首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL) pathway is critical in osteoclastogenesis and bone resorption and has been implicated in the process of focal bone erosion in arthritis. This study was undertaken to identify in vivo the hitherto-unknown origin and localization of RANK-expressing osteoclast precursor cells at sites of bone erosion in arthritis. METHODS: DBA-1 mice were immunized with bovine type II collagen/Freund's complete adjuvant and were given an intraperitoneal booster injection of type II collagen on day 21. Arthritis was monitored visually, and joint pathology was examined histologically. RANK and RANKL expression were analyzed using specific immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining was performed. In addition, TRAP and cathepsin K messenger RNA expression were analyzed by in situ hybridization. RESULTS: A marked increase in the number of cells expressing RANK correlated with the progression of synovial inflammation and clinical disease severity in evolving collagen-induced arthritis (CIA). Interestingly, RANK expression demonstrated a gradient pattern with increased numbers of RANK-positive cells within the synovial infiltrate in areas closer to periosteum and cortical bone. Cells expressing RANK included cells in synovial tissue, bone lining cells on the surface of trabecular bone at sites of erosion, and cells in periosteal areas adjacent to synovial inflammation. In areas where RANK-positive cells were abundant, TRAP-positive, multinucleated osteoclast-like cells were also present at sites of focal bone erosion, suggesting differentiation of synovially derived RANK-positive osteoclast precursor cells into osteoclasts. In addition, TRAP- and cathepsin K-double-positive osteoclast-like cells were detected on the synovial side of cortical bone at sites of early and advanced cortical bone erosion. Sites of RANK expression also correlated well with sites of RANKL expression, and there was a close correlation of the temporal expression of the receptor-ligand pair. CONCLUSION: Cells expressing RANK increased in abundance with the progression of arthritis in evolving CIA, and sites of RANK-expressing cells correlated with sites of TRAP-positive, multinucleated osteoclast-like cells as well as with sites of RANKL expression. These data support the hypothesis that the RANK/RANKL pathway plays an important role in the process of bone erosion in CIA.  相似文献   

2.

Objective

The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway is critical in osteoclastogenesis and bone resorption and has been implicated in the process of focal bone erosion in arthritis. This study was undertaken to identify in vivo the hitherto‐unknown origin and localization of RANK‐expressing osteoclast precursor cells at sites of bone erosion in arthritis.

Methods

DBA‐1 mice were immunized with bovine type II collagen/Freund's complete adjuvant and were given an intraperitoneal booster injection of type II collagen on day 21. Arthritis was monitored visually, and joint pathology was examined histologically. RANK and RANKL expression were analyzed using specific immunohistochemistry, and tartrate‐resistant acid phosphatase (TRAP) staining was performed. In addition, TRAP and cathepsin K messenger RNA expression were analyzed by in situ hybridization.

Results

A marked increase in the number of cells expressing RANK correlated with the progression of synovial inflammation and clinical disease severity in evolving collagen‐induced arthritis (CIA). Interestingly, RANK expression demonstrated a gradient pattern with increased numbers of RANK‐positive cells within the synovial infiltrate in areas closer to periosteum and cortical bone. Cells expressing RANK included cells in synovial tissue, bone lining cells on the surface of trabecular bone at sites of erosion, and cells in periosteal areas adjacent to synovial inflammation. In areas where RANK‐positive cells were abundant, TRAP‐positive, multinucleated osteoclast‐like cells were also present at sites of focal bone erosion, suggesting differentiation of synovially derived RANK‐positive osteoclast precursor cells into osteoclasts. In addition, TRAP– and cathepsin K–double‐positive osteoclast‐like cells were detected on the synovial side of cortical bone at sites of early and advanced cortical bone erosion. Sites of RANK expression also correlated well with sites of RANKL expression, and there was a close correlation of the temporal expression of the receptor–ligand pair.

Conclusion

Cells expressing RANK increased in abundance with the progression of arthritis in evolving CIA, and sites of RANK‐expressing cells correlated with sites of TRAP‐positive, multinucleated osteoclast‐like cells as well as with sites of RANKL expression. These data support the hypothesis that the RANK/RANKL pathway plays an important role in the process of bone erosion in CIA.
  相似文献   

3.
4.
目的观察不同浓度白三烯B4(LTB4)干预后大鼠骨髓细胞及成骨细胞过氧化物酶体增生物激活受体γ2(PPARγ2)及骨代谢相关基因核因子-KB活化受体配体(RANKL)、碱性磷酸酶(ALP)、骨保护素(OPG)、核因子-KB活化受体(RANK)和抗酒石酸酸性磷酸酶(TRAP)mRNA表达水平的变化,探讨PPARγ2内源性配体LTB4在骨代谢中的作用。方法体外培养大鼠骨髓细胞及成骨细胞,分别加入不同浓度LTB4(0、0.1、1.0、10.0μmol/L)干预24 h,采用逆转录PCR(RT-PCR)法检测骨髓细胞PPARγ2、RANKL、ALP、OPG、RANK、TRAP mRNA表达水平及成骨细胞PPARγ2、RANKL、ALP、OPG mRNA表达水平,比较不同浓度LTB4对上述基因表达的影响。结果 (1)不同浓度LTB4呈剂量依赖性下调骨髓细胞RANKL、ALP、OPG mRNA的表达水平,同时呈剂量依赖性上调PPARγ2、RANK、TRAP mRNA的表达水平,组间比较差异均有统计学意义(P0.05,P0.01);(2)不同浓度LTB4呈剂量依赖性下调成骨细胞RANKL、ALP、OPG mRNA的表达水平,同时呈剂量依赖性上调PPARγ2mRNA的表达水平,组间比较差异有统计学意义(P0.05,P0.01)。结论 LTB4可能通过激活PPARγ2转录活性抑制骨髓细胞及成骨细胞成骨标记物基因的表达,促进骨髓细胞破骨标记物基因的表达,从而参与与增龄相关的骨质疏松的发病过程。  相似文献   

5.
OBJECTIVES: Receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappaB (RANK) in RA at sites of articular bone erosion. METHODS: Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannus-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. RESULTS: Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. CONCLUSIONS: The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.  相似文献   

6.
Liu XH  Kirschenbaum A  Yao S  Levine AC 《Endocrinology》2005,146(4):1991-1998
The osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL)/receptor activator of nuclear factor-kappaB (RANK) system is the dominant and final mediator of osteoclastogenesis. Abnormalities of this system have been implicated in the pathogenesis of many skeletal diseases. Cyclooxygenase (COX)-2 and prostaglandin (PG)E(2), a major eicosanoid product of the COX-2-catalyzed pathway, play key roles in normal bone tissue remodeling. PGE(2) exerts its actions by binding and activating the E series of prostaglandin (EP) receptor. Activation of EP(2) and EP(4) receptors is associated with PGE(2)-induced osteoclast differentiation. IL-6, a major proinflammatory cytokine, has also been reported to induce osteoclast differentiation. Although interactions between the COX-2/PGE(2) and IL-6 systems have been described in bone cells, the mechanisms underlying these cooperative signaling pathways and the possible involvement of the OPG/RANKL/RANK system have not been fully elucidated. We demonstrate that COX-2, PGE(2), and IL-6 stimulate osteoblast growth and osteoclast differentiation. Effects on osteoclast differentiation, particularly with IL-6, were most marked when osteoclast precursor cells were grown in coculture with osteoblasts, indicating a possible role of the RANK/RANKL/OPG system. COX-2 and PGE(2) stimulated osteoclastogenesis through inhibition of OPG secretion, stimulation of RANKL production by osteoblasts, and up-regulation of RANK expression in osteoclasts. PGE(2) stimulated IL-6 secretion by bone cells, whereas COX-2 inhibitors decreased this same parameter. IL-6, in turn, increased PGE(2) secretion, COX-2, and EP receptor subtype expression in bone cells. Finally, IL-6 was the mediator of PGE(2)-induced suppression of OPG production by osteoblasts. These findings provide evidence for cross-talk between the PGE(2) and IL-6 signaling enhance osteoclast differentiation via effects on the OPG/RANKL/RANK system in bone cells.  相似文献   

7.
目的 探讨携带人护骨素(OPG)基因的重组腺相关病毒(rAAV-hOPG)关节腔内转导对胶原诱导性关节炎(CIA)大鼠关节滑膜OPG、抗酒石酸酸性磷酸酶(TRAP)、血管生长因子(VEGF)基因表达的影响.方法 经牛Ⅱ型胶原诱导建立大鼠关节炎模型,随机分成3组:CIA空白对照组,增强绿色荧光蛋白(EGFP)阴性对照组,OPG治疗组,加上健康对照组,共4组.每组10只,于首次免疫后第25天开始,分别予磷酸盐缓冲液(PBS)、rAAV-EGFP、rAAV-hOPG、PBS,双膝关节腔内注射50μl/侧.第40天取双膝关节滑膜,提取RNA,反转录成cDNA后,使用实时荧光定量聚合酶链反应测定OPG、TRAP、VEGF的相对基因表达量.结果 CIA大鼠较健康鼠,滑膜OPG表达下降32.47%(P<0.05),TRAP升高454.79%(P<0.01),VEGF升高152.74%(P<0.05),rAAV-hOPG感染后,OPG基因转录水平增高128.21%(P<0.01),TRAP表达下降58.79%(P<0.01),VEGF表达下降17.85%(P>0.05).结论 rAAV-hOPG能有效转导关节滑膜组织,对关节破坏有一定的保护作用.  相似文献   

8.
The aim of this study was to clarify the role of osteoclast differentiation factor (ODF) and osteoprotegerin (OPG) in synovial macrophage–osteoclast differentiation. Synovial macrophages were cultured in the presence of macrophage-colony-stimulating factor (M-CSF) and/or ODF. OPG was added to cocultures of synovial macrophages and UMR106. The cultures on glass coverslips were stained with osteoclast-associated markers, tartrate-resistant acid phosphatase (TRAP), and vitronectin receptor (VNR), as well as macrophage-associated markers CD11b and CD14. Functional evidence of osteoclast formation was determined by a resorption pit assay. To investigate whether rheumatoid arthritis (RA) synovial cells expressed messenger RNA (mRNA) for ODF, OPG, and the receptor activator of NF-κB (RANK), we performed a polymerase chain reaction (PCR) analysis. The addition of M-CSF or ODF alone induced TRAP-positive multinucleated cell formation. Resorption pits were rarely detected with M-CSF alone. ODF was capable of inducing bone resorption and enhancing osteoclastogenesis, as well as bone resorption in the presence of M-CSF. In the coculture system, both osteoclast formation and bone resorption were inhibited by OPG in a dose-dependent manner. In all experiments, synovial cells, including macrophages and fibroblasts, expressed the mRNA for RANK, ODF, and OPG. Our findings suggest that ODF plays a role in regulating RA synovial macrophage–osteoclast differentiation, and that synovial cells might have the ability to produce ODF. OPG might be further developed as a new strategy for treating bone destruction in RA joints. Received: January 30, 2001 / Accepted: May 18, 2001  相似文献   

9.
Abstract

The aim of this study was to clarify the role of osteoclast differentiation factor (ODF) and osteoprotegerin (OPG) in synovial macrophage–osteoclast differentiation. Synovial macrophages were cultured in the presence of macrophage-colony-stimulating factor (M-CSF) and/or ODF. OPG was added to cocultures of synovial macrophages and UMR106. The cultures on glass coverslips were stained with osteoclast-associated markers, tartrate-resistant acid phosphatase (TRAP), and vitronectin receptor (VNR), as well as macrophage-associated markers CD11b and CD14. Functional evidence of osteoclast formation was determined by a resorption pit assay. To investigate whether rheumatoid arthritis (RA) synovial cells expressed messenger RNA (mRNA) for ODF, OPG, and the receptor activator of NF-κB (RANK), we performed a polymerase chain reaction (PCR) analysis. The addition of M-CSF or ODF alone induced TRAP-positive multinucleated cell formation. Resorption pits were rarely detected with M-CSF alone. ODF was capable of inducing bone resorption and enhancing osteoclastogenesis, as well as bone resorption in the presence of M-CSF. In the coculture system, both osteoclast formation and bone resorption were inhibited by OPG in a dose-dependent manner. In all experiments, synovial cells, including macrophages and fibroblasts, expressed the mRNA for RANK, ODF, and OPG. Our findings suggest that ODF plays a role in regulating RA synovial macrophage–osteoclast differentiation, and that synovial cells might have the ability to produce ODF. OPG might be further developed as a new strategy for treating bone destruction in RA joints.  相似文献   

10.
11.
OBJECTIVE: To determine whether IL18 has any indirect effects on osteoclastogenesis mediated by T cells in RA synovium, and compare its effects with those of IL1 beta and TNF alpha. METHODS: Resting T cells were isolated from peripheral blood of healthy donors, and stimulated with 2 microg/ml phytohaemagglutinin (PHA) and 0.5 ng/ml IL2 for 24 hours. Synovial T cells were isolated from RA synovial tissue. The levels of soluble receptor activator of the NF-kappa B ligand (RANKL), osteoprotegerin (OPG), IFN gamma, M-CSF, and GM-CSF were determined by ELISA. Membrane bound RANKL expression was analysed by flow cytometry. Commercially available human osteoclast precursors were cocultured with T cells to induce osteoclast formation, which was determined with tartrate resistant acid phosphatase staining and pit formation assay. RESULTS: In PHA prestimulated T cells or RA synovial T cells, IL18, IL1 beta, or TNFalpha increased soluble RANKL production and membrane bound RANKL expression in a dose dependent manner. IL18, IL1 beta, and TNF alpha did not induce M-CSF, GM-CSF, IFN gamma, or OPG production in PHA prestimulated T cells or RA synovial T cells. IL18 increased the number of osteoclasts and bone resorption area on dentine slices in the coculture of human osteoclast precursors with PHA prestimulated T cells or RA synovial T cells; its ability was equivalent to that of IL1 beta, but less potent than that of TNF alpha. In the coculture system, OPG completely blocked osteoclast induction by IL18 or IL1 beta, and greatly inhibited induction by TNF alpha. CONCLUSION: IL18, IL1 beta, or TNF alpha can indirectly stimulate osteoclast formation through up regulation of RANKL production from T cells in RA synovitis; IL18 is as effective as IL1 beta, but less potent than TNF alpha.  相似文献   

12.
OBJECTIVE: To investigate the cellular mechanism of bone destruction in collagen-induced arthritis (CIA). METHODS: After induction of CIA in DA rats, a histologic study of the advanced arthritic lesion was carried out on whole, decalcified joints from the hindpaws of affected animals. To conclusively identify osteoclasts, joint tissue sections were stained for tartrate-resistant acid phosphatase (TRAP) enzyme activity, and calcitonin receptors (CTR) were identified using a specific rabbit polyclonal antibody. The expression of messenger RNA (mRNA) for the osteoclast differentiation factor (also known as receptor activator of nuclear factor kappaB ligand [RANKL]) was investigated using in situ hybridization with a specific riboprobe. RESULTS: TRAP-positive and CTR-positive multinucleated cells were invariably detected in arthritic lesions that were characterized by bone destruction. Osteoclasts were identified at the pannus-bone and pannus-subchondral bone junctions of arthritic joints, where they formed erosive pits in the bone. TRAP-positive multinucleated cells were detected within synovium and at the bone erosive front; however, CTR-positive multinucleated cells were present only at sites adjacent to bone. RANKL mRNA was highly expressed in the synovial cell infiltrate in arthritic joints, as well as by osteoclasts at sites of bone erosion. CONCLUSION: Focal bone erosion in CIA is attributed to cells expressing definitive features of osteoclasts, including CTR. The expression of RANKL by cells within inflamed synovium suggests a mechanism for osteoclast differentiation and activation at sites of bone erosion. Inhibitors of RANKL may represent a novel approach to treatment of bone loss in rheumatoid arthritis.  相似文献   

13.
OBJECTIVE: To determine whether proinflammatory cytokine treatment or the complete absence of select cytokines modulates the expression of RANKL and osteoprotegerin (OPG) in synovial fibroblasts. METHODS: Fibroblasts were isolated from normal and rheumatoid human synovium and from normal or arthritic joints of wild-type and cytokine gene-deficient (interleukin-4-knockout [IL-4 (-/-)] and interferon-gamma-knockout [IFNgamma (-/-)]) mice. Fibroblasts were stimulated with proinflammatory cytokines (tumor necrosis factor alpha [TNFalpha], IL-1beta, and IL-17) or antiosteoclastogenic cytokines (IL-4 and IFNgamma), alone or in combination, and the expression of RANKL and OPG was measured. RESULTS: Proinflammatory cytokine-stimulated fibroblasts from rheumatoid and arthritic mouse joints expressed higher levels of RANKL and OPG than those from normal joints. IL-4 suppressed RANKL expression and increased OPG expression, IFNgamma reduced the production of both RANKL and OPG, and IL-17 had only a modest effect on the expression of RANKL or OPG. Additive effects of combination treatment (TNFalpha/IL-17 or IL-1beta/IL-17) were observed only in the human system. Extensive destruction was observed in the arthritic joints of IL-4 (-/-) mice, with a corresponding upward shift of the RANKL:OPG ratios. However, an IL-17 deficiency did not attenuate arthritis or reduce bone resorption. CONCLUSION: Proinflammatory cytokines induce the expression of RANKL and OPG in both human and murine synovial fibroblasts. The RANKL:OPG ratios are shifted in favor of bone protection by IL-4 treatment, and, to a lesser extent, by IFNgamma treatment. Unexpectedly, an IL-17 deficiency alone does not induce reduced inflammatory bone destruction. Our results suggest that synovial fibroblasts may significantly contribute to bone resorption through modulation of RANKL and OPG production in a cytokine-rich milieu of inflamed joints.  相似文献   

14.
OBJECTIVE: Spondylarthritis (SpA) and rheumatoid arthritis (RA) have different patterns of bone damage, with more pronounced bone erosions in RA. The RANK/RANKL/osteoprotegerin (OPG) system plays a central role in bone resorption by promoting the maturation and activation of osteoclasts. To assess the potential role of this system in the distinct bone phenotype, we studied the synovial expression of these mediators in SpA and RA peripheral synovitis. METHODS: Synovial biopsy specimens were obtained from the actively inflamed peripheral joints of 35 patients with SpA and 19 patients with RA. Paired synovial biopsy samples were obtained from 24 patients with SpA after tumor necrosis factor alpha (TNFalpha) blockade. Synovial tissue sections were immunostained for RANKL, OPG, RANK, and TRAP and assessed by semiquantitative scoring and digital image analysis. RESULTS: After extensive validation of the reactivity and specificity of the antibodies, we demonstrated the abundant expression of RANKL and OPG in SpA synovitis. RANKL was expressed by both fibroblast-like synoviocytes and sublining T lymphocytes. RANK-positive osteoclast precursors but no mature TRAP-positive osteoclasts were present in the inflamed tissue. The expression of these mediators was not different between patients with nonpsoriatic SpA, patients with psoriatic SpA, and patients with RA, was not related to the degree of systemic or local inflammation, and was not significantly modulated by highly effective treatment with TNFalpha blockers. Only the subset of patients with the best systemic response to TNFalpha blockade had decreased RANKL expression in the intimal lining layer. CONCLUSION: The relative protection against bone erosions in SpA cannot be explained by qualitative or quantitative differences in the synovial expression of RANKL, OPG, and RANK. The abundant expression of these factors in SpA peripheral synovitis is largely disconnected from systemic and local inflammation.  相似文献   

15.
16.
17.
Minireview: the OPG/RANKL/RANK system.   总被引:63,自引:0,他引:63  
S Khosla 《Endocrinology》2001,142(12):5050-5055
The identification of the OPG/RANKL/RANK system as the dominant, final mediator of osteoclastogenesis represents a major advance in bone biology. It ended a long-standing search for the specific factor produced by preosteoblastic/stromal cells that was both necessary and sufficient for osteoclast development. The initial cloning and characterization of OPG as a soluble, decoy receptor belonging to the TNF receptor superfamily was the first step that eventually led to an unraveling of this system. Soon thereafter, the molecule blocked by OPG, initially called OPG-ligand/osteoclast differentiating factor (ODF) and subsequently RANKL, was identified as the key mediator of osteoclastogenesis in both a membrane-bound form expressed on preosteoblastic/stromal cells as well as a soluble form. RANKL, in turn, was shown to bind its receptor, RANK, on osteoclast lineage cells. The decisive role played by these factors in regulating bone metabolism was demonstrated by the findings of extremes of skeletal phenotypes (osteoporosis vs. osteopetrosis) in mice with altered expression of these molecules. Over the past several years, work has focused on identifying the factors regulating this system, the signaling mechanisms involved in the RANKL/RANK pathway, and finally, potential alterations in this system in metabolic bone disorders, from the extremely common (i.e. postmenopausal osteoporosis) to the rare (i.e. familial expansile osteolysis).  相似文献   

18.
This study was designed to determine the effects of the osteoprotegerin (OPG) on the mRNA expression of carbonic anhydrase II (CAII) and the receptor activator of NF-??B (RANK) in mouse osteoclast-like cells. Marrow cells were harvested from femora and tibiae of mouse and cultured in 6-well chamber slides. After 1?day of incubation, the marrow cells were exposed to M-CSF (25?ng/ml), RANKL (50?ng/ml), and different concentrations of OPG (50, 75, and 100?ng/ml, respectively) for 3?days. Osteoclast-like cells were confirmed by both tartrate-resistant acid phosphatase (TRAP) stain and bone resorption assay. The expression of RANK and CAIImRNA was determined with real-time fluorescent quantitative polymerase chain reaction. The numbers of multinucleated, TRAP-positive osteoclast-like cells, and resorption pits formed were observed. Compared with the M-CSF?+?RANKL group, RANKmRNA expression was statistically decreased in the M-CSF and M-CSF?+?RANKL?+?OPG (100?ng/ml) groups (P?=?0.004, P?=?0.024, respectively); Compared with the M-CSF, M-CSF?+?RANKL, and M-CSF?+?RANKL?+?OPG (100?ng/ml) group, CAIImRNA expression in the M-CSF?+?RANKL?+?OPG (75?ng/ml) groups was statistically decreased (P?=?0.001, P?=?0.008, and P?=?0.036, respectively). These data suggest that OPG could regulate the expression of RANK and CA II mRNA in the marrow culture system.  相似文献   

19.
Rheumatoid arthritis (RA) is characterised by the presence of an inflammatory synovitis accompanied by destruction of joint cartilage and bone. Destruction of cartilage matrix results predominantly from the action of connective tissue proteinases released by RA synovial tissues, chondrocytes, and pannus tissue. Several lines of evidence in RA and in animal models of arthritis support a role for osteoclasts in the pathogenesis of bone erosions. RA synovial tissues produce a variety of cytokines and growth factors that may increase osteoclast formation, activity, and/or survival. These include interleukin 1alpha (IL1alpha) and beta, tumour necrosis factor alpha (TNFalpha), IL11, IL17, and macrophage colony stimulating factor (M-CSF). Receptor activator of NFkappaB ligand (RANKL) is an essential factor for osteoclast differentiation and also functions to augment T cell-dendritic cell cooperative interactions. CD4+ T cells and synovial fibroblasts derived from RA synovium are sources of RANKL. Furthermore, in collagen induced arthritis (CIA), blockade with osteoprotegerin (OPG), a decoy receptor for RANKL, results in protection from bone destruction. To further evaluate the role of osteoclasts in focal bone erosion in arthritis, arthritis was generated in the RANKL knockout mouse using a serum transfer model. Despite ongoing inflammation, the degree of bone erosion in arthritic RANKL knockout mice, as assessed by microcomputed tomography and correlated histopathological analysis, was dramatically reduced compared with that seen in arthritic control mice. Cartilage damage was present in both the arthritic RANKL knockout mice and in arthritic control littermates, with a trend toward milder cartilage damage in the RANKL knockout mice. This study supports the hypothesis that osteoclasts play an important part in the pathogenesis of focal bone erosion in arthritis, and reveals distinct mechanisms of cartilage destruction and bone erosion in this animal model of arthritis. Future directions for research in this area include the further investigation of a possible direct role for the RANKL/RANK/OPG system in cartilage metabolism, and the possible role of other cell types and cytokines in bone erosion in arthritis.  相似文献   

20.
Dosage-dependent release of 45Ca was observed from prelabeled mouse calvarial bones after treatment with two thiazolidinediones, troglitazone and ciglitazone. Release of 45Ca by ciglitazone was decreased by the osteoclast inhibitors acetazolamide, calcitonin, 3-amino-1-hydroxypropylidene-1,1-bisphosphonate, and IL-4, but not affected by the peroxisome proliferator-activated receptor gamma antagonist, GW 9662, the mitotic inhibitor, hydroxyurea, or indomethacin. Enhanced expression of receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and protein and decreased osteoprotegerin (OPG) mRNA and protein were noted after ciglitazone treatment of calvariae. Ciglitazone and RANKL each caused increased mRNA expression of osteoclast markers: calcitonin receptor, tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase-9, integrin beta3, and nuclear factor of activated T cells 2. OPG inhibited mRNA expression of RANKL stimulated by ciglitazone, mRNA expression of osteoclast markers stimulated by ciglitazone and RANKL, and 45Ca release stimulated by troglitazone and ciglitazone. Increased expression of IL-1alpha mRNA by ciglitazone was not linked to resorption stimulated by the thiazolidinedione. Ciglitazone did not increase adipogenic gene expression but enhanced osteocalcin mRNA in calvariae. In addition to exhibiting sensitivity to OPG, data indicate that stimulation of osteoclast differentiation and activity by thiazolidinediones may occur by a nonperoxisome proliferator-activated receptor gamma-dependent pathway that does not require cell proliferation, prostaglandins, or IL-1alpha but is characterized by an increased RANKL to OPG ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号