首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington's disease (HD) is characterized by loss of striatal gamma-aminobutyric acid (GABA)ergic medium-sized spiny projection neurons (MSSNs), whereas some classes of striatal interneurons are relatively spared. Striatal interneurons provide most of the inhibitory synaptic input to MSSNs and use GABA as their neurotransmitter. We reported previously alterations in glutamatergic synaptic activity in the R6/2 and R6/1 mouse models of HD. In the present study, we used whole-cell voltage clamp recordings to examine GABAergic synaptic currents in MSSNs from striatal slices in these two mouse models compared to those in age-matched control littermates. The frequency of spontaneous GABAergic synaptic currents was increased significantly in MSSNs from R6/2 transgenics starting around 5-7 weeks (when the overt behavioral phenotype begins) and continuing in 9-14-week-old mice. A similar increase was observed in 12-15-month-old R6/1 transgenics. Bath application of brain-derived neurotrophic factor, which is downregulated in HD, significantly reduced the frequency of spontaneous GABAergic synaptic currents in MSSNs from R6/2 but not control mice at 9-14 weeks. Increased GABA current densities also occurred in acutely isolated MSSNs from R6/2 animals. Immunofluorescence demonstrated increased expression of the ubiquitous alpha1 subunit of GABA(A) receptors in MSSNs from R6/2 animals. These results indicate that increases in spontaneous GABAergic synaptic currents and postsynaptic receptor function occur in parallel to progressive decreases in glutamatergic inputs to MSSNs. In conjunction, both changes will severely alter striatal outputs to target areas involved in the control of movement.  相似文献   

2.
The possible localization of cannabinoid (CB) receptors to glutamatergic and GABAergic synaptic terminals impinging upon GABAergic interneurons in the CA1 region of the rat hippocampus was examined using the electrophysiological measurement of neurotransmitter release in brain slices. Whereas activation of cannabinoid receptors via the application of the cannabinoid agonist WIN55,212-2 significantly and dose-dependently reduced evoked IPSCs recorded from interneurons possessing somata located in the stratum radiatum (S.R.) and stratum oriens (S.O.) lamellae, evoked glutamatergic EPSCs were unaffected in both neuronal populations. However, in agreement with previous reports, WIN55,212-2 significantly reduced EPSCs recorded from CA1 pyramidal neurons. Additional experiments confirmed that the effects of WIN55,212-2 on IPSCs were presynaptic and that they could be blocked by the CB1 receptor antagonist SR141716A. The involvement of endogenous cannabinoids in the presynaptic inhibition of GABA release was also examined in the interneurons and pyramidal cells using a depolarization-induced suppression of inhibition (DSI) paradigm. DSI was observed in CA1 pyramidal neurons under control conditions, and its incidence was greatly increased by the cholinergic agonist carbachol. However, DSI was not observed in the S.R. or S.O. interneuron populations, in either the presence or absence of carbachol. Whereas DSI was not present in these interneurons, the inhibitory inputs to these cells were modulated by the synthetic cannabinoid WIN55,212-2. These data support the hypothesis that cannabinoid receptors are located on inhibitory, but not excitatory, axon terminals impinging upon hippocampal interneurons, and that CA1 pyramidal neurons, and not interneurons, are capable of generating endogenous cannabinoids during prolonged states of depolarization.  相似文献   

3.
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) are involved in modulation of synaptic transmission and activity of cerebellar and thalamic neurons. We used subtype-specific antibodies in pre- and postembedding immunohistochemistry combined with three-dimensional reconstruction of labelled profiles and quantification of immunoparticles to reveal the subcellular distribution of pre- and postsynaptic GABA(B)R1a/b and GABA(B)R2 in the rat cerebellum and ventrobasal thalamus. GABA(B)R1a/b and R2 were extensively colocalized in most brain regions including the cerebellum and thalamus. In the cerebellum, immunoreactivity for both subtypes was prevalent in the molecular layer. The most intense immunoreactivity was found in Purkinje cell spines with a high density of immunoparticles at extrasynaptic sites peaking at around 240 nm from glutamatergic synapses between spines and parallel fibre varicosities. This is in contrast to dendrites at sites around GABAergic synapses where sparse and random distribution was found for both subtypes. In addition, more than one-tenth of the synaptic membrane specialization of spine-parallel fibre synapses were labelled at pre- or postsynaptic sites. Weak immunolabelling for both subtypes was also seen in parallel fibres but only rarely in GABAergic axons. In the ventrobasal thalamus, immunolabelling for both receptor subtypes was intense over the dendritic field of thalamocortical cells. Electron microscopy demonstrated an extrasynaptic localization of GABA(B)R1a/b and R2 exclusively in postsynaptic elements. Quantitative analysis further revealed the density of GABA(B)R1a/b around GABAergic synapses was higher than glutamatergic synapses on thalamocortical cell dendrites. The distinct localization of GABA(B)Rs relative to synaptic sites in the cerebellum and ventrobasal thalamus suggests that GABA(B)Rs differentially regulate activity of different neuronal populations.  相似文献   

4.
BACKGROUND: One of the earliest neurochemical alterations observed in both Huntington's disease (HD) patients and HD animal models is the dysregulation of the endocannabinoid system, an alteration that precedes the development of identifiable striatal neuropathology. How this alteration impacts striatal synaptic transmission is unknown. METHODS: We measured the effects of cannabinoid receptor stimulation on gamma-aminobutyric acid (GABA)-ergic synaptic currents recorded from striatal neurons of R6/2 HD mice in the early phase of their disease. RESULTS: The sensitivity of striatal GABA synapses to cannabinoid receptor stimulation is severely impaired in R6/2 HD mice. In particular, whereas in control animals activation of cannabinoid CB1 receptors results in a significant inhibition of both evoked and spontaneous GABA-mediated synaptic events by a presynaptic mechanism, in R6/2 mice this treatment fails to reduce GABA currents but causes, in contrast, a slight increase of spontaneous inhibitory postsynaptic currents (sIPSCs). CONCLUSIONS: Experimental HD was also associated with enhanced frequency of sIPSCs, a result consistent with the conclusion that loss of cannabinoid-mediated control of GABA transmission might contribute to hyperactivity of GABA synapses in the striatum of HD mice. Accordingly, spontaneous excitatory postsynaptic currents, which were not upregulated in R6/2 mice, were still sensitive to cannabinoid receptor stimulation.  相似文献   

5.
GABAergic transmission regulates adult neurogenesis by exerting negative feedback on cell proliferation and enabling dendrite formation and outgrowth. Further, GABAergic synapses target differentiating dentate gyrus granule cells prior to formation of glutamatergic connections. GABA(A) receptors (GABA(A) Rs) mediating tonic (extrasynaptic) and phasic (synaptic) transmission are molecularly and functionally distinct, but their specific role in regulating adult neurogenesis is unknown. Using global and single-cell targeted gene deletion of subunits contributing to the assembly of GABA(A) Rs mediating tonic (α4, δ) or phasic (α2) GABAergic transmission, we demonstrate here in the dentate gyrus of adult mice that GABA(A) Rs containing α4, but not δ, subunits mediate GABAergic effects on cell proliferation, initial migration and early dendritic development. In contrast, α2-GABA(A) Rs cell-autonomously signal to control positioning of newborn neurons and regulate late maturation of their dendritic tree. In particular, we observed pruning of distal dendrites in immature granule cells lacking the α2 subunit. This alteration could be prevented by pharmacological inhibition of thrombospondin signaling with chronic gabapentin treatment, shown previously to reduce glutamatergic synaptogenesis. These observations point to homeostatic regulation of inhibitory and excitatory inputs onto newborn granule cells under the control of α2-GABA(A) Rs. Taken together, the availability of distinct GABA(A) R subtypes provides a molecular mechanism endowing spatiotemporal specificity to GABAergic control of neuronal maturation in adult brain.  相似文献   

6.
Accumulation of GABA(A) receptors (GABA(A)Rs) at GABAergic synapses requires the cytoplasmic loop region and C-terminal transmembrane domain of the receptor gamma2 subunit. We here report a novel interaction of gamma2 with Calcium-Modulating cyclophilin Ligand (CAML), an integral membrane protein that regulates this mechanism. Interaction of GABA(A)Rs with CAML depends on both the cytoplasmic region and fourth transmembrane domain of the gamma2 subunit, CAML immunoprecipitates with GABA(A)Rs from transfected cells and brain lysates and colocalizes with gamma2 in ER vesicles in soma and dendrites of neurons. CAML shRNA treatment results in reduced expression of postsynaptic GABA(A)Rs, along with significant reductions in GABA-evoked whole cell currents and GABAergic synaptic function, while glutamatergic transmission is unaffected. Reduced surface expression of GABA(A)Rs in CAML mutant neurons is associated with selective deficits in recycling of endocytosed GABA(A)Rs to the cell surface. Our results indicate a specific role of CAML in functional expression and endocytic recycling of postsynaptic GABA(A)Rs.  相似文献   

7.
Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder.  相似文献   

8.
Type 1 cannabinoid receptor (CB1) is the principal mediator of retrograde endocannabinoid signaling in the brain. In this study, we addressed the topographic distribution and amino acid neurotransmitter phenotype of endocannabinoid-sensitive hypothalamic neurons in mice. The in situ hybridization detection of CB1 mRNA revealed high levels of expression in the medial septum (MS) and the diagonal band of Broca (DBB), moderate levels in the preoptic area and the hypothalamic lateroanterior (LA), paraventricular (Pa), ventromedial (VMH), lateral mammillary (LM), and ventral premammillary (PMV) nuclei, and low levels in many other hypothalamic regions including the suprachiasmatic (SCh) and arcuate (Arc) nuclei. This regional distribution pattern was compared with location of γ-aminobutyric acid (GABA)ergic and glutamatergic cell groups, as identified by the expression of glutamic acid decarboxylase 65 (GAD65) and type 2 vesicular glutamate transporter (VGLUT2) mRNAs, respectively. The MS, DBB, and preoptic area showed overlaps between GABAergic and CB1-expressing neurons, whereas hypothalamic sites with moderate CB1 signals, including the LA, Pa, VMH, LM, and PMV, were dominated by glutamatergic neurons. Low CB1 mRNA levels were also present in other glutamatergic and GABAergic regions. Dual-label in situ hybridization experiments confirmed the cellular co-expression of CB1 with both glutamatergic and GABAergic markers. In this report we provide a detailed anatomical map of hypothalamic glutamatergic and GABAergic systems whose neurotransmitter release is controlled by retrograde endocannabinoid signaling from hypothalamic and extrahypothalamic target neurons. This neuroanatomical information contributes to an understanding of the role that the endocannabinoid system plays in the regulation of endocrine and metabolic functions.  相似文献   

9.
Huntington disease (HD) is a neurodegenerative disorder involving preferential loss of striatal GABAergic medium spiny neurons. Adenosine A2A receptors (A2ARs) are present in the striatum at both presynaptic and post-synaptic levels. Blocking pre-synaptic A2ARs, localized in glutamatergic terminals that contact striatal GABAergic dynorphinergic neurons, reduces glutamate release, which could be beneficial in HD. On the other hand, blockade of post-synaptic A2ARs, localized in striatal GABAergic enkephalinergic neurons, could exacerbate the motor dysfunction. To evaluate the function of pre- or post-synaptic A2ARs in HD we used selective antagonists for these receptors in a transgenic rat model of HD. Locomotor activity after systemic administration of the postsynaptic A2AR antagonist KW-6002 was used to investigate the function of post-synaptic A2ARs. The role of pre-synaptic A2ARs was instead evaluated by measuring the reduction of the electromyographic response of mastication muscles during electrical stimulation of the orofacial motor cortex after the systemic administration of the presynaptic A2AR antagonist SCH-442416. The ability of KW-6002 to produce locomotor activation was lost at 6 and 12 month-old of age in heterozygous and homozygous transgenic rats, but not in wild-type littermates. Nevertheless, no significant changes were observed up to 12 months of age in the potency of SCH-442416 to decrease the electromyographic response after cortical electrical stimulation. These results agree with a selective impairment of the striatal GABAergic enkephalinergic neuronal function during pre-symptomatic stages in HD. Since presynaptic A2AR function is not impaired, this receptor could probably be used as a target for the symptomatic treatment of the disease.  相似文献   

10.
To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions. We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks. Interneurons with features typical of basket cells showed a selective, intense staining for CB1 in all hippocampal subfields and layers. Most of them (85.6%) contained cholecystokinin (CCK), which corresponded to 96.9% of all CCK-positive interneurons, whereas only 4.6% of the parvalbumin (PV)-containing basket cells expressed CB1. Accordingly, electron microscopy revealed that CB1-immunoreactive axon terminals of CCK-containing basket cells surrounded the somata and proximal dendrites of pyramidal neurons, whereas PV-positive basket cell terminals in similar locations were negative for CB1. The synthetic cannabinoid agonist WIN 55,212-2 (0.01-3 microM) reduced dose-dependently the electrical field stimulation-induced [3H]GABA release from superfused hippocampal slices, with an EC50 value of 0. 041 microM. Inhibition of GABA release by WIN 55,212-2 was not mediated by inhibition of glutamatergic transmission because the WIN 55,212-2 effect was not reduced by the glutamate blockers AP5 and CNQX. In contrast, the CB1 cannabinoid receptor antagonist SR 141716A (1 microM) prevented this effect, whereas by itself it did not change the outflow of [3H]GABA. These results suggest that cannabinoid-mediated modulation of hippocampal interneuron networks operate largely via presynaptic receptors on CCK-immunoreactive basket cell terminals. Reduction of GABA release from these terminals is the likely mechanism by which both endogenous and exogenous CB1 ligands interfere with hippocampal network oscillations and associated cognitive functions.  相似文献   

11.
Approximately 10% of total zinc in the brain exists in synaptic vesicles of glutamatergic neurons; however, the function of vesicular zinc is poorly understood. The presynaptic action of zinc against excitatory and inhibitory neurotransmission was studied in rat hippocampus using in vivo microdialysis. When the hippocampal CA3 region was perfused with 10-300 microM ZnCl(2), the level of glutamate in the perfusate was decreased, whereas the level of gamma-aminobutyric acid (GABA) was increased. Chelation of endogenous zinc with CaEDTA increased the glutamate level in the perfusate but decreased the GABA level, suggesting that zinc released into the synaptic cleft acts differentially on glutamatergic and GABAergic neurons in the CA3 region. The increase of GABA level by zinc was antagonized by 2,3-dioxo-6-nitro-1,2.3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide (NBQX), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, but not affected by MK801, an antagonist of N-methyl-D-aspartate (NMDA) receptors, and verapamil, a blocker of voltage-dependent calcium channels. The present study suggests that zinc enhances GABA release via potentiation of AMPA/kainate receptors in the CA3 region, followed by a decrease in presynaptic glutamate release in the same region. Zinc seems to be an inhibitory neuromodulator of glutamate release.  相似文献   

12.
It was shown recently that Delta9-tetrahydrocannabinol, like several other drugs eliciting euphoria, stimulates dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present work was to clarify the mechanism of this stimulatory effect. Our hypothesis was that cannabinoids depress the GABAergic inhibition of dopaminergic neurons in the VTA. Electrophysiological properties of VTA neurons in rat coronal midbrain slices were studied with the patch-clamp technique. GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by electrical stimulation in the vicinity of the recorded neurons. The amplitude of IPSCs was depressed by the synthetic mixed CB1/CB2 cannabinoid receptor agonist WIN55212-2 (10(-6) and 10(-5) m). The CB1 cannabinoid receptor antagonist SR141716A (10(-6) m) prevented the inhibition produced by WIN55212-2 (10(-5) m). Two observations showed that IPSCs were depressed with a presynaptic mechanism. WIN55212-2 (10(-5) m) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Currents evoked by pressure ejection of muscimol from a pipette were also not changed by WIN55212-2 (10(-5) m). The results indicate that activation of CB1 cannabinoid receptors inhibits GABAergic neurotransmission in the VTA with a presynaptic mechanism. Depression of the GABAergic inhibitory input of dopaminergic neurons would increase their firing rate in vivo. Accordingly, dopamine release in the projection region of VTA neurons, the nucleus accumbens, would also increase.  相似文献   

13.
The cannabinoid CB1 (CB1R) and dopaminergic D2 (D2R) receptors modify GABAergic transmission in the globus pallidus. Although dopaminergic denervation produces changes in the expression and supersensitization of these receptors, the consequences of these changes on GABAergic neurotransmission are unknown. The aim of this study was to show the effects of CB1R and D2R activation and coactivation on the uptake and release of [3H]GABA in the globus pallidus of hemiparkinsonian rats as well as their effects on motor behavior. The activation of CB1R blocked GABA uptake and decreased GABA release in the globus pallidus in the dopamine denervated side, whereas the co‐activation of CB1R‐D2R increased GABA release and had no effect on GABA uptake. A microinjection of the CB1R agonist ACEA into the globus pallidus ipsilaterally to a 6‐OHDA lesion potentiated turning behavior that was induced by methamphetamine. However, a microinjection of the D2R agonist quinpirole did not modify this behavior, and a microinjection of a mixture of CB1R and D2R agonists significantly potentiated turning behavior. The behavioral effects produced after the activation of the CB1R and the co‐activation of CB1R and D2R can be explained by increased GABAergic neurotransmission produced by a block of GABA uptake and an increase in the release of GABA in the globus pallidus, respectively. Synapse 69:103–114, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
A novel, non-CB1 cannabinoid receptor has been defined by the persistence of inhibition of glutamatergic EPSPs by the cannabinoid receptor agonist WIN55,212-2 in mice lacking the cloned CB1 receptor (CB1-/-) (Hajos et al., 2001). This novel receptor was also distinguished from CB1 by its sensitivity to the antagonist SR141716A and its insensitivity to the antagonist AM251 (Hajos & Freund, 2002). We have chosen to refer to this putative receptor as CBsc due to its identification on Schaffer collateral axon terminals in the hippocampus. We examined properties of CBsc receptors in Sprague Dawley (SD) rats and two strains of wild-type (WT) mice (C57BL/6J and CD1) used as backgrounds for two independent lines of CB1-/- mice (Ledent et al., 1999; Zimmer et al., 1999). The inhibition of synaptic glutamate release by WIN55,212-2 was observed in hippocampal slices from WT CD1 mice and SD rats but was absent in WT C57 mice. We also found that AM251 and SR141716A antagonized the effect of WIN55,212-2 in hippocampal slices from CD1 mice and SD rats demonstrating a lack of selectivity of these ligands for CB1 and CBsc receptors in these animals. The results indicate that the glutamate-modulating CBsc cannabinoid receptor is present in the hippocampi of CD1 mice and SD rats but not in C57BL/6J mice. Thus, we have identified animal models that may permit the study of cannabinoids independently of the novel CBsc receptor (C57CB1+/+), the CBsc receptor independently of the cloned CB1 receptor (CD1CB1-/-), or in the absence of both receptors (C57CB1-/-).  相似文献   

15.
16.
Christie SB  de Blas AL 《Neuroreport》2002,13(17):2355-2358
We have used triple-label fluorescence immunocytochemistry to demonstrate that alpha5 subunit-containing GABA(A) receptors (GABA(A)Rs) form large clusters at GABAergic synapses in dendrites and axon initial segment of cultured hippocampal neurons. The large synaptic clusters of alpha5 subunit-containing GABA(A)Rs also contained alpha1, beta2/3, gamma2 GABA(A)R subunits and gephyrin. The alpha5 subunit-containing GABA(A)Rs also formed small clusters. The small clusters were not associated with GABAergic synapses and often did not co-localize with gephyrin.  相似文献   

17.
The presence of group III metabotropic glutamate receptors on GABAergic terminals in the supraoptic nucleus suggests that the level of glutamate in the extracellular space may regulate synaptic strength at inhibitory synapses. To test this hypothesis we examined the consequences of increasing ambient glutamate on GABA-mediated synaptic activity in supraoptic neurons. The concentration of the excitatory amino acid in the extracellular space was increased pharmacologically by blocking glutamate transporters. Inhibition of the astrocyte-specific GLT-1 glutamate transporter led to a reversible decrease in evoked inhibitory postsynaptic current amplitude. This modulation had a presynaptic origin as revealed by analysis of paired-pulse ratio and miniature inhibitory currents. Furthermore, blocking group III metabotropic glutamate receptors with the specific antagonist MAP4 prevented the depression of GABAergic transmission induced by glutamate transporter blockade. Thus, presynaptic metabotropic glutamate receptors located on inhibitory terminals in the supraoptic nucleus appear to sense changes in ambient glutamate and modify GABA release accordingly. However, it seems that such changes need to reach a certain magnitude because the discrete deficit in glutamate clearance which occurs in the supraoptic nucleus of lactating rats is not sufficient to modulate GABA-mediated transmission. These results suggest that ambient glutamate contributes to the modulation of synaptic efficacy not only at glutamatergic synapses but also at inhibitory GABAergic synapses.  相似文献   

18.
The ventral tegmental area (VTA) has three major classes of neurons: dopaminergic (expressing tyrosine hydroxylase; TH), GABAergic (expressing vesicular GABA transporter; VGaT) and glutamatergic (expressing vesicular glutamate transporter 2; VGluT2). While VTA dopaminergic and GABAergic neurons have been further characterized by expression of calcium‐binding proteins (calbindin, CB; calretinin, CR or parvalbumin, PV), it is unclear whether these proteins are expressed in rat VTA glutamatergic neurons. Here, by a combination of in situ hybridization (for VGluT2 mRNA detection) and immunohistochemistry (for CB‐, CR‐ or PV‐detection), we found that among the total population of VGluT2 neurons, 30% coexpressed CB, 3% coexpressed PV and <1% coexpressed CR. Given that some VGluT2 neurons coexpress TH or VGaT, we examined whether these neurons coexpress CB, and found that about 20% of VGluT2‐CB neurons coexpressed TH and about 13% coexpressed VGaT. Because VTA TH‐CB neurons are known to target the nucleus accumbens (nAcc), we determined whether VGluT2‐CB‐TH neurons innervate nAcc, and found that about 80% of VGluT2‐CB neurons innervating the nAcc shell coexpressed TH. In summary, (a) CB, PV and CR are detected in subpopulations of VTA‐VGluT2 neurons; (b) CB is the main calcium‐binding protein present in VTA‐VGluT2 neurons; (c) one‐third of VTA‐VGluT2 neurons coexpress CB; (d) some VTA‐VGluT2‐CB neurons have the capability to co‐release dopamine or GABA, and (e) a subpopulation of VTA glutamatergic‐dopaminergic neurons innervates nAcc shell. These findings further provide evidence for molecular diversity among VTA‐VGluT2 neurons, neurons that may play a role in specific circuitry and behaviours.  相似文献   

19.
Su CK 《Brain research》2001,904(1):51-125
Endogenous neurotransmitter activities underlying the sympathetic nerve discharge (SND) generated by newborn rat spinal cord in vitro were investigated using glutamatergic, glycinergic, and GABAergic antagonists. Under control conditions, the SND power spectrum had two major frequency components: synchronous bursting SND (bSND) with power dominant at < 0.1 Hz and quasiperiodic SND (qSND) oscillating at 1-2 Hz. Using high Mg2+ solution (12-24 mM) to block Ca2+-dependent synaptic transmission reversibly abolished SND. An interruption of glutamatergic neurotransmission by CNQX (non-NMDA receptor blocker) or L-AP4 (reducing the synaptic release of glutamate) failed to affect qSND, but consistently reduced bSND. Application of kynurenate, a broad-spectrum ionotropic glutamate receptor blocker, only caused an unstable SND but did not reduce SND. In contrast, strychnine (Stry, glycine receptor antagonist) consistently reduced qSND in a dose-dependent manner. Bicuculline (Bic, GABA(A) receptor antagonist) induced a synchronous bSND of irregular rhythm, which could be further regularized by adding Stry. Bic-induced bSND was reversibly abolished by CNQX or L-AP4. In conclusion, intraspinal glycinergic, GABAergic, and glutamatergic activities are involved in the generation of the spinal cord-derived SND in newborn rats. Intraspinal GABAergic interneurons may tonically inhibit the glutamatergic bursting neurons that generate a synchronous bSND. Activities of these glutamatergic bursting neurons may also be modulated by intraspinal glycinergic interneurons.  相似文献   

20.
We have found that the γ2 subunit of the GABA(A) receptor (γ2-GABA(A)R) specifically interacts with protocadherin-γC5 (Pcdh-γC5) in the rat brain. The interaction occurs between the large intracellular loop of the γ2-GABA(A)R and the cytoplasmic domain of Pcdh-γC5. In brain extracts, Pcdh-γC5 coimmunoprecipitates with GABA(A)Rs. In cotransfected HEK293 cells, Pcdh-γC5 promotes the transfer of γ2-GABA(A)R to the cell surface. We have previously shown that, in cultured hippocampal neurons, endogenous Pcdh-γC5 forms clusters, some of which associate with GABAergic synapses. Overexpression of Pcdh-γC5 in hippocampal neurons increases the density of γ2-GABA(A)R clusters but has no significant effect on the number of GABAergic contacts that these neurons receive, indicating that Pcdh-γC5 is not synaptogenic. Deletion of the cytoplasmic domain of Pcdh-γC5 enhanced its surface expression but decreased the association with both γ2-GABA(A)R clusters and presynaptic GABAergic contacts. Cultured hippocampal neurons from the Pcdh-γ triple C-type isoform knock-out (TCKO) mouse (Pcdhg(tcko/tcko)) showed plenty of GABAergic synaptic contacts, although their density was reduced compared with sister cultures from wild-type and heterozygous mice. Knocking down Pcdh-γC5 expression with shRNA decreased γ2-GABA(A)R cluster density and GABAergic innervation. The results indicate that, although Pcdh-γC5 is not essential for GABAergic synapse formation or GABA(A)R clustering, (1) Pcdh-γC5 regulates the surface expression of GABA(A)Rs via cis-cytoplasmic interaction with γ2-GABA(A)R, and (2) Pcdh-γC5 plays a role in the stabilization and maintenance of some GABAergic synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号