首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like standard tissue culture plates, tissue engineering scaffolds can be chemically treated to couple proteins without losing the conformation and thus biological function of the proteins; a process called surface functionalization. In this work, the surface of novel 45S5 Bioglass-derived foam-like scaffolds, which exhibit adequate mechanical stability and tailorable bioresorbability, have been modified by applying 3-aminopropyl-triethoxysilane. The efficiency and stability of the surface modification were satisfactorily and quantitatively assessed by X-ray photoemission spectroscopy. It was also found that treatment in buffered (pH 8) water solution at 80 degrees C for 4h, applied during the surface functionalization procedure, accelerated the bioreactive kinetics of the scaffolds, i.e. the transition of the relatively bioinert but mechanically competent crystalline structure of the struts to a biodegradable but mechanically weak amorphous network during immersion in simulated body fluid. Thus the aqueous heat treatment is confirmed to be an important factor that must be considered in the design of these Bioglass-derived glass-ceramic scaffolds. Possible mechanisms responsible for the accelerated bioreactivity are proposed.  相似文献   

2.
The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 μm; pore width = 300 μm) to regenerate bone in a rat calvarial defect model. Six weeks post-implantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3 and 6 days to convert a surface layer to hydroxyapatite prior to implantation enhanced new bone formation to 46%, 57% and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3 and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 μg per defect) was 65%, 61% and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair.  相似文献   

3.
目的 研发制备生物玻璃/壳聚糖三维多孔支架(BG/CS),对其生物相容性及抗感染性能进行研究,阐明其抗感染作用的关键因素。方法 通过模板法制备多孔生物玻璃(BG)支架,注入壳聚糖乙酸,合成生物玻璃/壳聚糖多孔支架,此后以BG作为对照组,通过场发射扫描电镜(FESEM)观察各组材料的表面形貌和孔结构;接种Balb/c小鼠胚胎成纤维细胞(Balb/c 3T3 cells)于不同材料表面培养,分析其对细胞黏附及增殖的影响;各组支架材料分别与标准菌株ATCC 35984(表皮葡萄球菌)和ATCC 25923(金黄色葡萄球菌)共培养,以复合染料染色,在激光共聚焦显微镜(CLSM)下观察各组支架材料表面活菌和死菌的荧光强度;采用结晶紫染色法,定量分析材料表面细菌生物膜形成情况;进行细菌涂板并计数菌落(CFUs/cm2),测算抑菌效率。结果 BG/CS支架材料表面被覆一层壳聚糖,支架呈多孔结构,孔径较均一(200~400 m);材料细胞共培养4 h,BG/CS和BG表面的黏附细胞数量比较差异无统计学意义;共培养1 d,两组材料表面细胞均可正常黏附和铺展;第1~7 d的增殖过程中,各组材料表面细胞的增殖趋势接近,组间细胞增殖率比较差异无统计学意义;经过8 h细菌与材料共培养,CLSM下观测BG支架表面存在大量的细菌黏附(绿色荧光),BG/CS表面则显示出代表死亡细菌的红色荧光;生物膜定量实验显示在2~5 h,5~8 h,与BG组相比,BG/CS支架则明显抑制了生物膜的形成(P0.01);共培养12 h,与BG组相比,BG/CS组胰酶大豆琼脂平板(TSA)培养板表面细菌的单克隆菌落数明显较少,表现出较高的抑菌效率(P0.01)。结论 生物玻璃/壳聚糖三维多孔支架(BG/CS)具有较好的体外生物相容性和抗感染性能,有望作为一种应用于骨关节感染预防及治疗的骨修复填充材料。  相似文献   

4.
This study developed highly porous degradable composites as potential scaffolds for bone tissue engineering. These scaffolds consisted of poly-d,l-lactic acid filled with 2 and 15 vol.% of 45S5 Bioglass® particles and were produced via thermally induced solid–liquid phase separation and subsequent solvent sublimation. The scaffolds had a bimodal and anisotropic pore structure, with tubular macro-pores of 100 μm in diameter, and with interconnected micro-pores of 10–50 μm in diameter. Quasi-static and thermal dynamic mechanical analysis carried out in compression along with thermogravimetric analysis was used to investigate the effect of Bioglass® on the properties of the foams. Quasi-static compression testing demonstrated mechanical anisotropy concomitant with the direction of the macro-pores. An analytical modelling approach was applied, which demonstrated that the presence of Bioglass® did not significantly alter the porous architecture of these foams and reflected the mechanical anisotropy which was congruent with the scanning electron microscopy investigation. This study found that the Ishai–Cohen and Gibson–Ashby models can be combined to predict the compressive modulus of the composite foams. The modulus and density of these complex foams are related by a power-law function with an exponent between 2 and 3.  相似文献   

5.
近年来,随着3D打印技术的飞速发展,人们开始通过3D打印技术去不断完善适合不同需求的定制骨组织工程支架。由于组织工程制造的支架是需要植入生物体内的,这就对支架有着极为严苛的要求。3D打印技术作为一种新兴制备骨组织工程支架的技术,其最大的优点是可以依照需求来定制个性化形状、结构,良好的宏微观结构、润湿性、机械强度和细胞反应的新型骨组织工程支架。本文回顾了2014―2019年间对骨组织工程支架的研究,对3D打印骨组织工程支架进行了总结,并且介绍了在多功能骨组织工程支架设计与制作中的理念与研究。  相似文献   

6.
目的比较硼酸盐生物玻璃和自体髂骨移植对新西兰兔桡骨大段骨缺损的修复效果。方法取38只新西兰兔,制作桡骨干15 mm骨缺损动物模型,并将其随机分为空白组(8只)、对照组(15只)和实验组(15只),对照组和实验组分别植入自体髂骨和硼酸盐生物玻璃(borate glass, BG)。术后4、8和12周行X线检查,观察材料的降解和新生骨生成情况。术后6周和9周分别腹腔注射茜素红和钙黄绿素。术后12周取材行组织学和Micro-CT检查。结果影像学和组织学结果显示对照组和实验组新骨生成明显优于空白组,12周后对照组和实验组新骨完全修复缺损;实验组材料降解与新骨生成协调进行;术后12周缺损处组织学切片显示,对照组和实验组缺损处有大量的新生骨组织。结论硼酸盐生物玻璃可完全修复兔桡骨干大段骨缺损,其修复效果与自体髂骨移植接近,在骨组织工程领域有广阔的应用前景。  相似文献   

7.
In this study, a two-part bone tissue engineering scaffold was investigated. The scaffold consists of a solid poly(propylene fumarate) (PPF) intramedullary rod for mechanical support surrounded by a porous PPF sleeve for osseointegration and delivery of poly(dl-lactic-co-glycolic acid) (PLGA) microspheres with adsorbed recombinant human bone morphogenetic protein-2 (rhBMP-2). Scaffolds were implanted into critical size rat segmental femoral defects with internal fixation for 12 weeks. Bone formation was assessed throughout the study via radiography, and following euthanasia, via microcomputed tomography and histology. Mechanical stabilization was evaluated further via torsional testing. Experimental implant groups included the PPF rod alone and the rod with a porous PPF sleeve containing PLGA microspheres with 0, 2 or 8 μg of rhBMP-2 adsorbed onto their surface. Results showed that presence of the scaffold increased mechanical stabilization of the defect, as evidenced by the increased torsional stiffness of the femurs by the presence of a rod compared to the empty defect. Although the presence of a rod decreased bone formation, the presence of a sleeve combined with a low or high dose of rhBMP-2 increased the torsional stiffness to 2.06 ± 0.63 and 1.68 ± 0.56 N·mm, respectively, from 0.56 ± 0.24 N·mm for the rod alone. The results indicate that, while scaffolds may provide structural support to regenerating tissues and increase their mechanical properties, the presence of scaffolds within defects may hinder overall bone formation if they interfere with cellular processes.  相似文献   

8.
《Acta biomaterialia》2014,10(5):2269-2281
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells’ proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration.  相似文献   

9.
Scaffolds of 13-93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt.%) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1-7 °C min−1) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C min−1 (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones.  相似文献   

10.
Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12 weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250–300 μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12 week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.  相似文献   

11.
Wu C  Zhou Y  Fan W  Han P  Chang J  Yuen J  Zhang M  Xiao Y 《Biomaterials》2012,33(7):2076-2085
Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (<5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.  相似文献   

12.
13.
组织工程多孔支架材料作为组织工程学的三大要素之一,除本身的性质外,支架材料的形状、孔径大小和孔隙率都直接影响着种子细胞的黏附、增殖和分化,因此如何制备具有高孔隙率、孔径大小合适且内部联通的多孔支架材料.为种子细胞的生长提供良好的微环境是非常重要的.回顾了近年来发展的组织工程多孔支架材料制备技术:纤维粘接法、乳液冷冻干燥法、溶液浇注,沥滤法、气体发泡法、热致相分离法及静电纺丝法.并重点介绍了目前国内外研究较多的快速成形技术;总结分析认为各种基本制备技术的联合应用和具备结构高度可控性、个体化制备特点的快速成形技术将是今后组织工程多孔支架材料制备技术的发展方向.  相似文献   

14.
Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity = 58?67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing.  相似文献   

15.
Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col–mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col–mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ~20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering.  相似文献   

16.
《Acta biomaterialia》2014,10(1):520-530
Novel microcarriers made of sol–gel-derived bioactive glasses were developed for delivering therapeutic molecules effectively while cultivating stem cells for bone tissue engineering. Silica sols with varying concentration of Ca (0–30 mol.%) were formulated into microspheres ranging from 200 to 300 μm under optimized conditions. A highly mesoporous structure was created, with mesopore sizes of 2.5–6.3 nm and specific surface areas of 420–710 m2 g−1, which was highly dependent on the Ca concentration. Therapeutic molecules could be effectively loaded within the mesoporous microcarriers during microsphere formulation. Cytochrome C (cyt C), used as a model protein for the release study, was released in a highly sustainable manner, with an almost zero-order kinetics over a period of months; the amount released was ∼2% at 9 days, and 15% at 40 days. A slight increase in the release rate was observed in the microcarrier containing Ca, which was related to the dissolution rate and pore size. The presence of Ca accelerated the formation of hydroxyapatite on the surface of the microcarriers. Cells cultured on the bioactive microcarriers were well adhered and distributed, and proliferated actively, confirming the three-dimensional substrate role of the microcarriers. An in vivo study performed in a rat subcutaneous model demonstrated the satisfactory biocompatibility of the prepared microspheres. As a therapeutic target molecule, basic fibroblast growth factor (bFGF) was incorporated into the microcarriers. A slow release pattern similar to that of cyt C was observed for bFGF. Cells adhered and proliferated to significantly higher levels on the bFGF-loaded microcarriers, demonstrating the effective role of bFGF in cell proliferative potential. It is believed that the developed mesoporous bioactive glass microspheres represent a new class of therapeutic cell delivery carrier, potentially useful in the sustainable delivery of therapeutic molecules such as growth factors, as well as in the support of stem cell proliferation and osteogenesis for bone tissue engineering.  相似文献   

17.
Next-generation orthopedic implants with both osteoinductivity and antibacterial ability are greatly needed. In the present study, biodegradable rhBMP-2 loaded zein-based scaffolds with a macroporous structure were synthesized, and SBA-15 nanoparticles and hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were incorporated into the scaffolds to produce an anti-infective composite scaffold for delivery of osteogenic factors that facilitate the functional repair of bone defects. The silica/HACC/zein scaffolds developed here showed bioactivity, biocompatibility, and effective antibacterial activity. Confocal laser scanning microscopy (CLSM) was used to quantitatively measure the bactericidal efficacy with respect to bacterial adhesion. Results showed that the sample zein-HACC-S20 exhibited long-lasting antibacterial activity against Escherichia coli and Staphylococcus aureus up to 5 d. At a low dosage of rhBMP-2 (ca. 80 μg), the scaffolds released rhBMP-2 protein efficiently at a relatively slow rate, even after 27 d. An ALP activity and ECM mineralization assay showed that the zein-HACC-S20 scaffolds exhibited significant early osteogenic differentiation by generating enhanced ALP product on day 14 and ECM mineralization on day 21. In a mouse model of thigh muscle pouches, zein-S20 and zein-HACC-S20 groups resulted in obvious bone formation and gave more extensive mineralization to the implants than silica free groups, indicating effective bone induction in vivo. In a rabbit model of critical-sized radius bone defects (20 mm in length and 5 mm in diameter), the bone defects were almost fully repaired and bone marrow cavity recanalization was detectable by 3D micro-CT technique and histological analysis after 12 weeks. In this way, the zein-HACC-S20 scaffolds were proven to significantly promote the bone repair. They also demonstrated considerable promise for tissue engineering. Silica/HACC/zein scaffolds with both antibacterial activity and the ability to induce osteogenesis have immense potential in orthopedics and other biomedical applications.  相似文献   

18.
This study examines the tissue engineering potential of type I collagen cross-linked in the presence of hydroxyapatite (HAp). Scaffolds were prepared by controlled freezing followed by lyophilization of composite mixtures of collagen and HAp in acetic acid, followed by cross-linking with 0.3% glutaraldehyde. Scaffolds of three ratios were prepared, corresponding to collagen/HAp ratios of 1:2, 1:4, and 1:6. The scaffolds were evaluated for their microstructure, chemical and physical properties, swelling behavior, mechanical strength, biodegradability hemocompatability, cytocompatibility, and histopathology following subcutaneous implantation in Sprague Dawley rats. The collagen/HAp matrices showed a smaller pore size of 10–40?μm compared to 50–100?μm for pure collagen scaffolds. Pure collagen showed a mechanical strength of 0.25?MPa, and the value almost doubled for cross-linked composites with collagen/HAp ratio 1:6. The improvement in mechanical strength corresponded to a decrease in swelling and enzymatic degradation (measured by resistance to collagenases). FTIR spectra results in conjunction with scanning electron micrographs showed that cross-linking in the presence of HAp did not significantly alter the structure of collagen. MTT assay and calcein AM staining revealed prominent and healthy growth of mesenchymal stem cells in both the pure collagen as well as collagen:HAp composites of ratio 1:2. In vivo implantation in Sprague Dawley rats showed an initial acute inflammatory response during days 3 and 7, followed by a chronic, macrophage-mediated inflammatory response on days 14 and 28. Overall, a cross-linked collagen/HAp composite scaffold of ratio 1:2 was identified as having potential for further development in tissue engineering.  相似文献   

19.
随着人们对骨修复和组织工程支架材料研究的深入,功能性骨科生物材料应运而生。无机多聚磷酸盐(polyphosphate, polyP)是一种具有高能磷酸键的聚合物,存在于成骨细胞和血小板中,其降解产物如磷酸根离子和产生的能量可以参与骨再生和代谢。受此启发,人们将polyP开发为新型骨修复材料,包括非晶态和结晶态两种结构,在体内外的实验研究都取得了丰富的成果。本文综合阐述了这种独特的能量自给型生物材料的生理功能、材料设计、制备方法、生物学效应及相关机制的进展,为其在骨修复中的应用提供依据。本文也同时讨论了polyP材料面临的挑战和争议,以期推动其临床转化。  相似文献   

20.
背景:丝素蛋白具有良好的生物相容性和可降解性。 目的:观察多孔丝素蛋白支架原位修复兔下颌骨临界性骨缺损效果。 方法:建立兔双侧下颌骨临界性骨缺损模型,随机选取一侧缺损植入多孔丝素蛋白支架作为实验组,另一侧缺损不作处理作为对照组。 结果与结论:①大体标本:术后12周,实验组骨缺损腔表面完全被新生骨覆盖,材料无脱出;对照组骨缺损腔内充满肉芽组织,骨不连。②X射线骨密度测定:术后2,6,12周,两组骨密度均随着时间延长逐渐增高,组内不同时间点间差异有显著性意义(P < 0.05),且同期实验组高于对照组(P < 0.05)。③组织病理切片苏木精-伊红染色:术后12周,实验组岛状新生骨及骨小梁明显增多,而且粗大而致密,材料内部明显疏松,部分区域塌陷;对照组宿主骨边缘可见散在分布的新生骨组织,但并无粗大骨小梁形成。④骨形态发生蛋白2免疫组织化学染色:术后2,6,12周,两组骨形态发生蛋白2阳性细胞数均随着时间延长逐渐增多,组内不同时间点间差异有显著性意义(P < 0.05),且同期实验组多于对照组 (P < 0.05)。表明多孔丝素蛋白支架用于原位组织工程修复骨缺损具有一定可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号