首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Our objective was to develop an array of alpha(7)-selective nicotinic cholinergic receptor (nAChR)-based imaging agents for PET and SPECT. METHODS: (2'R)-N-(11)C-Methyl-N-(phenylmethyl)-spiro[1-azabicyclo[2.2.2]octane-3,2'(3'H)-furo[2,3-b]pyridin]-5'-amine 1 was synthesized by reaction of the corresponding desmethyl precursor with (11)C-CO(2) and reduction. N-(R)-1-Aza-bicyclo[2.2.2]oct-3-yl-4-(11)C-methylsulfanyl-benzamide 2 was synthesized by reduction of the corresponding disulfide precursor and reaction with (11)C-iodomethane. N-(R)-1-Aza-bicyclo[2.2.2]oct-3-yl-4-(125)I-iodo-benzamide 3 was synthesized by halogen exchange of the corresponding bromide. (2'R)-5'-(2-(125)I-iodo-3-furanyl)spiro[1-azabicyclo[2.2.2]octane]-3,2'(3'H)-furo[2,3-b]pyridine 4 was synthesized by the chloramine-T method. Kinetic biodistribution studies were done in male CD-1 mice by tail vein injection of 3.7 MBq (100 microCi) of the (11)C-labeled radiotracer or 0.67 MBq (2 microCi) of the (125)I-labeled radiotracer followed by brain dissection and tissue counting. Receptor blockade was determined by pretreatment of the mice with an excess of either unlabeled precursor or nicotine. RESULTS: We synthesized 4 radiolabeled, moderate- to high-affinity, alpha(7)-nAChR-based ligands. The compounds were a series of quinuclidine derivatives with an inhibition constant (K(i)) < 6 nmol/L (33 pmol/L for 4) for alpha(7)-nAChR and selectivities of alpha(7)/alpha(4)beta(2) subtypes of > or =14,000. All of the compounds were produced in adequate radiochemical yield and specific radioactivity (>74 GBq/micromol [2,000 Ci/mmol]). No site selectivity or receptor blockade was shown for 1 and 2 (0.91 +/- 0.05 and 0.14 +/- 0.03 %ID/g [percentage injected dose per gram] in the hippocampus [target tissue], respectively). Compound 3 showed low hippocampal uptake (0.25 +/- 0.05 %ID/g) but prolonged retention within that structure. Pretreatment with nicotine decreased its uptake by up to 50% in the hippocampus. Similar reductions were also observed within the cerebellum (nontarget tissue). Compound 4 showed hippocampal uptake of 2.41 +/- 0.03 %ID/g and target-to-nontarget uptake ratios of up to 2. Pretreatment of animals with unlabeled 4 resulted in a decrease of hippocampal uptake to 60% of its preblockade value without a corresponding decrease in cerebellar uptake. CONCLUSION: With further structural optimization, selective imaging of alpha(7)-nAChR may be possible.  相似文献   

2.
A radioiodinated derivative of the anorexinergic drug phentermine was synthesized and evaluated as a potential brain imaging agent. Stoichiometric iodination of the intermediate 4-aminophentermine (AmP) gave a mixture of mono and diiodo products, while the radioiodination at the no-carrier-added (NCA) level gave 73% isolated yield of the 3-[125I]iodo-4-aminophentermine with less than 2% of the diiodo derivative. The tissue distribution of the radiochemical in rats showed that it was readily extracted by the brain followed by relatively slow clearance from that organ. However, a comparison with other labeled phentermine derivatives indicated that the total brain uptake, retention and selectivity of the new agent were poorer, probably as a result of the presence of the 4-amino substituent.  相似文献   

3.
[11C]-SIB-1553A ((±)-4-[2-((N-[11C]-methyl)-2-pyrrolidinyl)ethyl]thiophenol) was labelled with carbon-11 (t1/2=20.4 min) and evaluated in vivo as potential radiotracer for noninvasive assessment of the β4 subunit nicotinic acetylcholine neurotransmission system with positron emission tomography (PET). The labelling precursor was obtained within five steps from N-Boc-prolinal in 45–56% overall yields. The radiosynthesis of [11C]-SIB-1553A was achieved by a selective N-[11C]-methylation in 32 min with a radiochemical purity greater than 97%, 7.5–30 GBq/μmol of specific radioactivity and 55–65% radiochemical yield (decay corrected, based on [11C]methyl iodide). The ex vivo pharmacological profile of [11C]-SIB-1553A was evaluated in rats with biodistribution studies in organs and in brain structures by autoradiography. The radiotracer uptake in the brain reached 0.49 %ID/g at 10 min and no brain radiometabolite was detected 40 min after intravenous injection. The quantification of radioactivity in various cerebral structures indicated a significantly higher radioactivity level at 15 min than at 30 min. Among the β4 nAChR subunit-rich structures studied in the rat brain, only the thalamus at 15 and 30 min and the hippocampus at 30 min showed significantly higher uptake. Moreover, competition studies performed with SIB-1553A (15 min before the radiotracer injection) revealed only a low specific binding estimated to 7% of the total binding at 15 min and 13% at 30 min.  相似文献   

4.
p-(123I and 131I)iodo alpha,alpha-dimethylphenethylamine (p-iodophentermine, IP) as the alpha-methylated analogue of iodoamphetamine has been prepared. It is hoped that this methyl substitution will increase the lipophilicity of the agent, enhance resistance to metabolism by monoamine oxidase, and will result in increased initial uptake and slower washout from the brain as compared to N-isopropyl-p-(123I)iodoamphetamine. IP was prepared by diazotization of p-aminophentermine followed by decomposition of the diazonium salt with KI. Radioiodinated IP was prepared either by the solid-phase isotopic exchange reaction or by decomposition of the piperidinotriazene derivative with a radiochemical yield of 40-60%. Biodistribution of 131I-IP in rats showed brain uptake in the range of 1.7% dose g-1 at 5, 30 and 60 min. Imaging studies with 123I-IP in dogs showed high brain extraction and slow washout of activity.  相似文献   

5.
The purpose of this study was to assess the utility of a new single-photon emission tomography ligand, [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), to measure regional nAChR binding in human brain. Six healthy nonsmoker subjects (two men and four women, age 33±15 years) participated in both a bolus (dose: 317±42 MBq) and a bolus plus constant infusion (dose of bolus: 98±32 MBq, B/I=6.7±2.6 h, total dose: 331±55 MBq) study. The study duration was 5–8 h and 14 h in the former and the latter, respectively. Nonlinear least-squares compartmental analysis was applied to bolus studies to calculate total (VT) and specific (VS) distribution volumes. A two-tissue compartment model was applied to identify VS. VT was also calculated in B/I studies. In bolus studies, VT was well identified by both one- and two-tissue compartment models, with a coefficient of variation of less than 5% in most regions. The two-compartment model gave VT values of 51, 22, 27, 32, 20, 19, 20, and 17 ml cm–3 in thalamus, cerebellum, putamen, pons, and frontal, parietal, temporal, and occipital cortices, respectively. The two-compartment model did not identify VS well. B/I studies provided poor accuracy of VT measurement, possibly due to deviations from equilibrium conditions. These results demonstrate the feasibility of quantifying high-affinity type nAChRs using [123I]5-I-A-85380 in humans and support the use of VT measured by bolus studies.  相似文献   

6.
(1S,3aS)-8-(2,3,3a,4,5,6-Hexahydro-1H-phenalen-1-yl)-3-N-[11C]methyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one ([11C]methyl-Ro 64-6198), a N-methylated analog of Ro 64-6198, was synthesized and evaluated as a potential radiopharmaceutical for investigating brain nociceptin/orphanin FQ receptors (ORL1 receptors) by positron emission tomography. A racemate of methyl-Ro 64-6198, Ro 66-7931, showed a high affinity and selectivity for the ORL1 receptor in vitro. An in vivo distribution study in mice demonstrated moderate brain uptake, however, only slight difference was observed among brain regions. Furthermore, pretreating with nociceptin or Ro 66-7931 did not affect the accumulation. Therefore, despite its high affinity, [11C]methyl-Ro 64-6198 does not appear to be a suitable tracer for in vivo ORL1 receptor imaging studies.  相似文献   

7.
(1S,3aS)-8-(2,3,3a,4,5,6-Hexahydro-1H-phenalen-1-yl)-3-N-[11C]methyl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one ([11C]methyl-Ro 64-6198), a N-methylated analog of Ro 64-6198, was synthesized and evaluated as a potential radiopharmaceutical for investigating brain nociceptin/orphanin FQ receptors (ORL1 receptors) by positron emission tomography. A racemate of methyl-Ro 64-6198, Ro 66-7931, showed a high affinity and selectivity for the ORL1 receptor in vitro. An in vivo distribution study in mice demonstrated moderate brain uptake, however, only slight difference was observed among brain regions. Furthermore, pretreating with nociceptin or Ro 66-7931 did not affect the accumulation. Therefore, despite its high affinity, [11C]methyl-Ro 64-6198 does not appear to be a suitable tracer for in vivo ORL1 receptor imaging studies.  相似文献   

8.
In our search for a platelet-specific labeling agent, metaraminol (MA), a low-toxic pharmaceutical for the treatment of hypotension and cardiogenic shock, attracted our attention. Its active incorporation and accumulation by platelets have been recognized. At first, the preparation of 125I radioiodinated metaraminol (125I-MA) was carried out using the chloramine-T method. Then, upon the harvest of platelets as platelet-rich plasma (PRP), their labeling with this new radiopharmaceutical was easily performed by incubation for 10 min at 37° C. The cell-labeling efficiency was dependent on cell density, reaching 63.0%±3.1% at 2.4x109 cells/ml. The specific incorporation of 125I-MA by an active transport system similar to that of 5-hydroxytryptamine (5-HT) as well as by passive diffusion was demonstrated. In in vitro studies, the unaltered state of 125I-MA-labeled platelets with their cellular functions fully retained was estimated. In vivo studies carried out in rabbits with induced thrombi in the femoral artery showed a rather rapid disappearance of the radioactivity from circulating blood, reaching a high thrombus-to-blood activity ratio of 19.8±4.3 within 30 min of the administration of 125I-MA-labeled autologous platelets. Thus, with the potential availability of 123I, 123I-MA-labeled platelets appear to be a promising agent for thrombus imaging using single-emission computed tomography (CT) studies.  相似文献   

9.
A novel bifunctional coupling agents-biomolecular compound DMP-NGA was prepared by coupling the SATP with galactosyl-neoglycoalbumin (NGA). The DMP-NGA was labeled with technetium-99 m, and the radiochemical purity in excess of 98% after purified with HPLC. In vivo biodistribution showed that 99mTc-DMP-NGA had very high initial liver uptake with good retention. The liver accumulated 99.35±9.77%, 74.25±3.03%, 52.47±7.58% of the injected dose per gram at 5, 30 and 120 min after injection, respectively. It had relative higher initial liver uptake and much lower blood uptake than that of 99mTc-GSA. The liver/blood ratio reached 83.4 at 30 min post-injection, while the ratio of liver/kidney was 14.4. The uptakes in other organs in the abdomen were also slightly low. In addition, the hepatic uptake of 99mTc-DMP-NGA was blocked by preinjecting free GSA as blocking agent. The result indicates that 99mTc-DMP-NGA has specific binding to ASGP receptor. Images acquired with Kodak In-Vivo Imaging System FX Pro showed significant difference before and after inhibition. The promising biological properties of 99mTc-DMP-NGA afford potential applications in liver receptor imaging for assessment of hepatocyte function.  相似文献   

10.
The loss of mitochondrial function has been implicated in a number of maladies such as Huntington's disease, Parkinson's disease (PD), cancer and cardiovascular disease. The objective of this research was to develop a radiolabeled mitochondrial probe. Two tracers, 7'-Z-iodorotenol and 7'-Z-iodorotenone, analogs of rotenone a natural product that inhibits Complex I of the mitochondrial electron transport chain, have been labeled with iodine-125 in 45-85% yield in a single step from the corresponding tributylstannyl precursor. In vivo distribution in adult male Sprague-Dawley rats for both compounds showed high accumulation in the heart (1.7-3.7 %ID/g at 1 h), a tissue with high mitochondrial content. Z-Iodorotenol did not washout of most tissues between 1 and 2 h postinjection, whereas Z-iodorotenone showed moderate washout (7-26%) over the same period. By 24 h, there was significant loss of both compounds from most tissues including the heart. Heart-to-blood, -lung and -liver ratios for Z-iodorotenone of 28.9, 10.7 and 2.4, respectively, were two- to fourfold higher than the Z-iodorotenol ratios. Compared to the current clinical perfusion tracers, 99mTc-sestamibi and 99mTc-tetrofosmin, Z-iodorotenone demonstrates similar 1 h heart accumulation and significantly higher heart-to-lung ratio (P<.001). Z-Iodorotenone heart-to-liver ratio is equivalent to 99mTc-sestamibi. 7'-Z-Iodorotenone possesses distribution characteristics of an improved tracer for SPECT perfusion studies.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) play an important role in tobacco dependence and a potential therapeutic role in neuropsychiatric disorders such as Alzheimer's disease. [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380) is a new SPECT tracer that labels alpha4beta2 nAChRs. The purpose of this study was to assess the usefulness of this tracer to measure regional nAChR binding in baboon brain using both a bolus/kinetic paradigm and also a bolus plus constant infusion/equilibrium paradigm. METHODS: A pair of bolus/kinetic and bolus plus constant infusion/equilibrium studies was performed in each of 3 isoflurane-anesthetized baboons. Bolus studies were performed by intravenous injection of 191-226 MBq [123I]5-I-A-85380 and image acquisition for 289-367 min. The data were analyzed with 1- and 2-tissue compartment models. Bolus plus constant infusion/equilibrium studies were performed by a bolus injection (74-132 MBq) followed by a 468- to 495-min infusion with a bolus/infusion ratio (B/I) of 4.8-5.0 h. The distribution volumes in the thalamus were measured in these 2 paradigms. To study whether the cerebellum was appropriate as a receptor-poor region, displacement studies were done in 2 baboons using the B/I paradigm with subcutaneous injection of (-)-cytisine (0.8 and 1.0 mg/kg). RESULTS: The kinetics of this tracer was best described by the 1-tissue compartment model. The 2-compartment model showed poor identifiability of rate constants. The total (specific plus nondisplaceable compartments) distribution volumes (V(T)') agreed between bolus and B/I paradigms (average percentage difference in V(T)', 16.8%). (-)-Cytisine (0.8 and 1.0 mg/kg) displaced 70% and 72% of the radioactivity in the thalamus and 36% and 55% in the cerebellum, respectively, indicating that the latter was not appropriate as a receptor-poor region. CONCLUSION: These results show the feasibility of quantifying alpha4beta2 nAChRs using [123I]5-I-A-85380 and support the use of V(T)' as an appropriate outcome measure.  相似文献   

12.
In vitro binding characteristics of a CNS dopamine D-2 receptor imaging agent, (S)-N-[(1-ethyl-2-pyrrolidinyl)] methyl-2-hydroxy-3-iodo-6-methoxybenzamide [( 125I]IBZM), was carried out in rats. Also brain images, as well as organ biodistribution were determined in a monkey following the administration of 123I-labeled compound. The S-(-)-I[125I]IBZM showed high specific dopamine D-2 receptor binding in rat striatum (Kd = 0.426 +/- 0.082 nM, Bmax = 480 +/- 22 fmol/mg of protein). Competition of various ligands for the IBZM binding displayed the following rank order of potency: spiperone greater than S(-)IBZM much greater than R(+)IBZM greater than or equal to S(-)BZM greater than dopamine greater than ketanserin greater than SCH-23390 much greater than propranolol, norepinephrine, serotonin. In vivo planar images of a monkey injected with [123I]IBZM demonstrated a high concentration in basal ganglia of brain. The ratios of activity in the basal ganglia to cerebellum and the cortex to cerebellum in monkey brain were 4.93 and 1.44, respectively, at 120 min postinjection. These preliminary results indicate that [123I]IBZM is a potentially promising imaging agent for the investigation of dopamine D-2 receptors in humans.  相似文献   

13.
Purpose We have labelled hypericin, a polyphenolic polycyclic quinone found in St. John’s wort (Hypericum perforatum), with 123I and evaluated mono-[123I]iodohypericin (MIH) as a potential necrosis-avid diagnostic tracer agent. Methods MIH was prepared by an electrophilic radioiodination method. The new tracer agent was evaluated in animal models of liver infarction in the rat and heart infarction in the rabbit using single-photon emission computed tomography (SPECT), triphenyltetrazolium chloride (TTC) histochemical staining, serial sectional autoradiography and microscopy, and radioactivity counting techniques. Results Using in vivo SPECT imaging, hepatic and cardiac infarctions were persistently visualised as well-defined hot spots over 48 h. Preferential uptake of the tracer agent in necrotic tissue was confirmed by perfect match of images from post-mortem TTC staining, autoradiography (ARX) and histology. Radioactivity concentration in infarcted tissues was over 10 times (liver; 3.51% ID/g in necrotic tissue vs 0.38% ID/g in normal tissue at 60 h p.i.) and over 6 times (myocardium; 0.36% ID/g in necrotic tissue vs 0.054% ID/g in normal tissue; ratios up to 18 for selected parts on ARX images) higher than in normal tissues. Conclusion The results suggest that hypericin derivatives may serve as powerful necrosis-avid diagnostic agents for assessment of tissue viability.  相似文献   

14.
15.
Introduction[18F]-(E)-3-((6-Fluoropyridin-2-yl)ethynyl)cyclohex-2-enone O-methyl oxime ([18F]-FPECMO) is a novel derivative of [11C]-ABP688. [18F]-FPECMO was characterized as a PET imaging agent for the metabotropic glutamate receptor subtype 5 (mGluR5).Methods[18F]-FPECMO was synthesized in a one-step reaction sequence by reacting [18F]-KF-K222 complex with (E)-3-((6-bromopyridin-2-yl)ethynyl)cyclohex-2-enone O-methyl oxime in dry DMSO. The in vitro affinity of FPECMO was determined by displacement assays using rat whole brain homogenates (without cerebellum) and the mGluR5-specific radioligand [3H]-M-MPEP. Further in vitro characterization involved metabolite studies, lipophilicity determination and autoradiographical analyses of brain slices. In vivo evaluation was performed by postmortem biodistribution studies and PET experiments using Sprague-Dawley rats.ResultsThe radiochemical yield after semipreparative HPLC was 35±7% and specific activity was >240 GBq/μmol. [18F]-FPECMO exhibited optimal lipophilicity (logD=2.1) and high metabolic stability in vitro. Displacement studies revealed a Ki value of 3.6±0.7 nM for FPECMO. Biodistribution studies and ex vivo autoradiography showed highest radioactivity accumulation in mGluR5-rich brain regions such as the striatum and hippocampus. Co-injection of [18F]-FPECMO and ABP688 (1 mg/kg body weight), an mGluR5 antagonist, showed 40% specific binding in the striatum, hippocampus and cortex, regions known to contain high densities of the mGluR5. PET imaging, however, did not allow the visualization of mGluR5-rich brain regions in the rat brain due to a fast washout of [18F]-FPECMO from mGluR5-expressing tissues and rapid defluorination.Conclusions[18F]-FPECMO showed significant potential for the detection of mGluR5 in vitro; however, its in vivo characteristics are not optimal for a clear-cut visualization of the mGluR5 in rats.  相似文献   

16.
The radiochemical syntheses of 5-[125I]iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-[125I]-iodo-A-85380, [125I]1) and 5-[123I]-iodo-A-85380, [123I]1, were accomplished by radioiodination of 5-trimethylstannyl-3-((1-tert-butoxycarbonyl-2(S)-azetidinyl)metho xy)pyridine, 2, followed by acidic deprotection. Average radiochemical yields of [125I]1 and [123I]1 were 40-55%; and the average specific radioactivities were 1,700 and 7,000 mCi/mumol, respectively. Binding affinities of [125I]1 and [123I]1 in vitro (rat brain membranes) were each characterized by a Kd value of 11 pM. Preliminary in vivo assay and ex vivo autoradiography of mouse brain indicated that [125I]1 selectively labels nicotinic acetylcholine receptors (nAChRs) with very high affinity and specificity. These studies suggest that [123I]1 may be useful as a radioligand for single photon emission computed tomography (SPECT) imaging of nAChRs.  相似文献   

17.
This study reports the synthesis and characterization of N-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl-4-[18F]fluorobenzamide ([18F]MPP3F). The total reaction time for [18F]MPP3F, including final high-performance liquid chromatography purification, was about 3 h. Typical decay-corrected radiochemical yield was 18.4±3.1%. The radiochemical purity was >98%. Biodistribution in mice showed that [18F]MPP3F is a potential brain imaging agent for positron emission tomography. The brain uptake of [18F]MPP3F was 6.59±0.77% Injected Dose/g at 2 min post-injection time. A brain-to-blood ratio of 3.67 was reached at 15 min after injection.  相似文献   

18.
Central nicotinic acetylcholine receptors (nAChRs) represent major neurotransmitter receptors responsible for various brain functions, and changes in the density of nAChRs have recently been reported in several neurodegenerative diseases. Visualization of nAChRs in human brain has thus been of great interest, and the development of radiopharmaceuticals for the imaging and quantitative assessment of central nAChRs has been desired. In this study, we synthesized 5-(11)C-methyl-3-(2-(S)-azetidinylmethoxy)pyridine (5MA), a derivative of 3-(2-(S)-azetidinylmethoxy)pyridine (A-85380) (11)C-methylated at position 5 of the pyridyl fragment, and evaluated its potential for investigating central nAChRs by PET. METHODS: (11)C-5MA was synthesized by the incorporation of (11)C-methyl iodide into 5-butylstannyl A-85380, using a Pd-catalyzed coupling reaction. The affinity of 5MA for central nAChRs was measured by displacement of (-)-(3)H-cytisine from binding sites in rat cortical membranes. The biodistribution of (11)C-5MA was determined with mice. PET studies were performed on rhesus monkeys with a high-resolution PET scanner for animals. RESULTS: The overall synthesis time was 60 min from the end of radionuclide production, and the radiochemical yield, after purification by high-performance liquid chromatography, was 30%. The radiochemical purity of the product was >99%, with a specific radioactivity of >36 GBq/ micro mol. In vitro receptor-binding assays demonstrated that 5MA has a high, selective binding affinity for nAChRs, being approximately 1.5-fold higher than that of A-85380, 3.5-fold higher than that of (-)-cytisine, and 10-fold higher than that of (-)-nicotine. The distribution studies in mice showed that the brain uptake of (11)C-5MA was profound. Regional cerebral distribution studies in mice demonstrated that the accumulation of (11)C-5MA was consistent with the density of nAChRs, with the highest uptake observed in the thalamus, a moderate uptake in the cortex and striatum, and the lowest uptake in the cerebellum. Furthermore, preinjection of nAChR-binding ligands, (-)-nicotine and (-)-cytisine, reduced the uptake of (11)C-5MA in brain regions of high uptake in the untreated experiment. PET imaging studies with (11)C-5MA in rhesus monkeys demonstrated clear images consistent with the distribution of nAChRs in the brain. CONCLUSION: These results suggest that (11)C-5MA is a potential PET radiopharmaceutical for nuclear medical studies of nAChRs in the brain.  相似文献   

19.
In the present study, a series of (99m)Tc-nitrido dithiocarbamate complexes containing ether linkages have been prepared and their brain perfusion characteristics studied. Two primary dithiocarbamates and two secondary dithiocarbamates were synthesized in >80% yield and were characterized by elemental analyses. The ligands were then labeled using a (99m)Tc-nitrido intermediate, prepared from sodium pertechnetate using commercially available nitrido kit-vials, at a low ligand concentration of 0.1 mg. The prepared complexes were obtained in more than 95% yield and were characterized by paper electrophoresis and HPLC. All the complexes were found to be neutral and eluted out as a single species in HPLC. Biodistribution studies were carried out in normal Swiss mice. All the complexes showed uptake in the brain. (99m)TcN complexes of secondary dithiocarbamates showed higher initial brain uptake (5 min p.i.) than their primary amine counterparts. However, all the complexes exhibited rapid washout from the brain.  相似文献   

20.
An isotopic exchange method was used to label lipiodol with 131I. The labelling efficiency was > 92.5%, and the radiochemical purity of [131I]lipiodol was above 98% as determined by ITLC. The influencing factors e.g. the heating temperature, reaction time, pH and storage conditions were studied and the optimum conditions were determined.In a pilot study injecting [131I]lipiodol for the treatment of hepatoma, about 70% of hepatoma patients had a response to the treatment with a reduction of α-fetoprotein and decrease of hepatoma sizes. The overall median survival was 9 months (range 2–17 months).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号