首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee SH  Zhang Z  Feng SS 《Biomaterials》2007,28(11):2041-2050
Nanoparticles (NPs) of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers with various PLA:TPGS component ratios were prepared by the double emulsion technique for protein drug formulation with bovine serum albumin (BSA) as a model protein. Influence of the PLA:TPGS component ratio and the BSA loading level on the drug encapsulation efficiency (EE) and in vitro drug release behavior was investigated. The PLA-TPGS NPs achieved 16.7% protein drug loading and 75.6% EE, which exhibited a biphasic pattern of controlled protein release with higher initial burst for those NPs of more TPGS content. Furthermore, the released proteins retained good structural integrity for at least 35 days at 37 degrees C as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy. Compared with other biodegradable polymeric NPs such as poly(D,L-lactide-co-glycolide) (PLGA) NPs, PLA-TPGS NPs could provide the encapsulated proteins a milder environment. Confocal laser scanning microscopy (CLSM) observation demonstrated the intracellular uptake of the PLA-TPGS NPs by NIH-3T3 fibroblast cells and Caco-2 cancer cells. This research suggests that PLA-TPGS NPs could be of great potential for clinical formulation of proteins and peptides.  相似文献   

2.
Heparin is a potent anticoagulant; however, it is poorly absorbed in the gastrointestinal tract. In this study, we developed a nanoparticle (NP) system shelled with chitosan (CS) for oral delivery of heparin; the NPs were prepared by a simple ionic gelation method without chemically modifying heparin. The drug loading efficiency of NPs was nearly 100% because a significantly excess amount of CS was used for the CS/heparin complex preparation. The internal structure of the prepared NPs was examined by small angle X-ray scattering (SAXS). The obtained SAXS profiles suggest that the NPs are associated with a two-phase system and consist of the CS/heparin complex microdomains surrounded by the CS matrix. The stability of NPs in response to pH had a significant effect on their release of heparin. No significant anticoagulant activity was detected after oral administration of the free form heparin solution in a rat model, while administration of NPs orally was effective in the delivery of heparin into the blood stream; the absolute bioavailability was found to be 20.5%. The biodistribution of the drug carrier, 99mTc-labeled CS, in rats was studied by the single-photon emission computed tomography after oral administration of the radio-labeled NPs. No significant radioactivity was found in the internal organs, indicating a minimal absorption of CS into the systemic circulation. These results suggest that the NPs developed in the study can be employed as a potential carrier for oral delivery of heparin.  相似文献   

3.
Carboxymethyl konjac glucomannan-chitosan (CKGM-CS) nanoparticles were spontaneously prepared under very mild conditions via polyelectrolyte complexation. Bovine serum albumin (BSA), as a model protein drug, was incorporated into the CKGM-CS nanoparticles. The physicochemical properties of the BSA-loaded nanoparticles were identified by Zetasizer 3000 and FTIR spectrophotometry. Their sizes were from 330 nm to 900 nm; zeta potentials were positive according to varies CKGM/CS ratios. The encapsulation efficiency was up 20%. The release behavior in vitro of BSA from the nanoparticles was also investigated. We could find that the BSA release from the CKGM-CS nanoparticles is much more influenced by the CS coating layer than by the CKGM inner structure. And the CKGM-CS matrices not only exhibited pH-responsive properties, but ionic strength-sensitive properties. These systems may present a potential for pulsatile protein drug delivery.  相似文献   

4.
Chitosan (CS)/DNA complex nanoparticles (NPs) have been considered as a vector for gene delivery. Although advantageous for DNA packing and protection, CS-based complexes may lead to difficulties in DNA release once arriving at the site of action. In this study, an approach through modifying their internal structure by incorporating a negatively charged poly(γ-glutamic acid) (γ-PGA) in CS/DNA complexes (CS/DNA/γ-PGA NPs) is reported. The analysis of small angle X-ray scattering results revealed that DNA and γ-PGA formed complexes with CS separately to yield two types of domains, leading to the formation of “compounded NPs”. With this internal structure, the compounded NPs might disintegrate into a number of even smaller sub-particles after cellular internalization, thus improving the dissociation capacity of CS and DNA. Consequently, after incorporating γ-PGA in CS/DNA complexes, a significant increase in their transfection efficiency was found. Interestingly, in addition to improving the release of DNA intracellularly, the incorporation of γ-PGA in CS/DNA complexes significantly enhanced their cellular uptake. We further demonstrated that besides a non-specific charged-mediated binding to cell membranes, there were specific trypsin-cleavable proteins involved in the internalization of CS/DNA/γ-PGA NPs. The aforementioned results indicated that γ-PGA played multiple important roles in enhancing the cellular uptake and transfection efficiency of CS/DNA/γ-PGA NPs.  相似文献   

5.
Fucoidan has the ability to inhibit angiogenesis by human umbilical vein endothelial cells (HUVECs). However, a major clinical limitation is its poor oral availability because fucoidan is a hydrophilic macromolecule. In this study, an oversulfation reaction of fucoidan has been performed to enhance its anti-angiogenic activities. The synthesized, oversulfated fucoidan (OFD) was characterized by Fourier transform infrared spectroscopy. The oversulfate content of OFD was estimated to be 41.7% by using a BaCl2 gelatin method. Nanoparticles (NPs) composed of chitosan (CS) and OFD were prepared by a polycation–polyanion complex method. The mean particle sizes of prepared CS/OFD NPs were in the range of 172–265 nm with a negative or positive surface charge, depending on the relative concentrations of CS to OFD used. The self-assembled NPs with pH-sensitive characteristics could be used as a pH-switched nanocarrier for oral delivery of the antiangiogenic macromolecule, OFD, in response to simulated gastrointestinal (GI) tract media. Evaluation of test NPs in enhancing the intestinal paracellular transport of OFD suggested that the NPs with a positive surface charge could transiently open the tight junctions between Caco-2 cells and thus increase the paracellular permeability. Tight-junction opening and restoration were examined by monitoring the redistribution of ZO-1 tight-junction proteins using confocal laser scanning microscopy (CLSM). The transported OFD significantly inhibits the tube formation of HUVECs via competitive binding of OFD and basic fibroblast growth factor (bFGF) to bFGF receptors (bFGFRs).  相似文献   

6.
A key attribute for nanoparticles (NPs) that are used in medicine is the ability to avoid rapid uptake by phagocytic cells in the liver and other tissues. Poly(ethylene glycol) (PEG) coatings has been the gold standard in this regard for several decades. Here, we examined hyperbranched polyglycerols (HPG) as an alternate coating on NPs. In earlier work, HPG was modified with amines and subsequently conjugated to poly(lactic acid) (PLA), but that approach compromised the ability of HPG to resist non-specific adsorption of biomolecules. Instead, we synthesized a copolymer of PLA–HPG by a one-step esterification. NPs were produced from a single emulsion using PLA–HPG: fluorescent dye or the anti-tumor agent camptothecin (CPT) were encapsulated at high efficiency in the NPs. PLA–HPG NPs were quantitatively compared to PLA–PEG NPs, produced using approaches that have been extensively optimized for drug delivery in humans. Despite being similar in size, drug release profile and in vitro cytotoxicity, the PLA–HPG NPs showed significantly longer blood circulation and significantly less liver accumulation than PLA–PEG. CPT-loaded PLA–HPG NPs showed higher stability in suspension and better therapeutic effectiveness against tumors in vivo than CPT-loaded PLA–PEG NPs. Our results suggest that HPG is superior to PEG as a surface coating for NPs in drug delivery.  相似文献   

7.
The objective of this study is to evaluate the effect of polymeric nanoparticles (NPs) on the allergic response of mast cells that release inflammatory mediators such as histamine through exocytosis. Submicron-sized biodegradable poly(dl-lactide-co-glycolide) (PLGA) NPs were prepared by the emulsion solvent diffusion method. Here, we examined the interactions of the mast cells with two types of PLGA NPs, unmodified NPs and NPs modified with chitosan (CS), a biodegradable cationic polymer. The cellular uptake of NPs increased by CS modification due to electrostatic interactions with the plasma membrane. NPs were taken up by mast cells through an endocytic pathway (endocytic phase) and then the cellular uptake was saturated and maintained plateau level by the exclusion of NPs through exocytosis (exocytic phase). Antigen-induced histamine release from mast cells was inhibited during the exocytic phase. The extent of histamine release inhibition was related to the amount of excluded NPs. Exocytic exclusion of NPs competitively antagonize the antigen-induced exocytotic release of histamine by highjacking exocytosis machinery such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, since histamine release was recovered in mast cells that overexpress SNAP-23. The inhibitory effect of the allergic response by PLGA NPs was also evaluated in vivo using the mouse model for systemic anaphylaxis. The administration of NPs suppressed the antigen-induced systemic allergic response in vivo. In conclusion, PLGA NP itself has actions to inhibit the allergic responses mediated by mast cells.  相似文献   

8.
We developed an intra-articular (IA) drug delivery system to treat osteoarthritis (OA) that consisted of kartogenin conjugated chitosan (CHI-KGN). Kartogenin, which promotes the selective differentiation of mesenchymal stem cells (MSCs) into chondrocytes, was conjugated with low-molecular-weight chitosan (LMWCS) and medium-molecular-weight chitosan (MMWCS) by covalent coupling of kartogenin to each chitosan using an ethyl(dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) catalyst. Nanoparticles (NPs, 150 ± 39 nm) or microparticles (MPs, 1.8 ± 0.54 μm) were fabricated from kartogenin conjugated-LMWCS and –MMWCS, respectively, by an ionic gelation using tripolyphosphate (TPP). The in vitro release profiles of kartogenin from the particles showed sustained release for 7 weeks. When the effects of the CHI-KGN NPs or CHI-KGN MPs were evaluated on the in vitro chondrogenic differentiation of human bone marrow MSCs (hBMMSCs), the CHI-KGN NPs and CHI-KGN MPs induced higher expression of chondrogenic markers from cultured hBMMSCs than unconjugated kartogenin. In particular, hBMMSCs treated with CHI-KGN NPs exhibited more distinct chondrogenic properties in the long-term pellet cultures than those treated with CHI-KGN MPs. The in vivo therapeutic effects of CHI-KGN NPs or CHI-KGN MPs were investigated using a surgically-induced OA model in rats. The CHI-KGN MPs showed longer retention time in the knee joint than the CHI-KGN NPs after IA injection in OA rats. The rats treated with CHI-KGN NPs or CHI-KGN MPs by IA injection showed much less degenerative changes than untreated control or rats treated with unconjugated kartogenin. In conclusion, CHI-KGN NPs or CHI-KGN MPs can be useful polymer-drug conjugates as an IA drug delivery system to treat OA.  相似文献   

9.
The application of carmustine (BCNU) for glioma treatment is limited due to its poor selectivity for tumor and tumor resistance caused by O6-methylguanine-DNA-methyl transferase (MGMT). To improve the efficacy of BCNU, we constructed chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs) for targeting glioma, loading BCNU along with O6-benzylguanine (BG), which could directly deplete MGMT. With core–shell structure, PLGA/CS NPs in the diameter around 177 nm showed positive zeta potential. In vitro plasma stability of BCNU in NPs was improved compared with free BCNU. The cellular uptake of NPs increased with surface modification of CS and decreasing particle size. The cytotoxicity of BCNU against glioblastoma cells was enhanced after being encapsulated into NPs; furthermore, with the co-encapsulation of BCNU and BG into NPs, BCNU + BG PLGA/CS NPs showed the strongest inhibiting ability. Compared to free drugs, PLGA/CS NPs could prolong circulation time and enhance accumulation in tumor and brain. Among all treatment groups, F98 glioma-bearing rats treated with BCNU + BG PLGA/CS NPs showed the longest survival time and the smallest tumor size. The studies suggested that the co-encapsulation of BCNU and BG into PLGA/CS NPs could remarkably enhance the efficacy of BCNU, accompanied with greater convenience for therapy.  相似文献   

10.
Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (Papp) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane.  相似文献   

11.
Su FY  Lin KJ  Sonaje K  Wey SP  Yen TC  Ho YC  Panda N  Chuang EY  Maiti B  Sung HW 《Biomaterials》2012,33(9):2801-2811
Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.  相似文献   

12.
The enhancement of tumor intracellular drug uptake and resistance against nonspecific protein adsorption are essential for an injectable anticancer drug carrier. In the present study, a new type of redox/pH-responsive zwitterionic nanoparticles (NPs) was prepared using poly-L-glutamic acid and cystamine in aqueous solutions under mild conditions. The NPs showed surface charge convertible feature in response to pH change of the solutions. The NPs demonstrated excellent anti nonspecific protein adsorption. In vitro release profiles of the NPs, they showed redox/pH dual sensitivities in vitro release. The effective intracellular delivery behaviors were verified through investigation of cell viability, and confocal laser scanning microscopy observation of HeLa cells after incubation with the DOX-loaded NPs. The NPs were non-cytotoxic and would have potential applications as a drug delivery vehicle for enhancing intracellular uptake of anticancer drugs.  相似文献   

13.
The osteoinductive growth factor, bone morphogenetic protein-2 (BMP-2), is capable of inducing de novo bone formation after implantation. A nanoparticulate (NP) system was developed for BMP-2 delivery based on NPs fabricated from bovine serum albumin (BSA) and stabilized by polyethylenimine (PEI) coating. In this study, the pharmacokinetics and osteoinductivity of BMP-2 delivered with different BSA NP formulations were determined by subcutaneous implantation in rats. A 7-day pharmacokinetics study showed that PEI coating on NPs effectively reduced the initial burst release of BMP-2 and prolonged the BMP-2 retention at implantation site. However, the uncoated BMP-2 NPs (BMP-2 loading of 1.44% w/w) were able to induce a robust ectopic bone formation, while no bone formation was found by the BMP-2 NPs coated with PEI. The toxicity of the PEI used for NP coating was determined to be the reason for lack of osteoinduction. Increasing BMP-2 loading (up to 5.76% w/w) was then employed to formulate NPs with lower PEI content; the higher BMP-2 loading was found to better promote induction of de novo bone. Our findings indicated that PEI coating on BSA NPs was effective for controlling BMP-2 release from NPs, but the toxicity of cationic PEI was a concern for the osteoinductive activity, which should be alleviated by further optimization of NP formulations.  相似文献   

14.
The first goal of this work was to develop a method for obtaining interpenetrating gelatin (G)-chitosan (CS) networks prepared by double cross-linking (covalent followed by ionic) that exhibit hydrogel character. The second goal was to modulate their properties as a function of the preparation parameters by using neural network models. This study was therefore carried out by experiment and simulation. The covalent cross-linking resulted from the reaction between the carbonyl groups of glutaraldehyde with amino groups belonging to both polymers; the ionic cross-linking is based on the interaction between tripolyphosphate anions and protonated amine groups (ammonium ions) of the polymers. The total cross-linking density (indirectly assessed by estimating the water swelling capacity) and the ability to include hydrosoluble bioactive principles are influenced by the following process parameters: the CS/G ratio, the amount of ionic cross-linker, and the ionic cross-linking time. The prepared hydrogels were characterized with respect to their structural, morphological, and some physical properties. The hydrogels ability to load high amounts of water-soluble drugs indicates their potential use as carriers for biologically active principles in the human body. A neural network methodology was applied to model the swelling degree and caffeine loading/release capacity depending on reaction conditions; in addition, applying this method, the optimal preparation conditions have been determined, targeting pre-established values for swelling degree or maximum caffeine value. The accuracy of the results obtained through this technique proves that the neural networks are suitable tools for modeling cross-linking processes taking place complex nonlinear polymers.  相似文献   

15.
Novel semi-interpenetrating polymer networks (semi-IPNs) of chondroitin sulfate (ChS) and acrylic acid (AA) were prepared with the aim of obtaining a hydrogel for use as a colon-specific drug carrier. By controlling the concentrations of cross-linking agent, diethylene glycol dimethacrylate (DEGDA), as well as the reaction solvent, high swelling percentages were obtained (approx. 1600%). However, the highest sol percent obtained for these hydrogels was approx. 70%, and most of the chondroitin sulfate remained soluble and could be extracted. Therefore, an alternative approach was adopted: methacrylate-grafted ChS (ChSMA) was synthesized and then co-polymerized with acrylic acid (AA) at a molar ratio of 1:5 with various concentrations of AA. The sol content of these ChSMA-AA hydrogels was reduced to approx. 20%, and the cross-linking densities were almost 100-fold higher than those of the semi-IPNs. FT-IR spectra showed that the H-bonding interactions between ChS and PAA and the spectra of the semi-IPNs were similar to that of PAA itself after sol extraction. In contrast, the FT-IR spectra of ChSMA-AA remained intact after sol extraction. Ketoprofen was used as a model drug to test the sustained release behavior of these hydrogels.  相似文献   

16.
Biodegradable polymer nanoparticles (NPs) are a promising approach for intracellular delivery of drugs, proteins, and nucleic acids, but little is known about their intracellular fate, particularly in epithelial cells, which represent a major target. Rhodamine-loaded PLGA (polylactic-co-glycolic acid) NPs were used to explore particle uptake and intracellular fate in three different epithelial cell lines modeling the respiratory airway (HBE), gut (Caco-2), and renal proximal tubule (OK). To track intracellular fate, immunofluorescence techniques and confocal microscopy were used to demonstrate colocalization of NPs with specific organelles: early endosomes, late endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus. Confocal analysis demonstrated that NPs are capable of entering cells of all three types of epithelium. NPs appear to colocalize with the early endosomes at short times after exposure (~2 h), but are also found in other compartments within the cytoplasm, notably Golgi and, possibly, ER, as time progressed over the period of 4–24 h. The rate and extent of uptake differed among these cell lines: at a fixed particle/cell ratio, cellular uptake was most abundant in OK cells and least abundant in Caco-2 cells. We present a model for the intracellular fate of particles that is consistent with our experimental data.  相似文献   

17.
Sun B  Ranganathan B  Feng SS 《Biomaterials》2008,29(4):475-486
This paper continued our earlier work on the poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles (PLGA/MMT NPs), which were further decorated by human epidermal growth factor receptor-2 (HER2) antibody Trastuzumab for targeted breast cancer chemotherapy with paclitaxel as a model anticancer drug. Such a NP system is multifunctional, which formulates anticancer drugs with no harmful adjuvant, reduces the side effects of the formulated anticancer drug, promotes synergistic therapeutic effects, and achieves targeted delivery of the therapy. The paclitaxel-loaded PLGA/MMT NPs were prepared by a modified solvent extraction/evaporation technique, which were then decorated with Trastuzumab. The effects of the surface decoration on particle size and size distribution, surface morphology, drug encapsulation efficiency, as well as the drug release kinetics, were investigated. The NP formulation exhibited a biphasic drug release with a moderate initial burst followed by a sustained release profile. The surface decoration speeded the drug release. Surface chemistry analysis was conducted by X-ray photoelectron spectroscopy (XPS), which confirmed the presence of Trastuzumab on the NP surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the stability of the antibody in the NP preparation process. Internalization of the coumarin-6-loaded PLGA/MMT NPs with or without the antibody decoration by both of Caco-2 colon adeno carcinoma cells and SK-BR-3 breast cancer cells was visualized by confocal laser scanning microscopy and quantitatively analyzed, which shows that the antibody decoration achieved significantly higher cellular uptake of the NPs. The results of in vitro cytotoxicity experiment on SK-BR-3 cells further proved the targeting effects of the antibody decoration. Judged by IC50 after 24h culture, the therapeutic effects of the drug formulated in the NPs with surface decoration could be 12.74 times higher than that of the bare NPs and 13.11 times higher than Taxol.  相似文献   

18.
This study aims to determine the specificity of anti-human epidermal growth factor receptor antibody (anti-HER2) modified monomethoxy polyethylene glycol-chitosan (mPEG-CS) nanoparticles (anti-HER2/mPEG-CS NPs) in delivering small interfering RNA (siRNA) to the human epidermal growth factor receptor 2 (HER2) positive cancer cells. Physicochemical properties of the siRNA-loaded anti-HER2/mPEG-CS NPs (anti-HER2/mPEG-CS-siRNA NPs), including size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by particle size and zeta potential analyzer, and ultraviolet–visible spectrophotometer. MTT assay was used to study the in vitro cytotoxicity of the NPs. Fluorescent microscope and flow cytometer analysis results showed that anti-HER2/mPEG-CS-siRNA NPs had much efficient delivery of siRNA than the siRNA alone, Lipofectamine-siRNA complexes and mPEG-CS-siRNA NPs. These results demonstrated that anti-HER2/mPEG-CS-siRNA NPs had great potential applications as a targeted strategy for siRNA delivery.  相似文献   

19.
Enzymatic degradation of nanoparticle (NP)-based drug delivery vehicles is a major factor influencing the administration routes as well as the site-specific delivery of NPs. To understand the stability of albumin NPs in an aggressive proteolytic environment, bovine serum albumin (BSA) NPs were fabricated via a coacervation technique and stabilized by coating using different molecular weights (MWs: 0.9–24 kDa) and concentrations (0.1–1.0 mg ml?1) of the cationic polymer, poly-l-lysine (PLL). A short interfering ribonucleic acid (siRNA) was used as a model drug for encapsulation in the BSA NPs. The generated NPs were characterized for morphology (with atomic force microscopy), size (with photon correlation spectroscopy) and charge (zeta-potential). The size range of formed BSA particles (155 ± 11 to 3800 ± 1600 nm) was effectively controlled by the MW and concentration of the PLL used for coating. The aqueous solution stability of NPs increased with an increasing MW and PLL concentration. However, in the presence of trypsin, NPs coated with higher MW PLL were not as stable as those formed using lower MW PLL. This trend was also confirmed based on the release pattern of siRNA in the presence of trypsin. We conclude that, when designing stabilizing coatings for soft protein-based NPs, smaller molecules may be more suitable for particle coating if enhanced proteolytic resistance and more stable NPs are desired for targeted drug delivery applications.  相似文献   

20.
A method for the sustained delivery of exenatide was proposed using nanoparticles (NPs) with a core/shell structure. The interactions between lipid bilayers and Pluronics were utilized to form various NPs using a layer-by-layer approach. Transmittance electron microscopy and dynamic light scattering were used to examine the morphology of the NPs. The in vitro release pattern was observed as a function of changes in the structure of the NPs, and the structural integrity of exenatide released was examined by SDS–PAGE analysis. Pharmacokinetics and antidiabetic effects were also observed with the structural change of NPs using in vivo animal models. In vitroin vivo correlation was discussed in relation to manipulation of the NP structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号