首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 目的  了解上海地区在校中学生接种甲型H1N1流感疫苗前后的抗体水平;观察甲型H1N1流感疫苗对该人群的免疫保护作用。 方法    应用常规微量血凝抑制试验(micro-hemagglutination inhibition test, HIT)对上海地区在校中学生分3个时间段进行甲型H1N1流感病毒抗体的血清学监测,3个时间段的抗体阳性率比较采用Pearson χ2 检验进行分析。 结果  2009年甲型H1N1流感流行前上海地区在校中学生的血清抗体阳性率仅为1.3%。经过一段时间流行后,血清抗体阳性率升至8.5%。接种甲型H1N1流感疫苗后,血清抗体阳性率升至87.3%。经Pearson χ2 检验分析,3个时间段在校中学生的血清甲型H1N1流感抗体阳性率差异有统计学意义(χ2=243.7,P<0.05)。 结论  在甲型H1N1流感流行前,上海地区在校中学生对其几乎没有免疫力,接种甲型H1N1流感疫苗能为该人群提供较好的免疫保护作用。  相似文献   

2.
Influenza A(H1N1) 2009 is an acute contagious respiratory infection caused by influenza A virus subtype H1N1 appeared in 2009 and responsible for a pandemic. The new virus, different from the avian virus H5N1, is a variant containing genes from several known viruses from porcine, avian and human origin. Appeared originally in the northern hemisphere, the epidemic wave reached early most countries, and up to 24% of the population in metropolitan France. It is characterized by a low mortality estimated at 0.04 to 0.2%, and by a benign, or even asymptomatic presentation. However, more severe clinical expression has been observed in some subgroups, carrying or not risk factors (young, pregnant women). The preexisting immunity in a significant proportion of the population, the remarkable stability of the virus, determination of early antigenic characteristics of the virus, the development and rapid availability of suitable vaccines, the efficacy of antiviral drugs, and health care system contributed to the control the morbidity and mortality of the first pandemic wave. Other virological, clinical and epidemiological investigations, are needed to identify all potential risk factors for severity and determine the role of mutation and the diffusion of pandemic and seasonal viruses, which may alter the virulence and transmissibility of influenza A(H1N1)v 2009.  相似文献   

3.
Plosker GL 《Drugs》2012,72(11):1543-1557
The influenza A subtype H5N1 virus is a likely causative agent for the next human influenza pandemic. Pandemic influenza vaccine production can begin only after a novel pandemic virus emerges. Cell-based vaccine production has advantages over conventional egg-based methods, allowing more rapid large-scale vaccine production. A reliable Vero cell culture system is available for pandemic and prepandemic influenza vaccine production. Prepandemic influenza vaccines are an important component of influenza pandemic preparedness plans, as their targeted use in the pandemic alert period or early in a pandemic is likely to mitigate the consequences of an influenza outbreak. Vepacel? is a prepandemic influenza vaccine (whole virion, Vero cell-derived, inactivated) containing antigen of H5N1 strain A/Vietnam/1203/2004 and is approved for use in the EU. Clinical immunogenicity studies with the vaccine have demonstrated good rates of functional neutralizing antibody responses against the vaccine strain (A/Vietnam/1203/2004), meeting established immunogenicity criteria for seasonal influenza vaccines, and cross-reactivity against H5N1 strains from other clades. In phase I/II and III studies, a heterologous (A/Indonesia/05/2005) booster vaccine administered to healthy adult and elderly volunteers 6-24 months after the two-dose priming vaccine (A/Vietnam/1203/2004) regimen induced good immunogenic responses against both H5N1 strains, demonstrating strong immunological memory. Broadly similar, albeit less robust, responses were observed in two special risk cohorts of immunocompromised and chronically ill patients. In general, adverse events observed in clinical immunogenicity studies with H5N1 vaccine (A/Vietnam/1203/2004) were similar to those reported with non-adjuvanted, inactivated, seasonal influenza vaccines.  相似文献   

4.
The recent outbreaks of the H5N1 and H1N1 pandemic influenza have highlighted the importance of developing fast, effective therapeutic strategies to prevent and/or limit the spread of future influenza outbreaks. Although current vaccines against influenza are generally effective, several limitations, including those associated with the amount of available vaccine, the time to vaccine production and vaccine efficacy, may encumber a mass vaccination strategy and effective targeting against future outbreaks. This feature review discusses the prospects of SynCon-derived DNA vaccines against influenza; such vaccines are expected to be effective at targeting many currently circulating influenza virus strains, as well as potentially targeting strains that may be associated with future outbreaks. Because of advantages associated with safety, time to production and ease of production, as well as the generation of more effective immune responses, influenza DNA vaccines provide a promising potential solution to a global medical concern.  相似文献   

5.
6.
加拿大研究发现,季节性流感疫苗接种增加2009年大流行甲型流感(H1N1)感染的危险性,而澳大利亚研究未能证实这个发现.雪貂实验结果表明,以前的季节性流感感染能防御大流行甲型流感(H1N1),但以前的季节性流感疫苗接种则不能.模型研究显示,流感感染可导致对不同亚型的暂时性免疫.这些观察可以解释加拿大和澳大利亚的不一致发...  相似文献   

7.
The potential impact of an influenza pandemic can be mitigated through the realization of a successful vaccination program. The implementation of antigen stabilization and dose-sparing technologies is an important step in improving availability of vaccines at the time of a pandemic outbreak. We investigated poly[di(carboxylatophenoxy)phosphazene] (PCPP) as a potential stabilizing and immunostimulating agent for H5N1 influenza vaccine. Physicochemical characterization of PCPP-formulated H5N1 influenza vaccine revealed macromolecular complexation in the system, whereas single radial immunodiffusion assay verified antigenicity of the formulation in vitro. PCPP-enhanced formulation displayed a fourfold increase in the half-life at 40°C compared with a nonadjuvanted vaccine. Lethal challenge studies in ferrets demonstrated 100% protection for low-antigen dose PCPP-adjuvanted formulations (1 μg of hemagglutinin) and at least a 10-fold antigen-sparing effect. Therefore, PCPP demonstrated an ability to improve thermal stability of H5N1 influenza vaccine in solutions and provide for a substantial dose-sparing effect in vivo.  相似文献   

8.
BACKGROUND: Preventative vaccination is the most effective way to control epidemic and, perhaps, pandemic influenza viral infections. However, the immunogenicity and efficacy of influenza vaccines against epidemic strains are suboptimal among older adults. The risk of serious complications from influenza viral infection is compounded by co-morbid conditions among older adults. Furthermore, despite annual influenza vaccination campaigns, the vaccination rates in high risk populations range from 60.5 - 79.2% only [1] . In addition, H5N1 avian influenza viruses have the potential to cause a pandemic. However, H5N1 vaccines currently licensed in the US are poorly immunogenic in high doses in the absence of an adjuvant even in healthy adults. OBJECTIVES: In this review, we address the current status of vaccines against epidemic and avian influenza viruses of pandemic potential. METHODS: We have limited the review to the discussion of technologies and strategies that have progressed to human clinical trials and/or licensure for seasonal and pandemic influenza. RESULTS/CONCLUSION: Improving the immunogenicity of vaccines against avian influenza viruses, as well as aggressive programs to vaccinate high risk populations against seasonal and pandemic influenza, are crucial for our public health efforts in minimizing the impact of influenza epidemics or pandemics.  相似文献   

9.
A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p?<?0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.  相似文献   

10.
PURPOSE: A review of the avian influenza A/H5N1 virus, including human cases, viral transmission, clinical features, vaccines and antivirals, surveillance plans, infection control, and emergency response plans, is presented. SUMMARY: The World Health Organization (WHO) considers the avian influenza A/H5N1 virus a public health risk with pandemic potential. The next human influenza pandemic, if caused by the avian influenza A/H5N1 virus, is estimated to have a potential mortality rate of more than a hundred million. Outbreaks in poultry have been associated with human transmission. WHO has documented 258 confirmed human infections with a mortality rate greater than 50%. Bird-to-human transmission of the avian influenza virus is likely by the oral-fecal route. The most effective defense against an influenza pandemic would be a directed vaccine to elicit a specific immune response toward the strain or strains of the influenza virus. However, until there is an influenza pandemic, there is no evidence that vaccines or antivirals used in the treatment or prevention of such an outbreak would decrease morbidity or mortality. Surveillance of the bird and human populations for the highly pathogenic H5N1 is being conducted. Infection-control measures and an emergency response plan are discussed. CONCLUSION: Avian influenza virus A/H5N1 is a public health threat that has the potential to cause serious illness and death in humans. Understanding its pathology, transmission, clinical features, and pharmacologic treatments and preparing for the prevention and management of its outbreak will help avoid its potentially devastating consequences.  相似文献   

11.
The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been considered but is hampered by rapid antigenic drift of the virus. It has, however, been shown that immunization with a given H5N1 strain can prime the immune system for a later booster with a drifted variant. Here, we investigated whether whole inactivated virus (WIV) vaccine can be processed to tablets suitable for sublingual (s.l.) use and whether s.l. vaccine administration can prime the immune system for a later intramuscular (i.m.) boost with a heterologous vaccine. In vitro results demonstrate that freeze-drying and tableting of WIV did not affect the integrity of the viral proteins or the hemagglutinating properties of the viral particles. Immunization experiments revealed that s.l. priming with WIV (prepared from the H5N1 vaccine strain NIBRG-14) 4 weeks prior to i.m. booster immunization with the same virus strongly enhanced hemagglutination-inhibition (HI) titers against NIBRG-14 and the drifted variant NIBRG-23. Moreover, s.l. (and i.m.) immunization with NIBRG-14 also primed for a subsequent heterologous i.m. booster immunization with NIBRG-23 vaccine. In addition to HI serum antibodies, s.l. priming enhanced lung and nose IgA responses, while i.m. priming enhanced lung IgA but not nose IgA levels. Our results identify s.l. vaccination as a user-friendly method to prime for influenza-specific immune responses toward homologous and drifted variants.KEY WORDS: bird flu, H5N1, mucosal vaccine, sublingual vaccine tablet, whole inactivated virus  相似文献   

12.
Lee BY  Wiringa AE 《Human vaccines》2011,7(1):115-119
During the 2009 H1N1 influenza pandemic nearly every decision associated with new vaccine development and dissemination occurred from the Spring of 2009, when the novel virus first emerged, to the Fall of 2009, when the new vaccines started reaching the thighs, arms and noses of vaccinees. In many ways, 2009 served as a crash course on how mathematical and computational modeling can assist all aspects of vaccine decision-making. Modeling influenced pandemic vaccine decision-making, but not to its fullest potential. The 2009 H1N1 pandemic demonstrated that modeling can help answer questions about new vaccine development, distribution, and administration such as (1) is a vaccine needed, (2) what characteristics should the vaccine have, (3) how should the vaccine be distributed, (4) who should receive the vaccine and in what order and (5) when should vaccination be discontinued? There is no need to wait for another pandemic to enhance the role of modeling, as new vaccine candidates for a variety of infectious diseases are emerging every year. Greater communication between decision makers and modelers can expand the use of modeling in vaccine decision-making to the benefit of all vaccine stakeholders and health around the globe.  相似文献   

13.
Background: Preventative vaccination is the most effective way to control epidemic and, perhaps, pandemic influenza viral infections. However, the immunogenicity and efficacy of influenza vaccines against epidemic strains are suboptimal among older adults. The risk of serious complications from influenza viral infection is compounded by co-morbid conditions among older adults. Furthermore, despite annual influenza vaccination campaigns, the vaccination rates in high risk populations range from 60.5 – 79.2% only . In addition, H5N1 avian influenza viruses have the potential to cause a pandemic. However, H5N1 vaccines currently licensed in the US are poorly immunogenic in high doses in the absence of an adjuvant even in healthy adults. Objectives: In this review, we address the current status of vaccines against epidemic and avian influenza viruses of pandemic potential. Methods: We have limited the review to the discussion of technologies and strategies that have progressed to human clinical trials and/or licensure for seasonal and pandemic influenza. Results/conclusion: Improving the immunogenicity of vaccines against avian influenza viruses, as well as aggressive programs to vaccinate high risk populations against seasonal and pandemic influenza, are crucial for our public health efforts in minimizing the impact of influenza epidemics or pandemics.  相似文献   

14.
The recent H1N1 influenza pandemic has highlighted the potential for viral infections to cause severe disease in mothers disproportionate to the general population and have deleterious effects on the fetus. Vaccines have been used in pregnant women for over 200 years. Current guidelines recommend vaccination with only inactivated virus due to potential risk to mother and fetus with live vaccine. The exception is during times of pandemic or biological weapons attack, when the risk of life-threatening disease outweighs the risk of vaccination. A paucity of data is available regarding actual risk and mechanisms of live viral vaccine transfer from mother to fetus. Pregnancy-induced changes to the maternal immune system, effects of maternal infection on neonatal immunity, and the role of the placenta in transmission of infection and passive immunity to the fetus are incompletely understood. The aim of this paper is to review available data pertaining to newer vaccines such as the pandemic H1N1 and HPV vaccines in pregnancy, the role of Fc receptors in active transport of immunoglobulin across the placenta, and cytokine activity during maternal infection and after vaccination. We will also discuss potential areas for future research.  相似文献   

15.
Influenza viruses of the H5N1 subtype cause an ever-increasing number of bird-to-human transmissions and a pandemic outbreak caused by these viruses is imminent. Therefore, the availability of safe and effective vaccines is highly desirable and their development considered a priority. However, using production and use of seasonal influenza vaccine as template for the production of pandemic H5N1 vaccines did not yield effective vaccines. High antigen doses were required to induce appreciable antibody responses. In addition, limited production capacity and long production times are other disadvantages of conventional influenza vaccine preparations. Here, we review recent developments that will contribute to a more rapid availability of sufficient doses of highly efficacious and safe pandemic influenza vaccines. The new developments include the establishment of novel methods to prepare vaccine strains, novel production technologies and the use of novel adjuvants and alternative vaccine formulations.  相似文献   

16.
[目的]通过系统监测调查,及时掌握我县甲型H1N1流感的疫情动态和流行规律,分析其流行因素,为我县完善甲型H1N1流感的防控工作提供科学依据.[方法]在清新县中部、南部、北部地区选择6个镇作为监测点,抽取普通人群静脉血,用酶联免疫试验检测甲型H1N1 IgG抗体进行血清学调查,同时以面对面问卷方式进行流行病学调查.[结果]共调查1325人,甲型H1N1流感抗体阳性190人,阳性率为14.34%;我县甲型H1N1流感病毒感染以轻症患者和隐性感染者为主;生活聚集性人群甲型H1N1IgG抗体高于非聚集人群(P<0.05),甲型H1N1流感疫苗接种率为2.49%,免疫效果为57.58%;感冒患者就诊率为70.66%;甲型H1N1确诊0例.[结论]疫苗接种率及免疫效果、医疗诊断的准确率、生活聚集人群的易感性、以轻症感染和隐性感染为主的感染状况是影响我县甲型H1N1流感流行的主要因素,应加强人群甲型H1N1流感疫苗的接种,加强对临床医生甲型H1N1流感知识的培训,幼托机构、学校等聚集性场所仍然是我县甲型H1N1流感防控的重点场所.  相似文献   

17.
Epidemics of influenza occur annually and account for more morbidity in the developed world than all other respiratory diseases combined. On average, 36,000 Americans die from influenza or its complications each year. Pandemics occur when influenza viruses undergo either antigenic drift or antigenic shift that results in a new viral strain that infects humans, when they are capable of sustained transmission from person-to-person, and when they are introduced in populations with little or no preexisting immunity. The influenza pandemic of 1918 caused an estimated 20-40 million deaths worldwide. An avian influenza A (H5N1) virus, currently circulating in Asia, has pandemic potential. However, no evidence currently exists that a pandemic is occurring. Pharmacists are uniquely positioned to initiate nearterm practice changes that may positively impact both seasonal and potential pandemic morbidity and mortality. Pharmacists must be immunization advocates and provide pharmaceutical care that includes evaluation of immunization status. Increasing immunization to prevent invasive pneumococcal disease, as well as seasonal influenza immunization, is encouraged. A pandemic vaccine represents the most effective strategy to mitigate the effects of a pandemic. Antiviral agents represent a treatment bridge until a pandemic-specific vaccine is available. The neuraminidase inhibitors oseltamivir and zanamivir are active against H5N1, although oseltamivir resistance has been reported. Advances in vaccine research, development, and production through the use of reverse-genetics systems represent the most effective technology to rapidly produce a pandemic influenza vaccine.  相似文献   

18.
Wu Q  Xiao S  Fan H  Li Y  Xu J  Li Z  Lu W  Su X  Zou W  Jin M  Chen H  Fang L 《Antiviral research》2011,92(3):493-496
The development of novel H5N1 influenza vaccines to elicit a broad immune response is a priority in veterinary and human public health. In this report, a baculovirus vector was used to construct bivalent recombinant baculovirus vaccine encoding H5N1 influenza virus hemagglutinin proteins (BV-HAs) from clade 2.3.4 and clade 9 influenza viruses. Mice immunized with 5 × 107 IFU BV-HAs developed significantly high levels of H5-specific neutralizing antibodies and cellular immunity that conferred 100% protection against infection with H5N1 influenza viruses. This study suggests that baculovirus-delivered multi-hemagglutinin proteins might serve as a candidate vaccine for the prevention of pre-pandemic and pandemic H5N1 influenza viruses.  相似文献   

19.
Shi J  Wen Z  Guo J  Zhang Y  Deng G  Shu Y  Wang D  Jiang Y  Kawaoka Y  Bu Z  Chen H 《Antiviral research》2012,93(3):346-353
Vaccination is a key strategy for preventing influenza virus infections. Here, we generated a reassortant virus (SC/AAca) containing the hemagglutinin and neuraminidase genes from a 2009 pandemic influenza virus A/Sichuan/1/2009 (H1N1) (SC/09) and six internal genes from the cold-adapted virus A/Ann Arbor/6/60 (H2N2) (AAca). The SC/AAca reassortant induced a sound humoral immune response and complete protection against homologous SC/09 virus challenge in mice after intranasal administration of an at least 10(6) 50% egg infectious dose (EID(50)) of SC/AAca. SC/AAca inoculation also induced significant CD4+ and CD8+ T cell responses and provided solid protection against heterologous H1N1 and H5N1 virus challenge. Our results suggest that this 2009 H1N1 live vaccine will provide protection against both 2009 pandemic and seasonal H1N1 virus infection and might reduce the severity of H5N1 virus infection in humans. The induction of cross-reactive virus-specific T cell responses may be an effective approach to develop universal influenza vaccines.  相似文献   

20.
Preparing for a possible pandemic: influenza A/H5N1 vaccine development   总被引:1,自引:0,他引:1  
The ongoing epizootic of highly pathogenic influenza A/H5N1 viruses has ignited global efforts to develop human vaccines against these strains. Clinical trials of subunit H5 vaccines (recombinant hemagglutinin, subvirion, and purified surface antigen preparations) suggest that the high dosages of hemagglutinin are necessary to stimulate immune responses. Exciting results obtained using adjuvants (MF59 and others) and whole virus preparations point the way toward future vaccine development efforts. Other approaches (live attenuated vaccines, cell culture grown virus, DNA constructs, and conserved epitopes) are also being explored. Whether or not a pandemic spread of the A/H5N1 virus occurs, lessons learned as a result of these activities will better prepare us for future pandemics, as well as for interpandemic influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号