首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Background and purpose: It is unknown whether prolonged training is a safe treatment to alleviate exercise intolerance in patients with mitochondrial DNA (mtDNA) mutations. Methods: The effect of 3 and 12 months training and 3–12 months deconditioning was studied in four patients carrying different mtDNA mutations. Results: Three‐month moderate‐intensity training increased oxidative capacity by 23%, which was sustained after 6–12 months of low‐intensity training. Training and deconditioning did not induce adverse effects on clinical symptoms, muscle morphology and mtDNA mutation load in muscle. Conclusion: Long‐term training effectively improves exercise capacity in patients with mitochondrial myopathy, and appears to be safe.  相似文献   

2.
Clinical phenotypes of persons with mitochondrial DNA (mtDNA) mutations vary considerably. Therefore, diagnosing mitochondrial myopathy (MM) patients can be challenging and warrants diagnostic guidelines. (31)phosphorous magnetic resonance spectroscopy ((31)P-MRS) have been included as a minor diagnostic criterion for MM but the diagnostic strength of this test has not been compared with that of other commonly used diagnostic procedures for MM. To investigate this, we studied seven patients with single, large-scale deletions-, nine with point mutations of mtDNA and 14 healthy subjects, who were investigated for the following: 1) (31)P-MRS of lower arm and leg muscles before and after exercise, 2) resting and peak-exercise induced increases of plasma lactate, 3) muscle morphology and -mitochondrial enzyme activity, 4) maximal oxygen uptake (VO(2max)), 5) venous oxygen desaturation during handgrip exercise and 6) a neurological examination. All MM patients had clinical symptoms of MM, > 2% ragged red fibers in muscle, and impaired oxygen desaturation during handgrip. Fourteen of 16 patients had impaired VO(2max), 10/16 had elevated resting plasma lactate, and 10/11 that were investigated had impaired citrate synthase-corrected complex I activity. Resting PCr/P(i) ratio and leg P(i) recovery were lower in MM patients vs. healthy subjects. PCr and ATP production after exercise were similar in patients and healthy subjects. Although the specificity for MM of some (31)P-MRS variables was as high as 100%, the sensitivity was low (0-63%) and the diagnostic strength of (31)P-MRS was inferior to the other diagnostic tests for MM. Thus, (31)P-MRS should not be a routine test for MM, but may be an important research tool.  相似文献   

3.
We examined muscle sections from 3 patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), using single-fiber polymerase chain reaction, histochemistry, and in situ hybridization. Most type 1 ragged-red fibers showed positive cytochrome c oxidase activity at the subsarcolemmal region, while type 2 ragged-red fibers had little cytochrome c oxidase activity. However, there was no difference in the amount of total (mutant and wild-type) mitochondrial DNAs (mtDNAs) and the proportion of mutant mtDNA between type 1 and type 2 ragged-red fibers. These observations suggest that mitochondrial proliferation and nuclear factors affect muscle pathology, including cytochrome c oxidase activity, in MELAS. Total mtDNAs were greatly increased in ragged-red fibers (about 5–17 times over those in non–ragged-red fibers). The proportion of mutant mtDNA was significantly higher in ragged-red fibers (88.1 ± 5.5%) than in non–ragged-red fibers (63.2 ± 21.6%). Thus, the amount of wild-type mtDNA as well as mutant mtDNA was increased in ragged-red fibers in MELAS, failing to support the contention of a replicative advantage of mutant mtDNA. The proportion of mutant mtDNA was significantly higher in the strongly succinate dehydrogenase–reactive blood vessels (83.2 + 4.2%) than in non–succinate dehydrogenase–reactive blood vessels (38.8 ± 16.2%). It seems likely that systemic vascular abnormalities involving cerebral vessels lead to the evolution of stroke-like episodes in MELAS.  相似文献   

4.
To date, the beta amyloid (Abeta) cascade hypothesis remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is unclear. The mitochondria play central role in the bioenergetics of the cell and apoptotic cell death. In the past 20 years research has been directed at clarifying the involvement of mitochondria and defects in mitochondrial oxidative phosphorylation in late-onset neurodegenerative disorders, including AD. Morphological, biochemical and genetic abnormalities of the mitochondria in several AD tissues have been reported. Impaired mitochondrial respiration, particularly COX deficiency, has been observed in brain, platelets and fibroblasts of AD patients. The "mitochondrial cascade hypothesis" could explain many of the biochemical, genetic and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress and accumulation of Abeta, which in a vicious cycle reinforces the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria in the cascade of events leading to AD, and we will try to provide an answer to the question "what comes first".  相似文献   

5.
Understanding the pathobiology of mitochondrial (mt) DNA diseases involves both characterization of the effects of individual mutations on respiratory function and elucidation of the changes in mutation load and distribution (energy mosaicism) over serial cell generations. Whether a given mutation is stably maintained, or increases or decreases with cell growth, is one of the determinants as to whether a particular tissue will be affected by oxidative phosphorylation failure. In this study, we correlated mt genotype with biochemical phenotype in myoblasts from patients with pathogenic mtDNA mutations. The dominant process detected was a progressive elimination of mutant mtDNA genomes concomitant with an improvement in respiratory chain activity, suggesting that energetically normal cells have a growth advantage over those with a high mutation load. We propose that this elimination is by biased distribution of wild-type mtDNA to daughter cells, and that a similar mechanism could operate in vivo and contribute to both the clinical expression of mt disease and the maintenance of a predominantly wild-type mt genome pool across generations. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:599–609, 1998.  相似文献   

6.
Three siblings of a family affected with Leber's hereditary optic neuropathy (LHON) showed a mitochondrial DNA mutation at position 11778. The lactate response to a standardized effort was increased in only one case. Muscle biopsies and biochemistry of muscle and platelet mitochondrial enzymes were normal. All patients showed an altered energy metabolism during exercise and during recovery after exercise on phosphorus 31-magnetic resonance spectroscopy (31P-MRS) of muscle. Brain 31P-MRS showed a decreased energy reserve (decreased PCr/Pi ratio) in all patients. 31P-MRS noninvasively demonstrated an altered mitochondrial energy metabolism in muscle and, for the first time, in the brains of LHON patients.  相似文献   

7.
31P-magnetic resonance spectroscopy (31P-MRS) provides new biochemical information on mitochondrial disorders affecting brain and muscle. To elucidate the mechanisms of mitochondrial abnormalities, however, animal models are needed. We assessed the movbr (mottled viable brindled) mouse for its value in studying (1) energetics of a mitochondrial disorder and (2) 31P-MRS changes associated with mitochondrial abnormalities in vivo. The maximal activity of succinate-cytochrome c reductase was significantly reduced in movbr muscle compared to controls, whereas cytochrome oxidase activity was only reduced in movbr brain. 31P-MRS of movbr brain showed an increased pH, but no changes in any metabolite ratios. The phosphocreatine (PCr) recovery rate after exercise was reduced in muscles from movbr mice, indicating impairment of oxidative metabolism. We conclude that movbr brain and muscle tissue have biochemical abnormalities consistent with mitochondrial impairment. The PCr recovery rate, measured by 31P-MRS, was sensitive to the muscle abnormality. This strain is best described as having chronic mitochondrial dysfunction. © 1997 John Wiley & Sons, Inc. Muscle Nerve 20: 1352–1359, 1997  相似文献   

8.
We studied in vivo muscle energy metabolism in patients with Huntington's disease (HD) and dentatorubropallidoluysian atrophy (DRPLA) using 31P magnetic resonance spectroscopy (MRS). Twelve gene-positive HP patients (4 presymptomatic patients) and 2 gene-positive DRPLA patients (1 presymptomatic patient) were studied. 31P-MRS at rest showed a reduced phosphocreatine-to-inorganic phosphate ratio in the symptomatic HD patients and DRPLA patient. Muscle adenosine triphosphate/(phosphocreatine + inorganic phosphate) at rest was significantly reduced in both groups of symptomatic and presymptomatic HD subjects and was below the normal range in the 2 DRPLA subjects. During recovery from exercise, the maximum rate of mitochondrial adenosine triphosphate production was reduced by 44% in symptomatic HD patients and by 35% in presymptomatic HD carriers. The maximum rate of mitochondrial adenosine triphosphate production in muscle was also reduced by around 46% in the 2 DRPLA subjects. Our findings show that HD and DRPLA share a deficit of in vivo mitochondrial oxidative metabolism, supporting a role for mitochondrial dysfunction as a factor involved in the pathogenesis of these polyglutamine repeat-mediated neurodegenerative disorders. The identification of 31P-MRS abnormalities may offer a surrogate biochemical marker by which to study disease progression and the effects of treatment in HD and DRPLA.  相似文献   

9.
Taylor  R.W.  Wardell  T.M.  Lightowlers  R.N.  Turnbull  D.M. 《Neurological sciences》2000,21(3):S909-S912
Mitochondrial DNA (mtDNA) is the only autonomously replicating source of DNA outside the nucleus. The mitochondrial genome encodes thirteen essential polypeptides of the mitochondrial respiratory chain. Defects of the mitochondrial genome can cause severe neurological and multi-systemic disorders. In many patients there is a mixture of mutated and wild-type mtDNA in the same cell (a situation termed heteroplasmy). In these patients the ratio of mutated to wild-type mtDNA is crucial and a biochemical defect only occurs with relatively high levels of mutated mtDNA within an individual cell. This threshold also seems to be critical in the development of mtDNA disease. Since the gentic defect causes a dysfunction in the terminal stage of oxidative metabolism, there is little potential for pharmacological intervention. Molecular techniques must be developed to reverse the ratio of mutated and wild-type mtDNA. In this paper we summarise our approach using both antigenomic peptide nucleic acis and cell necrosis.  相似文献   

10.
The authors studied seven patients with mitochondrial DNA (mtDNA) myopathy. Over time, there was a progressive depletion of mtDNA, which preferentially affected wild-type mitochondrial genomes. This suggests that loss of wild-type mtDNA is a major feature of mtDNA myopathy, and preventing wild-type mtDNA depletion has treatment implications.  相似文献   

11.
Cytochrome c oxidase (COX)-deficient fibers and multiple mitochondrial DNA (mtDNA) deletions are frequent findings in sporadic inclusion body myositis (s-IBM). However, the functional impact of these defects is not known. We investigated oxygen desaturation during exercise using the forearm exercise test, accumulation of lactate during exercise using a cycle ergometry test and mitochondrial changes (COX-deficient fibers, biochemical activities of respiratory chain complexes, multiple mtDNA deletions by long-range polymerase chain reaction) in 10 patients with s-IBM and compared the findings with age and sex-matched normal and diseased controls (without mitochondrial disorders) as well as patients with mitochondrial disorder due to nuclear gene defects resulting in multiple mtDNA deletions (MITO group). The mean age of the s-IBM patients was 68.2 ± 5.7 years (range: 56–75). Patients with s-IBM had statistically significantly reduced oxygen desaturation (ΔsO2) during the handgrip exercise (p < 0.05) and elevated peak serum lactate levels during cycle ergometry compared to normal controls (p < 0.05). The percentage of COX-deficient fibers in s-IBM and MITO patients was significantly increased compared to normal controls (p < 0.01). Five out of nine s-IBM patients had multiple mtDNA deletions. Thirty-three percent of s-IBM patients showed an increased citrate synthase content and decreased activities of complex IV (COX). The biochemical pattern of respiratory chain complexes in patients with s-IBM and MITO was similar. Histopathological analysis showed similar changes in s-IBM and MITO due to nuclear gene defects. Functional tests reflecting mitochondrial impairment suggest a contribution of mitochondrial defects to disease-related symptoms such as fatigue and exertion-induced symptoms.  相似文献   

12.
Deletions of the mitochondrial genome were identified in 21 out of 58 patients (36 percent) with mitochondrial myopathies, 47 of whom had defects in the mitochondrial respiratory chain. In cases with Complex I defects, the deleted regions of mtDNA, were confined to structural genes encoding Complex I subunits but additionally involved the intervening tRNA genes and in one case included the large and small rRNA genes. In cases with more extensive loss of respiratory chain function, the deletions eliminated genes encoding subunits of Complexes I, IV and V, as well as several tRNAs. Complex I and Complex IV polypeptides were usually normal in deleted cases. This was in contrast to 7 out of 22 patients without detectable mtDNA deletions, who showed specific deficiencies of subunits encoded by nuclear genes. Further studies in one of these cases pointed to defective translocation of the Rieske precursor from the cytosol into the mitochondria. The genetic basis of the disease in 15 cases without detectable deletions or specific subunit deficiencies, remains unknown. The multiple biochemical abnormalities encountered in these cases would be consistent with more subtle alterations of the mitochondrial genome.  相似文献   

13.
In a double-blinded, placebo-controlled, crossover study in seven mitochondrial myopathy patients (MM), we investigated whether lowering of lactate with dichloroacetate (DCA) can improve exercise tolerance and oxidative capacity in MM. DCA lowered plasma lactate at rest and during exercise (from 10.5 +/- 2.0 to 5.0 +/- 1.6 mM; p = 0.005) but did not improve maximal work load or VO2 in cycle exercise or phosphorous magnetic resonance spectroscopy (31P-MRS)-assessed indices of muscle oxidative metabolism. This indicates that lactate acidosis is not the primary cause of exercise intolerance in MM.  相似文献   

14.
We used 31P magnetic resonance spectroscopy (31P-MRS) to asses in vivo skeletal muscle mitochondrial function in 10 Leber's hereditary optic neuropathy patients/carriers with a mitochondrial DNA (mtDNA) mutation at one of three nucleotide positions, 11,778, 14,484, and 3,460. We studied one affected patient for each mutation and two unaffected carriers with the 11,778 or 3,460 mutation and three carriers with 14,484. All subjects were homoplasmic except the two 3,460 carriers, who showed 80% and 15% of mutated mtDNA. 31P-MRS at rest disclosed some abnormalities in all subjects. In particular, the phosphorylation potential was below the normal range in all cases. During recovery from exercise, the maximum rate of mitochondrial ATP production (Vmax) was reduced to 27% of normal in the 11,778 mutation and to 53% in the 14,484 mutation patient/carrier groups. Mitochondrial Vmax was within the normal range in all subjects with the 3,460 mutation but correlated inversely with the percentage of mutated mtDNA. This in vivo study shows that the 11,778 mutation causes a mitochondrial impairment more severe than the 14,484 and that the 3,460 mutation results in only a mild depression of muscle mitochondrial function.  相似文献   

15.
Out of 90 Portuguese patients with mitochondrial cytopathy, six harbored the A3243G mutation in the mtDNA tRNA(Leu(UUR)) gene ('MELAS mutation'). They had heterogeneous clinical features, including myopathy with stroke-like episodes, progressive external ophthalmoparesis, diabetes mellitus, and subacute encephalopathy. Histochemical and biochemical analyses of muscle biopsies showed abundant ragged-red fibers reacting positively with the cytochrome oxidase stain, and decreased respiratory chain enzyme activities. On average, the proportion of mutated mtDNA was 67% (20-88%) in tissues from patients and 21% (0-49%) in blood from 20 maternal relatives. The proportion of mutated mitochondrial genomes in muscle did not correlate with clinical presentation or duration of disease. This study, the first in Portuguese patients, confirms the frequent occurrence of the A3243G mutation in patients with mitochondrial diseases, and emphasises the usefulness of genetic testing in reaching a correct diagnosis.  相似文献   

16.
We studied two pedigrees with a mutation at the nucleotide 3243 of mitochondrial DNA (mtDNA). The proband from the first pedigree had clinically defined MELAS plus maternally transmitted insulin-dependent diabetes mellitus (IDDM). The propositus of the other pedigree had exercise intolerance, lactic acidosis and ragged-red fibers (RRF). In the first pedigree, both the mother and the sister's proband harbored the point mutation in their muscle. The mother had 40% of mutant mitochondrial genomes and the sister 70%. In the second pedigree, the mutation was present in both muscle and blood from the proband as well as in blood from all other members studied. Proportion of mutant mtDNA was 90% in muscle and ranged from 40% to 90% in blood.  相似文献   

17.
Occipital lobe and calf muscle energy metabolism were studied in vivo by magnetic resonance spectroscopy (31P-MRS) in four members of a family harbouring the mitochondrial DNA G3460A mutation causing Leber's hereditary optic neuropathy (LHON). Three siblings carried 100% mutated mitochondrial DNA (homoplasmy), while their mother had coexistence of mutated and wild-type mitochondrial DNA (heteroplasmy). Indices of brain energy metabolism on 31P-MRS were abnormal in all subjects examined, but the muscle oxidative phosphorylation rate was normal. These findings indicate a tissue specific distribution of the biochemical expression of the G3460A LHON mutation and suggest that extramitochondrial factors, such as nuclear genes, may influence expression of this mutation in vivo.  相似文献   

18.
Exercise training in mitochondrial myopathy: a randomized controlled trial   总被引:2,自引:0,他引:2  
Patients with mitochondrial myopathies (MM) usually suffer from exercise intolerance due to their impaired oxidative capacity and physical deconditioning. We evaluated the effects of a 12-week supervised randomized rehabilitation program involving endurance training in patients with MM. Twenty MM patients were assigned to a training or control group. For three nonconsecutive days each week, patients combined cycle exercise at 70% of their peak work rate with three upper-body weight-lifting exercises performed at 50% of maximum capacity. Training increased maximal oxygen uptake (28.5%), work output (15.5%), and minute ventilation (40%), endurance performance (62%), walking distance in shuttle walking test (+95 m), and peripheral muscle strength (32%-62%), and improved Nottingham Health Profile scores (21.47%) and clinical symptoms. Control MM patients did not change from baseline. Results show that our exercise program is an adequate training strategy for patients with mitochondrial myopathy.  相似文献   

19.
It is well established that regular aerobic exercise training reduces all-cause mortality and improves a number of health outcomes. However, a marked heterogeneity in the training-induced changes, e.g. in terms of aerobic fitness, has been observed in healthy human subjects, even with highly standardized training programs. Mean improvements in aerobic fitness, expressed as maximal oxygen consumption, have been about 10-15% of the baseline values, but the training-induced changes have ranged from almost none to a 40% increase. The exact nature of the mechanisms responsible for this heterogeneity in response to regular aerobic exercise is not well known. In this review, we consider evidence of the association between the autonomic nervous system (ANS), aerobic fitness and aerobic training-induced changes in fitness. Results of recent studies support the hypothesis that assessment of ANS functioning includes important information concerning acute and chronic physiological processes before, during and after aerobic exercise training stimulus. Moreover, we show that daily assessment of ANS activity could serve as an indicator of appropriate physiological condition for aerobic training.  相似文献   

20.
Deletions of mitochondrial DNA in Kearns-Sayre syndrome   总被引:38,自引:0,他引:38  
We have identified large-scale deletions in muscle mitochondrial DNA (mtDNA) in seven of seven patients with Kearns-Sayre syndrome (KSS). We found no detectable deletions in the mtDNA of ten non-KSS patients with other mitochondrial myopathies or encephalomyopathies, or three normal controls. The deletions ranged in size from 2.0 to 7.0 kb, and did not localize to any single region of the mitochondrial genome. The proportion of mutated genomes in each KSS patient ranged from 45% to 75% of total mtDNA. There was no correlation between the size or site of the deletion, biochemical abnormality of mitochondrial enzymes, or clinical severity. The data bolster arguments that KSS is a unique disorder and genetic in origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号