib resistance in a mouse model of LMC using an EGFR‐mutant NSCLC cell line (PC9) via continuous oral osimertinib treatment and administration of established resistant cells and examined the resistance mechanism using next‐generation sequencing. We detected the Kirsten rat sarcoma (KRAS)‐G12V mutation in resistant cells, which retained the EGFR exon 19 deletion. Experiments involving KRAS knockdown in resistant cells and KRAS‐G12V overexpression in parental cells revealed the involvement of KRAS‐G12V in osimertinib resistance. Cotreatment with trametinib (a MEK inhibitor) and osimertinib resensitized the cells to osimertinib. Furthermore, in the mouse model of LMC with resistant cells, combined osimertinib and trametinib treatment successfully controlled LMC progression. These findings suggest a potential novel therapy against KRAS‐G12V–harboring osimertinib‐resistant LMC in EGFR‐mutant NSCLC.  相似文献   

15.
Loss of function of the tumor suppressor LKB1 occurs in 30% to 50% of lung adenocarcinomas. Because LKB1 activates AMP-activated protein kinase (AMPK), which can negatively regulate mTOR, AMPK activation might be desirable for cancer therapy. However, no known compounds activate AMPK independently of LKB1 in vivo, and the usefulness of activating AMPK in LKB1-mutant cancers is unknown. Here, we show that lipid-based Akt inhibitors, phosphatidylinositol ether lipid analogues (PIA), activate AMPK independently of LKB1. PIAs activated AMPK in LKB1-mutant non-small cell lung cancer (NSCLC) cell lines with similar concentration dependence as that required to inhibit Akt. However, AMPK activation was independent of Akt inhibition. AMPK activation was a major mechanism of mTOR inhibition. To assess whether another kinase capable of activating AMPK, CaMKK beta, contributed to PIA-induced AMPK activation, we used an inhibitor of CaMKK, STO-609. STO-609 inhibited PIA-induced AMPK activation in LKB1-mutant NSCLC cells, and delayed AMPK activation in wild-type LKB1 NSCLC cells. In addition, AMPK activation was not observed in NSCLC cells with mutant CaMKK beta, suggesting that CaMKK beta contributes to PIA-induced AMPK activation in cells. AMPK activation promoted PIA-induced cytotoxicity because PIAs were less cytotoxic in AMPKalpha-/- murine embryonic fibroblasts or LKB1-mutant NSCLC cells transfected with mutant AMPK. This mechanism was also relevant in vivo. Treatment of LKB1-mutant NSCLC xenografts with PIA decreased tumor volume by approximately 50% and activated AMPK. These studies show that PIAs recapitulate the activity of two tumor suppressors (PTEN and LKB1) that converge on mTOR. Moreover, they suggest that PIAs might have utility in the treatment of LKB1-mutant lung adenocarcinomas.  相似文献   

16.
17.

Introduction

NSCLC is the leading cause of cancer mortality. Recent retrospective clinical analyses suggest that blocking the receptor activator of NF-κB (RANK) signaling pathway inhibits the growth of NSCLC and might represent a new treatment strategy.

Methods

Receptor activator of NF-κB gene (RANK) and receptor activator of NF-κB ligand gene (RANKL) expression in human lung adenocarcinoma was interrogated from publicly available gene expression data sets. Several genetically engineered mouse models were used to evaluate treatment efficacy of RANK-Fc to block RANKL, with primary tumor growth measured longitudinally using microcomputed tomography. A combination of RANKL blockade with cisplatin was tested to mirror an ongoing clinical trial.

Results

In human lung adenocarcinoma data sets, RANKL expression was associated with decreased survival and KRAS mutation, with the highest levels in tumors with co-occurring KRAS and liver kinase B1 gene (LKB1) mutations. In KrasLSL-G12D/WT, KrasLSL-G12D/WT; Lkb1Flox/Flox and KrasLSL-G12D/WT; p53Flox/Flox mouse models of lung adenocarcinoma, we monitored an impaired progression of tumors upon RANKL blockade. Despite elevated expression of RANKL and RANK in immune cells, treatment response was not associated with major changes in the tumor immune microenvironment. Combined RANK-Fc with cisplatin revealed increased efficacy compared with that of single agents in p53- but not in Lkb1-deficient tumors.

Conclusions

RANKL blocking agents impair the growth of primary lung tumors in several mouse models of lung adenocarcinoma and suggest that patients with KRAS-mutant lung tumors will benefit from such treatments.  相似文献   

18.
IntroductionKRAS mutations have been recognized as undruggable for many years. Recently, novel KRAS G12C inhibitors, such as sotorasib and adagrasib, are being developed in clinical trials and have revealed promising results in metastatic NSCLC. Nevertheless, it is strongly anticipated that acquired resistance will limit their clinical use. In this study, we developed in vitro models of the KRAS G12C cancer, derived from resistant clones against sotorasib and adagrasib, and searched for secondary KRAS mutations as on-target resistance mechanisms to develop possible strategies to overcome such resistance.MethodsWe chronically exposed Ba/F3 cells transduced with KRASG12C to sotorasib or adagrasib in the presence of N-ethyl-N-nitrosourea and searched for secondary KRAS mutations. Strategies to overcome resistance were also investigated.ResultsWe generated 142 Ba/F3 clones resistant to either sotorasib or adagrasib, of which 124 (87%) harbored secondary KRAS mutations. There were 12 different secondary KRAS mutations. Y96D and Y96S were resistant to both inhibitors. A combination of novel SOS1 inhibitor, BI-3406, and trametinib had potent activity against this resistance. Although G13D, R68M, A59S and A59T, which were highly resistant to sotorasib, remained sensitive to adagrasib, Q99L was resistant to adagrasib but sensitive to sotorasib.ConclusionsWe identified many secondary KRAS mutations causing resistance to sotorasib, adagrasib, or both, in vitro. The differential activities of these two inhibitors depending on the secondary mutations suggest sequential use in some cases. In addition, switching to BI-3406 plus trametinib might be a useful strategy to overcome acquired resistance owing to the secondary Y96D and Y96S mutations.  相似文献   

19.
The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP‐activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non‐small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials.  相似文献   

20.
Oncogenic drivers in lung non-small-cell lung cancer (NSCLC) are considered mutually exclusive, but a review of the literature reveals that concomitant EGFR mutations and ALK rearrangement may occur in a subset of NSCLC. We report here a case of pulmonary adenocarcinoma with concomitant EGFR mutation in exon 21 (L858R) and ALK rearrangement in naive and relapsed tumors. Tumor cells seem to harbor both gene alterations and the patient had a long-lasting response both to EGFR inhibitor in second line and ALK inhibitor once tumor progressed. A speculative discussion on molecular mechanisms underlying this uncommon phenomenon and practical points about epidemiologic, clinicopathologic features and therapeutic options in this intriguing subset of double-positive tumor are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号