首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bromocriptine (BRC) produced a biphasic behavioural effect in mice; an early depressant phase which lasted for about 1 h and a later stimulant phase which lasted from about 1 to 5 h. The stimulation was blocked with SCH23390. Both phases of activity were accompanied by marked striatal DA autoreceptor effects as indicated by reductions in dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels and by a reduction in the accumulation of DOPA (after inhibition of nigrostriatal DA nerve firing and DOPA decarboxylase). However, while the autoreceptor effects were still evident during the behavioural stimulant phase, there was a gradual rise in DOPAC and HVA from 1 to 4 h after injection, indicating a gradually increasing DA turnover. We were unable, using a variety of behavioural and biochemical paradigms, to demonstrate any change in DA autoreceptor sensitivity after one dose of BRC. In electrophysiological studies, however, it was found that prior exposure of rats to one dose of BRC rendered them subsensitive to the rate-inhibiting effects of a second dose of BRC, as measured in anaesthetized animals using extracellular single cell recordings of identified DA neurons in the substantia nigra pars compacta. It is concluded firstly, that the stimulant phase of BRC in mice occurs despite continued occupation of the DA autoreceptors by BRC because adequate endogenous DA is available to provide the required D1 receptor stimulation and secondly, that the terminal autoreceptors in the striatum (as assessed in mice using biochemical techniques) may be regulated differently to the somatodendritic autoreceptors (as assessed electrophysiologically in rats). Send offprint requests to: D. M. Jackson at the above address  相似文献   

2.
The effects of morphine withdrawal and challenge on the a-methyl-p-tyrosine (MT)-induced depletion of dopamine (DA) as well as on DA metabolism and 3H-SCH 23390 and 3H-spiperone binding were studied in the striata of male mice. Morphine was given s.c. 3 times daily for 5 days followed by 1 to 3 days' withdrawal.The MT induced DA depletion was retarded in mice withdrawn for 1 day from repeated morphine. At this time point the striatal concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) fell, too. In mice withdrawn for 3 days from morphine neither DA depletion nor DOPAC or HVA concentrations differed from those of control mice. In control mice acute morphine challenge accelerated the DA depletion at the dose 10 mg/kg but not at the dose 30 mg/kg. Both doses elevated striatal DOPAC and HVA. In mice withdrawn from repeated morphine for 1 day acute morphine partially counteracted the withdrawal-induced retardation of DA depletion and elevated striatal DOPAC and HVA clearly less than in control mice. However, in mice withdrawn for 3 days 10 mg/kg of morphine clearly enhanced DA depletion and its effect on striatal HVA was significantly augmented. In these mice as in controls the 30 mg/kg dose did not alter striatal DA depletion and elevated HVA less than in controls. Acute morphine did not alter striatal 3-methoxytyramine (3-MT) concentration in control mice but at the dose 10 mg/kg increased it in mice withdrawn for 3 days. Morphine withdrawal did not significantly affect striatal 3H-SCH 23390 binding, but slightly decreased 3H-spiperone binding in mice withdrawn for 3 days indicating a down-regulation of D2 receptors.Our results by using three different indices of DA release (DA depletion after aMT, HVA and 3-MT) show that long enough withdrawal from repeated morphine treatment augments the morphine-induced release of striatal DA in mice. We propose that the striatal DA release in mice is regulated by two opposite opioid sensitive mechanisms with different dose-dependencies and different tolerance development. Correspondence to: L. Ahtee at the above address  相似文献   

3.
Summary The binding properties of 3- and 4-O-sulfoconjugated dopamine (DA-3-0-S, DA-4-0-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (B max) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants K D (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (K D = 24 nmol/l) and 80% low (K D = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (K H = 0.12 mol/l) and low (KL = 18 mol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (K D = 2.8 mol/l). Competition experiments with various compounds confirmed the binding of 3H-spiperone to D2 receptors. DA-3-O-S, DA-4-O-S, and MT were more than 5,000-, more than 10,000-, and 530-fold less potent in competing for 3H-spiperone binding when compared with DA at the high affinity binding site which mediates biological effects. Therefore, it is concluded that these DA metabolites are biologically ineffective at central D2 receptors. Send offprint requests to E. Werle at the above address  相似文献   

4.
The efflux into the lateral cerebral ventricles of metabolites of dopamine (DA) and 5-hydroxytryptamine (5HT) was determined in unanesthetized rats bearing chronically implanted push-pull cannulae. Pretreatment with 6-hydroxydopamine (6-OHDA) reduced the basal efflux of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), but not of 5-hydroxyindoleacetic acid (5HIAA). The haloperidol-induced increase in the efflux of DOPAC and HVA was markedly attenuated in the 6-OHDA-pretreated rats. In rats treated with 5,7-hydroxytryptamine (5,7-DHT) the basal efflux of DOPAC and HVA was unaffected, while that of 5HIAA was markedly reduced; in these animals the ability of L-tryptophan to increase the perfusate content of 5HIAA was abolished. These results indicate that metabolites of DA and 5HT appearing in cerebroventricular perfusates of rats originate from DA and 5HT neuronal terminals in the brain.  相似文献   

5.
The present report investigated several parametric and pharmacological aspects of the enhanced self-grooming behavior of rats following systemic administration of the selective D1 dopamine (DA) receptor agonist SKF 38393. The amount of time that rats spent grooming themselves was measured continuously for 30 min following drug administration to provide a quantitative measure of the drug-induced behavior. SKF 38393 increased the amount of grooming in a dose-dependent manner (0.5–16 mg/kg, SC). The onset of this effect required at least 5 min and it persisted for at least 60 min. The ability of SKF 38393 to enhance grooming was shared by R-SKF 38393, but not S-SKF 38393, consistent with the affinities of these enantiomers for the D1 DA receptor. Unlike SKF 38393, the peripheral D1 agonist fenoldopam (SKF 82526) failed to cause an increased grooming response, suggesting a central site of action for elicitation of this behavior. The SKF 38393-induced increase in grooming was competitively antagonized by the D1 selective antagonist SCH 23390 (0.5 mg/kg, SC). Although the D2 DA receptor-selective antagonist eticlopride reduced SKF 38393-elicited grooming, this antagonism appeared to be of a physiological rather than pharmacological nature. When eticlopride was coadministered with the non-selective (mixed) D1/D2 agonist apomorphine, an increase in grooming behavior similar to that produced by SKF 38393 was observed. Inactivation of D1 and D2 DA receptors produced by pretreatment with the irreversible antagonistN-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ), at a dose which reduces D1 and D2 receptor density by 50% (8.0 mg/kg, IP), reduced SKF 38393-induced grooming by approximately 50%. Prior protection of D1 receptors by SCH 23390 completely prevented the effect of EEDQ whereas prior protection of D2 receptors by eticlopride did not. These results demonstrate that enhanced grooming behavior elicited by dopamine agonists in rats, when measured as the amount of time spent grooming, provides a reliable, quantifiable index of selective D1 DA receptor activation in the CNS. In addition, this behavior does not appear to require concurrent stimulation of D2 DA receptors by endogenous DA.  相似文献   

6.
The actions on central dopamine (DA) mechanisms of raclopride, a new substituted benzamide, were studied by means of behavioural and biochemical methods in the rat. Raclopride blocked the in vitro binding of the dopamine D2 antagonist 3H-spiperone (IC50=32 nM), but not of the unselective D1 antagonist 3H-flupenthixol (IC50>100,000 nM) in rat striatum, and failed to inhibit striatal DA-sensitive adenylate cyclase in vitro (IC50>100,000 nM). Raclopride caused a dose-dependent increase in the DA metabolites HVA and DOPAC in the striatum and olfactory tubercle. Behavioural studies showed that raclopride discriminates between the motor behaviours induced by the DA agonist apomorphine. Thus, unlike haloperidol, raclopride blocked apomorphine-induced hyperactivity at considerably lower doses than those inhibiting oral stereotypies. Moreover, raclopride showed a high separation between the doses for blockade of apomorphine-induced hyperactivity and those inducing catalepsy in rats. Raclopride caused a dose-dependent blockade of the specific binding of 3H-spiperone and 3H-N-n-propylnorapomorphine (3H-NPA) in vivo at doses similar to those blocking the behavioural effects of apomorphine. The maximal blockade of 3H-spiperone binding in vivo was lower for raclopride than for haloperidol. Raclopride caused a greater inhibition of 3H-NPA than of 3H-spiperone in vivo binding in the striatum. It is suggested that the ability of raclopride to discriminate between different DA-mediated functions may be attributed to a preferential blockade of a subclass of functionally coupled dopamine D2 receptors in striatal as well as in extrastriatal brain regions in the rat.  相似文献   

7.
Summary The in vivo effects of four Hr-antagonists, diphenhydramine, chlorpheniramine, mepyramine, and promethazine, on the metabolism of noradrenaline (NA), dopamine (DA), and 5-hydroxytryptamine (5-HT) were investigated in the whole mouse brain. Diphenhydramine and chlorpheniramine had no significant effect on levels of NA, 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), DA, and 5-HT, but they significantly decreased levels of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). In particular chlorpheniramine markedly decreased 5-HIAA levels at doses as low as 1 mg/kg, i. p. Mepyramine significantly decreased 5-HIAA levels but not those of other substances. High doses of promethazine significantly decreased NA levels but markedly increased those of MHPG, DOPAC, HVA, 5-HT, and 5-HIAA. The DA reduction induced by -methyl-p-tyrosine (-MT) was significantly inhibited by diphenhydramine, chlorpheniramine, and promethazine, but the -MT-induced NA decrease was significantly enhanced by promethazine. The 5-HIAA accumulations induced by probenecid were significantly inhibited by chlorpheniramine and mepyramine. These results suggest: (1) Diphenhydramine and chlorpheniramine inhibit the turnover of both DA and 5-HT by blocking their neuronal uptake. (2) Promethazine and mepyramine inhibit DA and 5-HT turnover, respectively, as a result of the inhibition of the uptake mechanism. (3) Promethazine increases NA turnover by enhancing NA release. The discriminative effects of these drugs on the monoamine systems may be related to some differences in their CNS actions. Send offprint requests to K. Saeki at the above address  相似文献   

8.
Background The role of dopamine D3/D2 receptors in the control of locomotion is poorly understood.Objectives To examine the influence of selective antagonists at D3 or D2 receptors on locomotion in rats, alone and in interaction with the preferential D3 versus D2 receptor agonist, PD128,907.Methods Affinities of ligands at rat D2 and cloned, human hD3, hD2S, hD2L and hD4 sites were determined by standard procedures. Locomotion was monitored automatically in rats pre-habituated for 30 min to an open-field environment. Extracellular levels of dopamine (DA) were determined by dialysis in the nucleus accumbens and striatum. Drugs were given acutely via the systemic route.Results PD128,907, which preferentially recognised D3 versus D2 sites, biphasically reduced and enhanced locomotion at low (0.01–0.63 mg/kg) and high (2.5–10 mg/kg) doses, respectively. L741,626 and S23199, which behaved as preferential D2 versus D3 receptor antagonists, enhanced the reduction in locomotion evoked by the low dose of PD128,907, blocked the increase provoked by the high dose and suppressed spontaneous locomotion alone. Analogous findings were obtained with haloperidol and raclopride which showed equilibrated affinity at D2 and D3 receptors. UH232 and AJ76, which showed a mild preference for D3 versus D2 sites, did not modify the effect of a low dose of PD128,907, slightly enhanced the hyperlocomotion elicited by the high dose and exerted little influence on locomotion alone. S14297 and U99194, which acted as preferential D3 versus D2 receptor antagonists, abolished the reduction in locomotion elicited by a low dose of PD128,907, potentiated the induction of locomotion by a high dose, and failed to influence locomotion alone. The actions of S14297 were stereoselective inasmuch as they were mimicked by the racemic form, S11566, but not by the inactive enantiomer, S17777. In contrast to S14297, S11566 and U99194, however, S33084, SB269,652, GR218,231 and N-[-4-[-(1-naphtyl)piperazine-1-yl]butyl] anthracene-2-carboxamide (NGB-1), highly selective D3 versus D2 receptor antagonists, were inactive under all conditions. PD128,907 (0.01–10.0 mg/kg) suppressed dialysate levels of DA in the nucleus accumbens and striatum, actions blocked by L741,626 and haloperidol, yet unaffected by S14297 and S33084.Conclusions The facilitatory influence of a high dose of PD128,907 upon locomotion is mediated by postsynaptic D2 receptors and, possibly, countered by their D3 counterparts. Correspondingly, selective blockade of D2 but not of D3 receptors alone suppresses motor function. The reduction in locomotion provoked by a low dose of PD128,907 may be mediated by D2 autoreceptors, but a role of postsynaptic D3 receptors cannot be excluded. Finally, mechanisms underlying the contrasting influence of chemically diverse D3 receptor antagonists upon locomotion remain to be elucidated.  相似文献   

9.
The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 µl) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 µg, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5–2.0 µg) or the D2-like antagonist clebopride (1.0–4.0 µg) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However,combined administration of SCH 23390+clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1+D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.  相似文献   

10.
Summary The effects of dopamine on the 3-5-cyclic adenosine monophosphate (cAMP) generating system were analyzed in membrane particles from the human right and left cardiac ventricle. In addition, the pharmacological profile and the anatomical localization of dopamine receptors were assessed on frozen sections of human cardiac atrial or ventricular tissue. Dopamine increased cAMP levels, in a concentration-dependent manner, in membranes of the right and the left ventricle. These effects were abolished by the -adrenoceptor antagonist (–)-propranolol, but not by the D1 receptor antagonist SCH 23390 or by the non selective D1/D2 receptor antagonist haloperidol.No specific binding of the D1 receptor antagonist [3H]-SCH 23390 was noticeable within the atrial or ventricular portions of the heart examined using either radioligand binding or autoradiographic techniques. The D2 receptor antagonist [3H]-spiroperidol, in the presence of concentrations of ketanserin sufficient to block possible binding to 5-HT2 sites, was specifically bound to sections of human heart with a dissociation constant value of about 2.6 nmol/l. The highest density of [3H]-spiroperidol binding occurred in the right ventricle followed, in descending order, by the right atrium, the upper part of the left ventricle, the lower part of the left ventricle, the left atrium and the interventricular septum. The binding profile of [3H]-spiroperidol to sections of human heart was consistent with the labeling of dopamine D2 sites. Light microscope autoradiography revealed silver grains throughout the atrial and ventricular walls and these were frequently accumulated in clusters. These findings suggest that the cardiac actions of dopamine are mediated through the activation of -adrenoceptors and of dopamine D2 receptors but not of D1 receptors.  相似文献   

11.
Levels of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the CSF of rats at various times after repeated electroshock treatment (EST) or chronic administration of haloperidol. The acidic metabolites were analyzed in 25 l CSF using HPLC with an electrochemical detector. A significant decrease in the CSF levels of DOPAC and HVA was found 4 days after the last administration of chronic haloperidol, EST, or both. The decrease in the level of the dopamine metabolites indicated a slower dopamine turnover, which might have resulted from hypersensitivity of presynaptic dopamine receptors after these treatments. Rats treated with haloperidol also showed an increase in 5-HIAA levels, possibly due to enhanced serotonin turnover. The 5-HIAA increase following haloperidol was prevented by a concurrent administration of EST, suggesting attenuation by EST of the haloperidol-induced enhancement of serotonin turnover.  相似文献   

12.
Interactions at the behavioral level between dopamine (DA) and opioid receptors in the mammalian brain have been amply demonstrated. Considering the pivotal role for DA receptors in the pharmacotherapy of Parkinson's disease (PD), these interactions might be clinically relevant. Therefore, in the present study the effects of the opioid antagonist naltrexone and agonist morphine on D1 and D2 receptor induced stimulation of motor behavior in the unilateral MPTP monkey model (n=5) of PD were investigated. The results show that both naltrexone and morphine [0.1–1.0 mg/kg; intramuscular injection (IM)] inhibited D2 receptor stimulated contralateral rotational behavior and hand use induced by administration of quinpirole (LY 171555; 0.01 mg/kg, IM) in a dose-related way. However, no effects of these opioid drugs were observed on D1 receptor stimulated contralateral rotational behavior and hand use induced by administration of SKF 81297 (0.3 mg/kg, IM). Interestingly, the action of the alleged preferential-receptor antagonist naltrexone was mimicked by the selective-opioid antagonist naltrindole (0.5 mg/kg, IM). From this study it is concluded that in a non-human primate model of PD, alteration of opioid tonus leads to modulation of D2 receptor but not D1 receptor controlled motor behavior. The possible underlying mechanisms and clinical relevance of these findings are discussed.  相似文献   

13.
Summary The possible involvement of dopamine D1 receptors in the regulation of acetylcholine release in the rabbit caudate nucleus was investigated. Caudate slices, preincubated with [3H]choline, were superfused continuously and subjected to electrical field stimulation with only a single pulse. In agreement with the view that the release of acetylcholine evoked by a single electrical pulse is not influenced by endogenous transmitters, atropine and domperidone failed to icnrease the evoked release of [3H]acetylcholine, whereas oxotremorine and quinpirole caused a concentration-dependent inhibition of transmitter release. Neither the dopamine D1 receptor antagonist SCH 23390 nor the Dt agonist SKF 38393 in a concentration range of 0.01–1 mol/l changed the evoked [3H]acetylcholine release. The inhibitory effect of the dopamine D2 receptor agonist quinpirole was virtually abolished in the presence of 0.1 mol/l domperidone and diminished in the presence of 1 mol/l SCH 23390. It remained unchanged in the presence of 1 mol/l SKF 38393. It is concluded that the inhibition of acetylcholine release by dopamine is mediated exclusively via presynaptic dopamine D2 receptors and that the antagonistic effect of SCH 23390 on the inhibition of acetylcholine release by quinpirole is due to its interaction with dopamine D2 rather than D1 receptors located on cholinergic nerve terminals. Send offprint requests to C. Allgaier at the above address  相似文献   

14.
Rationale To examine the D2 occupancy of two commonly used antipsychotic medications and relate this to the D2 occupancy by endogenous dopamine in schizophrenia.Objectives The aim of this study is to compare the occupancy of striatal D2 receptors by the atypical antipsychotic medications risperidone and olanzapine at fixed dosages and to estimate the effect on D2 occupancy by dopamine as a result of these treatments.Methods Seven patients with schizophrenia taking risperidone 6 mg/day and nine patients with schizophrenia taking olanzapine 10 mg/day underwent an [123I]IBZM SPECT scan after 3 weeks of treatment. The specific to non-specific equilibrium partition coefficient (V3) after bolus plus constant infusion of the tracer was calculated as [(striatal activity)/(cerebellar activity)]–1. D2 receptor occupancy was calculated by comparing V3 measured in treated patients to an age-corrected V3 value derived from a group of untreated patients with schizophrenia, previously published, according to the following formula: OCC=1–(V3 treated/V3 drug free).Results V3 was significantly lower in risperidone treated patients compared with olanzapine treated patients (0.23±0.06 versus 0.34±0.08, P=0.01), which translated to a significantly larger occupancy in schizophrenic patients treated with risperidone compared to olanzapine (69±8% versus 55±11%, P=0.01). Data from our previous study were used to calculate the occupancy of striatal D2 receptors by antipsychotic medications required to reduce the occupancy of these receptors by endogenous dopamine to control values. In medication-free patients with schizophrenia, the occupancy of striatal D2 receptors by endogenous dopamine is estimated at 15.8%. In healthy controls, the occupancy of striatal D2 receptors by dopamine is estimated at 8.8%. In order to reduce the dopamine occupancy of striatal D2 receptors in patients with schizophrenia to control values, 48% receptor occupancy by antipsychotic medications is required.Conclusions These data indicate that the dosage of these medications, found to be effective in the treatment of schizophrenia, reduces DA stimulation of D2 receptors to levels slightly lower than those found in unmedicated healthy subjects.  相似文献   

15.
The purpose of the present study was to determine whether exposure to amphetamine during the preweanling period would alter dopaminergic functioning in the dorsal striatum of adult rats. In three experiments, we assessed the effects of repeated amphetamine treatment on striatal protein kinase A (PKA) activity, dopamine (DA) D1-like and D2-like binding sites, and DA content. Rats were pretreated with saline or amphetamine (2.5 mg/kg, ip) for 7 consecutive days starting on postnatal day (PD) 11. At PD 90, rats were killed and their dorsal striata (i.e., caudate–putamen) were removed and frozen until time of assay. Amphetamine pretreatment produced long-term reductions in both striatal PKA activity and DA content. Early amphetamine exposure also resulted in an upregulation of D2-like binding sites, while leaving D1-like binding sites unaffected. It is likely that the upregulation of D2-like binding sites was stimulated by the persistent decline in striatal DA levels. Although speculative, it is possible that excess striatal D2-like receptors were responsible for inhibiting PKA activity through actions on the cAMP signal transduction pathway. The behavioral relevance of these amphetamine-induced neurochemical changes has not yet be determined.  相似文献   

16.
In common marmosets systemically treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), the behavioural effects of benzazepine D1 dopamine (DA) agonists with full/supramaximal (SKF 80723 and SKF 82958), partial (SKF 38393, SKF 75670 and SKF 83565) and no efficacies (SKF 83959) in stimulating adenylate cyclase (AC) activity were investigated. The benzazepine derivatives, with the exception of SKF 82958 (8 fold D1 DA receptor selectivity), demonstrated high D1 DA receptor affinity and selectivity (approximately 100 fold or more) in rat striatal homogenates. Administration of MPTP in marmosets induced locomotor hypoactivity, rigidity and motor disability. SKF 38393 (7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and SKF 75670 (3-CH3 analogue) further reduced locomotor activity (by –70 to –80%) and increased motor disability (by +22 to +67%) in these animals. SKF 83565 (6-Cl, 3-CH3, 3-Cl analogue) and SKF 82958 (6-Cl, 3-C3H5 analogue) had only a slight effect on locomotor activity but decreased motor disability at high doses (–46 to –60%). In contrast, SKF 83959 (6-Cl, 3-CH3, 3-CH3 analogue) and SKF 80723 (6-Br analogue) produced pronounced increases in locomotion (6–10 fold) and a reversal in motor disability (by –64 to –77%). Oral activity, consisting largely of abnormal, dyskinetic tongue protrusions and vacuous chews, was increased in animals treated with SKF 38393, SKF 83565, SKF 82958 and more especially with SKF 80723 and SKF 83959. Grooming was increased with SKF 82958 and more especially with SKF 80723 and SKF 83959. In contrast, quinpirole (D2 DA agonist), reversed the MPTP-induced motor deficits in the marmoset, with no effect on grooming and oral activity. The present findings further demonstrate the antiparkinsonian actions of some D1 DA agonists in MPTP-treated primates. However, in general the behavioural effects of benzazepines failed to correlate with either their D1 DA receptor affinity/selectivity or their efficacy in stimulating adenylate cyclase (AC) activity. These observations further implicate a behavioural role for D1 DA receptors uncoupled to AC and/or a role for extrastriatal D1 DA receptors in mediating the behavioural response to D1 DA agonists.  相似文献   

17.
The functional regulation by dopamine (DA) receptors of serotonin (5-HT) release from the rat hippocampus was investigated by use of in vivo microdialysis. Dialysate 5-HT levels were reduced by co-perfusion of 10 M tetrodotoxin (TTX) and were elicited by K+ (60 and 120 mM) stimulation in a concentration-dependent manner. Local perfusion (10 M) and peripheral administration (20 mg/kg, i.p.) of fluoxetine produced increases in 5-HT levels. These results indicate that the spontaneous 5-HT levels in the rat hippocampus can be used as indices of neuronal origin from the serotonergic nerve terminals. The nonselective dopamine (DA) receptor agonist apomorphine (1, 10 and 100 M), when perfused through the probe over a period of 40 min, increased 5-HT release in a concentration-dependent manner. Apomorphine-induced (100 M) increases in 5-HT release was abolished by pretreatment with the selective D2 receptor antagonist, S(–)-sulphide (1 and 10 M), but not prevented by pretreatment with the selective D1 receptor antagonist, R(+)-SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-l-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (1 M). S(–)-Sulpiride and R(+)-SCH-23390 by themselves did not alter the spontaneous 5-HT levels. The 5-HT release was elevated by perfusion of the selective DA reuptake inhibitor GBR 12909 (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-[3-phenylpropyl]piperazine)(1, 10 and 100 M), indicating the possibility of not only exogenous but also endogenous DA-mediated facilitatory effects on 5-HT release in vivo. The 5-HT release was also elevated by perfused (±)-PPHT ((±)-2-(N-phenylethyl-N-propyl)-amino-5-hydroxytetralin)(1, 10 and 100 M), the selective D2 receptor agonist, in a concentration-dependent manner. On the other hand, (±)-PPHT (100 M) failed to increase 5-HT release in catecholamine (CA)-lesioned rats pretreated with 6-hydroxydopamine (6-OHDA)(200 g/rat, i.c.v.). The (±)-PPHT-induced (100 M) increase in 5-HT release was prevented not only by pretreatment with 10 M S(–)-sulphide but also by pretreatment with the 2-adrenoceptor antagonist idazoxan (10 M). These findings suggest that the functional regulation of 5-HT release via D2 receptors exists in the rat hippocampus. Furthermore our results indicate that the facilitatory effect of 5-HT release via D2 receptors may be mediated indirectly by noradrenergic neurons, but not mediated directly through D2 receptors located on serotonergic nerve terminals.  相似文献   

18.
The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost–benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23 390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81 297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128 907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk–reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices.  相似文献   

19.
Dopamine (DA) D1 and D2 receptors are involved in mediating the behavioral effects of cocaine, including its discriminative stimulus properties. The purpose of the present study was to investigate the role of the nucleus accumbens and, in particular, accum bens DA D1 receptors in modulating the stimulus effects of cocaine. Thus, rats were trained to discriminate cocaine (10 mg/kg, IP) from saline using a two-lever, water-reinforced FR 20 drug discrimination task. In substitution tests, systemic (IP) administration of cocaine (0.625–20 mg/kg) produced a dose-related increase in cocaine-appropriate responding. Microinjections of cocaine (2.5–40 µg) into the nucleus accumbens also engendered dose-dependent and complete substitutions (> 80% drug-lever responding) for the systemic training dose of cocaine, whereas intra-accumbens artificial cerebrospinal fluid (1 µl/side) produced primarily saline-appropriate responding. In antagonism tests, pretreatment with the DA D1 antagonist SCH 23390 (3–12 µg/kg) completely antagonized (<20% drug-lever responding) a dose of cocaine (5 mg/kg) that produced greater than 90% cocaine-lever responding when given alone. Additionally, intra-accumbens injections of SCH 23390 (0.025–0.4 µg) prior to systemic cocaine (5 mg/kg) also significantly blocked the cocaine stimulus. The present results confirm the importance of the nucleus accumbens in mediating the discriminative stimulus properties of cocaine and suggest a primary role of accumbens DA D1 receptors in modulating this behavior.Some of these data were presented at the annual FASEB Experimental Biology meeting in New Orleans (1993)  相似文献   

20.
Summary The effects of acutely administered opioid receptor agonists sufentanil, U50,488H and [d-Ala2, d-Leu5]-enkephalin (DADL) were observed upon dopamine D1 and D2 binding site density in the striatum of the rat. In addition, the functional implications of opioid-induced changes in dopamine receptor sensitivity were studied using the behavioural profile elicited by apomorphine in the rat. The -agonist sufentanil (1 or 20 Erg/kg, i. p.), the -agonist U50,488H (10 mg/kg, i. p.) and DADL (1 g/animal, i. c. v.) all significantly elevated D2 but not D1 binding site density in rat striatum. Pretreatment with sufentanil (1 g/kg, i. p.) induced an elevation in apomorphine-induced sterotyped behaviour, but attenuated locomotor activity. Following administration of U50,488H (10 mg/kg, i. p.), both the degree of stereotypy and the intensity of the locomotor activity were enhanced. Contralateral rotation was observed in animals pretreated with DADL (1 g/animal, i. c. v.) following challenge with apomorphine. It is concluded that the opioid agonists studied induce a significant elevation in functional D2 sites to the exclusion of D1 sites. However, the precise mechanism by which this effect is elicited remains to be established. Send offprint requests to R. D. E. Sewell at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号