首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
GABAergic neurotransmission involves ionotropic GABA(A) and metabotropic GABA(B) receptor subtypes. Although fast inhibitory transmission through GABA(A) receptors activation is commonly found in the basal ganglia, the functions as well as the cellular and subcellular localization of GABA(B) receptors are still poorly known. Polyclonal antibodies that specifically recognize the GABA(B)R1 receptor subunit were produced and used for immunocytochemical localization of these receptors at the light and electron microscope levels in the monkey basal ganglia. Western blot analysis of monkey brain homogenates revealed that these antibodies reacted specifically with two native proteins corresponding to the size of the two splice variants GABA(B)R1a and GABA(B)R1b. Preadsorption of the purified antiserum with synthetic peptides demonstrated that these antibodies recognize specifically GABA(B)R1 receptors with no cross-reactivity with GABA(B)R2 receptors. Overall, the distribution of GABA(B)R1 immunoreactivity throughout the monkey brain correlates with previous GABA(B) ligand binding studies and in situ hybridization data as well as with recent immunocytochemical studies in rodents. GABA(B)R1-immunoreactive cell bodies were found in all basal ganglia nuclei but the intensity of immunostaining varied among neuronal populations in each nucleus. In the striatum, interneurons were more strongly stained than medium-sized projection neurons while in the substantia nigra, dopaminergic neurons of the pars compacta were much more intensely labeled than GABAergic neurons of the pars reticulata. In the subthalamic nucleus, clear immunonegative neuronal perikarya were intermingled with numerous GABA(B)R1-immunoreactive cells. Moderate GABA(B)R1 immunoreactivity was observed in neuronal perikarya and dendritic processes throughout the external and internal pallidal segments. At the electron microscope level, GABA(B)R1 immunoreactivity was commonly found in neuronal cell bodies and dendrites in every basal ganglia nuclei. Many dendritic spines also displayed GABA(B)R1 immunoreactivity in the striatum. In addition to strong postsynaptic labeling, GABA(B)R1-immunoreactive preterminal axonal segments and axon terminals were frequently encountered throughout the basal ganglia components. The majority of labeled terminals displayed the ultrastructural features of glutamatergic boutons and formed asymmetric synapses. In the striatum, GABA(B)R1-containing boutons resembled terminals of cortical origin, while in the globus pallidus and substantia nigra, subthalamic-like terminals were labeled. Overall, these findings demonstrate that GABA(B) receptors are widely distributed and located to subserve both pre- and postsynaptic roles in controlling synaptic transmission in the primate basal ganglia.  相似文献   

2.
Dopaminergic neurons express both GABA(A) and GABA(B) receptors and GABAergic inputs play a significant role in the afferent modulation of these neurons. Electrical stimulation of GABAergic pathways originating in neostriatum, globus pallidus or substantia nigra pars reticulata produces inhibition of dopaminergic neurons in vivo. Despite a number of prior studies, the identity of the GABAergic receptor subtype(s) mediating the inhibition evoked by electrical stimulation of neostriatum, globus pallidus, or the axon collaterals of the projection neurons from substantia nigra pars reticulata in vivo remain uncertain. Single-unit extracellular recordings were obtained from substantia nigra dopaminergic neurons in urethane anesthetized rats. The effects of local pressure application of the selective GABA(A) antagonists, bicuculline and picrotoxin, and the GABA(B) antagonists, saclofen and CGP-55845A, on the inhibition of dopaminergic neurons elicited by single-pulse electrical stimulation of striatum, globus pallidus, and the thalamic axon terminals of the substantia nigra pars reticulata projection neurons were recorded in vivo. Striatal, pallidal, and thalamic induced inhibition of dopaminergic neurons was always attenuated or completely abolished by local application of the GABA(A) antagonists. In contrast, the GABA(B) antagonists, saclofen or CGP-55845A, did not block or attenuate the stimulus-induced inhibition and at times even increased the magnitude and/or duration of the evoked inhibition. Train stimulation of globus pallidus and striatum also produced an inhibition of firing in dopaminergic neurons of longer duration. However this inhibition was largely insensitive to either GABA(A) or GABA(B) antagonists although the GABA(A) antagonists consistently blocked the early portion of the inhibitory period indicating the presence of a GABA(A) component. These data demonstrate that dopaminergic neurons of the substantia nigra pars compacta are inhibited by electrical stimulation of striatum, globus pallidus, and the projection neurons of substantia nigra pars reticulata in vivo. This inhibition appears to be mediated via the GABA(A) receptor subtype, and all three GABAergic afferents studied appear to possess inhibitory presynaptic GABA(B) autoreceptors that are active under physiological conditions in vivo.  相似文献   

3.
The neurotransmitter cytochemistry of neurons in the substantia nigra and zona incerta which project to the cat superior colliculus was examined. Neurons in both structures were double-labeled with an antibody to the transmitter GABA and a retrograde tracer, [3H]n-acetylated wheat germ agglutinin, injected into the superior colliculus. All cells in the zona incerta and substantia nigra which projected to the superior colliculus were labeled by the GABA antiserum. Most other neurons within the zona incerta and virtually all within the substantia nigra pars reticulata and pars lateralis were also labeled by the GABA antibody. By contrast, neurons in the substantia nigra pars compacta were not labeled by either the GABA antibody or wheat germ agglutinin. Nigrotectal cells in the substantia nigra were of medium to large size and most had stellate-shaped cell bodies. Zona incerta cells projecting to the superior colliculus were also of medium to large size, but most had horizontal fusiform cell bodies. This study demonstrates two new findings: (1) that all nigrotectal neurons in cat are immunoreactive to a GABA antibody and probably contain the neurotransmitter GABA; and (2) that these GABA immunoreactive neurons in cat are found not only in the substantia nigra pars reticulata but also within the pars lateralis. Zona incerta cells projecting to the superior colliculus have a different morphology but are also apparently GABAergic. These data provide an anatomical substrate for the known inhibitory action of the nigrotectal pathway on superior colliculus neurons.  相似文献   

4.
Halothane-anaesthetized cats implanted with push-pull cannulae were used in this study. Amphetamine was applied in the pars reticulata or pars compacta of the substantia nigra in order to determine the role of dopamine released from distal or proximal dendrites of dopaminergic cells in the control of GABAergic transmission in the nucleus ventralis medialis of the thalamus. When applied for 30 min in either the pars reticulata or the pars compacta, amphetamine (10(-6) M) enhanced to a similar extent the local release of [3H]dopamine synthesized from [3H]tyrosine, these effects being seen mainly during the drug application. The amphetamine-evoked release of dopamine in the pars reticulata produced a long lasting reduction in the release of [3H]GABA synthesized from [3H]glutamine in the nucleus ventralis medialis as well as in the paralamellar zone of the nucleus ventralis lateralis. Opposite effects were observed when amphetamine (10(-6) M) was applied in the pars compacta. In complementary experiments, single unit recordings were made in the intermediate part of the pars reticulata, some of the cells being identified by antidromic activation from the nucleus ventralis medialis. Whether applied in the pars reticulata or pars compacta, amphetamine (10(-6) M, 10 min) evoked a reversible decrease in the firing rate of most recorded cells whether or not they were identified as projecting to the nucleus ventralis medialis. Therefore, the decreased release of [3H]GABA in the nucleus ventralis medialis seen following application of amphetamine in the pars reticulata of the substantia nigra could result from an inhibition of nigrothalamic GABAergic neurons. Since the nucleus ventralis medialis is also innervated by GABAergic neurons originating in the entopeduncular nucleus, single unit recordings were made from cells in this nucleus during the application of amphetamine (10(-6) M, 10 min) into the pars compacta of the substantia nigra, some of which were identified antidromically as projecting to the nucleus ventralis medialis. Most cells identified or not were found to be activated during this treatment. These results suggested that the increased release of [3H]GABA seen in the nucleus ventralis medialis following application of amphetamine in the pars compacta of the substantia nigra might be linked to the enhanced firing rate of entopeduncular-thalamic GABAergic neurons.  相似文献   

5.
The weaver mutation causes cell loss in the center of the substantia nigra, pars compacta. We compared the depression of gamma-aminobutyric acid (GABA)(A) synaptic currents by the GABA(B) agonist R-baclofen in pars compacta neurons of weaver mice which were largely spared from cell degeneration and of wild-type mice. In weaver neurons the suppression of GABA(A) synaptic currents by R-baclofen was reduced compared to wild-type neurons. The EC(50) of R-baclofen was 6.3 times higher in weaver than in wild-type mice. In the neostriatum, which is not a target of the mutation, such a difference did not exist. We conclude that in the pars compacta the weaver mutation leads to a reduced presynaptic autoinhibition through GABA(B) receptors which may promote survival of a subset of weaver neurons in the pars compacta.  相似文献   

6.
The regional, cellular and subcellular distribution of GABAA/benzodiazepine receptors was investigated by light and electron microscopy in the rat substantia nigra. The regional distribution and density of GABAA/benzodiazepine receptor subtypes (Type I and II) was studied using quantitative receptor autoradiography following in vitro labelling of cryostat sections with tritiated ligands. This was followed by a detailed study of the cellular and subcellular distribution and localization of GABAA/benzodiazepine receptors by light and electron microscopy using immunohistochemical techniques with a monoclonal antibody (bd-17) to the beta 2,3 subunits of the GABAA/benzodiazepine receptor complex. Finally, in situ hybridization histochemistry using 35S-labelled oligonucleotide probes was used to demonstrate the cellular distribution of mRNA for the alpha 1 and alpha 2 GABAA receptor subunits in the substantia nigra. The results of the autoradiographic and immunohistochemical studies showed a close correspondence in the regional distribution of GABAA/benzodiazepine receptors in the substantia nigra. A moderate-to-high density of receptors was present throughout the full extent of the substantia nigra pars reticulata with a very low density of receptors in the substantia nigra pars compacta. Quantitative autoradiographic studies showed that: (i) the pars reticulata contained mainly central Type I receptors; (ii) the highest density of receptors was present in the caudal pars reticulata (200 +/- 38 fmol/mg) with successively lower densities of receptors in the middle (176 +/- 31 fmol/mg) and rostral (150 +/- 26 fmol/mg) levels of the pars reticulata; and (iii) the density of receptors in the pars reticulata was reduced by 34% following 6-hydroxydopamine-induced degeneration of dopaminergic pars compacta neurons. At the cellular level, GABAA/benzodiazepine receptor immunoreactivity was localized in a punctate fashion on dendrites and neuronal cell bodies in the pars reticulata. At the subcellular level, GABAA/benzodiazepine receptor immunoreactivity was associated with the pre- and postsynaptic membranes of axodendritic synaptic complexes along the length of small-to-large sized smooth dendrites in the pars reticulata. Two types of immunoreactive axodendritic synaptic complexes were identified: most (about 80%) immunopositive synapses showed equal staining of the pre- and postsynaptic membranes and were associated with small (less than 1.0 micron) axon terminals containing few mitochondria and small, round-to-pleomorphic vesicles in synaptic contact with small, peripheral dendrites; less frequently (about 20%) immunopositive synapses showed a marked immunoreactive thickening of the postsynaptic membrane and were associated with large (greater than 1.0 micron) axon terminals containing numerous mitochondria and mainly pleomorphic vesicles in synaptic contact with large mainstem dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The precise neuronal localization of D1 receptors in the substantia nigra has been studied autoradiographically in the rat by measuring the alterations of [3H]SCH 23390 binding site densities in this brain area after 6-hydroxydopamine (6-OHDA) induced destruction of nigrostriatal dopaminergic neurons and after ibotenate-induced lesion of striatal afferents. 6-OHDA-induced nigral lesion provoked a total loss of [3H]SCH 23390 binding sites in the pars compacta and pars lateralis (but not in the pars reticulata) of the substantia nigra. In contrast, ibotenate-induced striatal lesion caused a large diminution of the [3H]ligand binding site density in the pars reticulata but not in the pars compacta and pars lateralis of the substantia nigra. These results suggest that D1 receptors in the pars compacta or pars lateralis of the substantia nigra are located on the dopaminergic perikarya whereas those D1 receptors present in the pars reticulata of the substantia nigra lie on the terminals of nigral afferents of striatal origin.  相似文献   

8.
Ionotropic glutamate receptors in the substantia nigra pars compacta regulate the activity of dopamine neurons. We have used dual-label immunofluoresence and confocal laser microscopy to study the localization of subunits of two types of ionotropic receptors within the substantia nigra pars compacta of the rat. Immunostaining for N-methyl-D-aspartate receptor 1 and glutamate receptor 2/3 was prominent in the soma and proximal dendrites of all tyrosine hydroxylase-immunopositive cells, while only low amounts of N-methyl-D-aspartate receptor 2A and N-methyl-D-aspartate receptor 2B were present. Selective antibodies were used to determine the isoforms of N-methyl-D-aspartate receptor 1 present. Immunostaining for the N1, C1 and C2 variably spliced segments of N-methyl-D-aspartate receptor 1 were scarce in the substantia nigra pars compacta, while immunoreactivity for the alternative C2' terminus of N-methyl-D-aspartate receptor 1 was quite abundant. Staining for glutamate receptor 1 was heterogeneous; about half of the tyrosine hydroxylase immunopositive cells stained intensely, while the other half were immunonegative. The glutamate receptor 1-stained cells were concentrated in the ventral tier of the substantia nigra pars compacta. Glutamate receptor 4 was not found in tyrosine hydroxylase-immunopositive cells within the substantia nigra pars compacta. Together, these data demonstrate that dopaminergic neurons in the substantia nigra pars compacta express primarily glutamate receptor 1, glutamate receptor 2/3 and N-methyl-D-aspartate receptor 1 isoforms containing the alternative C2' terminus.  相似文献   

9.
Chatha BT  Bernard V  Streit P  Bolam JP 《Neuroscience》2000,101(4):1037-1051
Glutamatergic neurotransmission in the substantia nigra pars compacta and pars reticulata is mediated through N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxaline propionic acid/kainate (AMPA) type receptors as well as other glutamate receptors and is critical for basal ganglia functioning. A major glutamatergic input to the substantia nigra originates in the subthalamic nucleus, and the long-lasting stimulation of the dopaminergic cells of the substantia nigra pars compacta by the subthalamic neurons has been implicated in the pathophysiology of Parkinson's disease. The objectives of the present study were to determine the subcellular and subsynaptic localization of subunits of the N-methyl-D-aspartate and AMPA receptors in the substantia nigra, and also to determine whether co-localization of N-methyl-D-aspartate and AMPA receptor subunits occur at individual synapses. To achieve this, pre-embedding and post-embedding immunocytochemistry was applied to sections of substantia nigra using antibodies that recognize the NR1 and NR2A/B subunits of the N-methyl-D-aspartate receptor, and GluR2/3 subunits of the AMPA receptor.In both regions of the substantia nigra, immunolabelling for each of the subunits was observed in numerous perikarya and proximal dendrites. At the subcellular level, silver-intensified immunogold particles localizing N-methyl-D-aspartate and AMPA receptor subunits were most commonly present within dendrites where they were associated with a variety of intracellular organelles and with the internal surface of the plasma membrane. Post-embedding immunogold labelling revealed immunoparticles labelling for NR1, NR2A/B and GluR2/3 to be enriched at asymmetric synaptic specializations, although a large proportion of asymmetric synapses were immunonegative. Double immunolabelling revealed, in addition to single-labelled synapses, the co-localization of subunits of the N-methyl-D-aspartate receptor and subunits of the AMPA receptor at individual asymmetric synapses. Similarly, double immunolabelling also revealed the co-localization of the NRl and NR2A/B subunits of the N-methyl-D-aspartate receptor at individual asymmetric synapses. Labelling for NR1 and GluR2/3 was, on average, relatively evenly distributed across the width of the synapse with a gradual reduction towards the periphery when analysed in single sections.In summary, the present results demonstrate that AMPA and N-methyl-D-aspartate receptors are selectively localized at a subpopulation of asymmetric synapses in the substantia nigra pars compacta and reticulata and that the two receptor types, at least partially co-localize at individual synapses. It is concluded that glutamatergic transmission in the substantia nigra pars compacta and pars reticulata occurs primarily at asymmetric synapses and, at least in part, is mediated by both N-methyl-D-aspartate and AMPA receptors.  相似文献   

10.
The autoradiographic distribution of D1 dopaminergic binding sites was studied in the human ventral mesencephalon using the D1 antagonist [3H]SCH 23390. [3H]SCH 23390 binding was characterized by a single class of sites with a Kd of 2.5 nM and a Bmax of 31 fmol/mg of tissue. The density of [3H]SCH 23390 binding sites was high in the substantia nigra, moderate in the ventral tegmental area and low in the peri- and retrorubral field (catecholaminergic region A8). Binding densities were similar in pars compacta and pars reticulata of the substantia nigra, except for a peak value of high [3H]SCH 23390 in the pars reticulata, at a level just ventral to a zone of hyperdensity of melanized dopaminergic neurons in the pars compacta. The anatomical organization of the human ventral mesencephalon was analysed on adjacent sections stained for acetylcholinesterase histochemistry and tyrosine hydroxylase, substance P, dynorphin B, somatostatin and methionine-enkephalin immunohistochemistry, respectively. The similarity in distribution of [3H]SCH 23390 binding sites and substance P or dynorphin B immunoreactivity suggests that D1 binding sites are mainly located on the striatonigral projections. In accordance with these results: (1) the density of [3H]SCH 23390 binding sites was reduced in the substantia nigra of a patient with Huntington's chorea, a disease associated with a degeneration of striatonigral neurons; (2) the density of [3H]SCH 23390 binding sites was unaffected in the substantia nigra of a patient with Parkinson's disease, a disorder characterized by a marked loss in nigral tyrosine hydroxylase-positive neurons. [3H]SCH 23390 binding sites showed a characteristic, heterogeneous distribution within the human ventral mesencephalon, confirming data obtained in other species. The preferential localization of D1 dopamine receptors on striatonigral projections in human brain suggests that pharmacological manipulation of these receptors modulates the activity of striatonigral pathways, thereby affecting the various outputs of the nigral complex.  相似文献   

11.
In order to determine whether the cholinergic fibres that innervate the substantia nigra make synaptic contact with dopaminergic neurons of the substantia nigra pars compacta, a double immunocytochemical study was carried out in the rat and ferret. Sections of perfusion-fixed mesencephalon were incubated first to reveal choline acetyltransferase immunoreactivity to label the cholinergic terminals and then tyrosine hydroxylase immunoreactivity to label the dopaminergic neurons. Each antigen was localized using peroxidase reactions but with different chromogens. At the light microscopic level, in confirmation of previous observations, choline acetyltransferase-immunoreactive axons and axonal boutons were found throughout the substantia nigra. The highest density of these axons was found in the pars compacta where they were often seen in close apposition to tyrosine hydroxylase-immunoreactive cell bodies and dendrites. In the ferret where the choline acetyltransferase immunostaining was particularly strong, bundles of immunoreactive fibres were seen to run through the reticulata perpendicular to the pars compacta. These bundles were associated with tyrosine hydroxylase-immunoreactive dendrites that descended into the reticulata. The choline acetyltransferase-immunoreactive fibres made "climbing fibre"-type multiple contacts with the tyrosine hydroxylase positive dendrites. At the electron microscopic level the choline acetyltransferase-immunoreactive axons were seen to give rise to vesicle-filled boutons that formed asymmetrical synaptic specializations with nigral dendrites and perikarya. The synapses were often associated with sub-junctional dense bodies. On many occasions the postsynaptic structures contained the tyrosine hydroxylase immunoreaction product, thus identifying them as dopaminergic. It is concluded that at least one of the synaptic targets of cholinergic terminals in the substantia nigra are the dendrites and perikarya of dopaminergic neurons and that in the ferret at least, the dendrites of dopaminergic neurons that descend into the pars reticulata receive multiple synaptic inputs from individual cholinergic axons.  相似文献   

12.
D1 dopamine receptors are present on terminals of striatal neurons to the pars reticulata of the substantia nigra in the rat. Here we have studied the effect of the activation of these receptors on the synthesis of gamma-aminobutyric acid (GABA) in slices of the pars reticulata of the substantia nigra isolated from 6-hydroxydopamine-lesioned rats. The synthesis was judged by the accumulation of GABA after inhibiting GABA transaminase with aminooxyacetic acid. Both dopamine and SCH 23390, a D1 agonist, stimulated the synthesis. The effect of both compounds was blocked by SCH 23390, a D1 antagonist, but not by sulpiride, a D2 antagonist. In the absence of receptor activation, the synthesis was very slow. The results suggest a trophic influence of dopamine upon the synthesis of GABA via D1 receptors.  相似文献   

13.
Locomotor stimulation in response to ethanol in mice may model human ethanol-induced euphoria. The associated neural substrates, possibly relevant to alcoholism, have not been fully elucidated. Systemic injection of baclofen, a GABA(B) receptor agonist, attenuates ethanol's stimulant effects. GABA(B) receptors on dopamine cell bodies in the ventral tegmental area (VTA) may modulate ethanol-induced dopamine release, a postulated mechanism for ethanol's stimulant effects. However, baclofen's attenuating effects could be associated with peripheral receptor actions. Baclofen was injected i.c.v. or into the VTA of FAST mice, bred for extreme sensitivity to ethanol-induced locomotor stimulation, to test the hypotheses that (1) central GABA(B) receptors influence baclofen's effects on ethanol-stimulated activity, and (2) VTA GABA(B) receptors specifically modulate ethanol's stimulant effects. I.c.v. baclofen dose-dependently attenuated ethanol stimulation, supporting a central locus for baclofen's effects. Anterior VTA baclofen also attenuated ethanol stimulation. However, more posterior VTA infusions unexpectedly potentiated ethanol stimulation. In SLOW mice, bred for resistance to ethanol stimulation, posterior intra-VTA baclofen did not alter EtOH response. However, anterior VTA baclofen alone produced a locomotor depressant effect in SLOW mice, not seen in FAST mice. GABA(B) receptor autoradiography using [(3)H]CGP 54626, a potent GABA(B) receptor antagonist, did not reveal line differences in binding density in the VTA, or in the substantia nigra pars compacta, a nearby brain structure associated with motor control. These results suggest that anterior VTA GABA(B) receptors play a role in baclofen's attenuation of ethanol's stimulant effects, and that posterior VTA GABA(B) receptors serve an opposite role that is normally masked. Selection for differential ethanol stimulant sensitivity has altered VTA GABA(B) systems that influence locomotor behavior. However, differences in GABA(B) receptor densities in the VTA or substantia nigra pars compacta cannot explain the selected line difference.  相似文献   

14.
Wittmann M  Hubert GW  Smith Y  Conn PJ 《Neuroscience》2001,105(4):881-889
The substantia nigra pars reticulata is a primary output nucleus of the basal ganglia motor circuit and is controlled by a fine balance between excitatory and inhibitory inputs. The major excitatory input to GABAergic neurons in the substantia nigra arises from glutamatergic neurons in the subthalamic nucleus, whereas inhibitory inputs arise mainly from the striatum and the globus pallidus. Anatomical studies revealed that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the basal ganglia. Interestingly, mRNA for group I mGluRs are abundant in neurons of the subthalamic nucleus and the substantia nigra pars reticulata. Thus, it is possible that group I mGluRs play a role in the modulation of glutamatergic synaptic transmission at excitatory subthalamonigral synapses. To test this hypothesis, we investigated the effects of group I mGluR activation on excitatory synaptic transmission in putative GABAergic neurons in the substantia nigra pars reticulata using the whole cell patch clamp recording approach in slices of rat midbrain. We report that activation of group I mGluRs by the selective agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM) decreases synaptic transmission at excitatory synapses in the substantia nigra pars reticulata. This effect is selectively mediated by presynaptic activation of the group I mGluR subtype, mGluR1. Consistent with these data, electron microscopic immunocytochemical studies demonstrate the localization of mGluR1a at presynaptic sites in the rat substantia nigra pars reticulata.From this finding that group I mGluRs modulate the major excitatory inputs to GABAergic neurons in the substantia nigra pars reticulata we suggest that these receptors may play an important role in basal ganglia functions. Studying this effect, therefore, provides new insights into the modulatory role of glutamate in basal ganglia output nuclei in physiological and pathophysiological conditions.  相似文献   

15.
Yanovsky Y  Mades S  Misgeld U 《Neuroscience》2003,122(2):317-328
Both endocannabinoids through cannabinoid receptor type I (CB1) receptors and dopamine through dopamine receptor type D1 receptors modulate postsynaptic inhibition in substantia nigra by changing GABA release from striatonigral terminals. By recording from visually identified pars compacta and pars reticulata neurons we searched for a possible co-release and interaction of endocannabinoids and dopamine. Depolarization of a neuron in pars reticulata or in pars compacta transiently suppressed evoked synaptic currents which were blocked by GABA(A) receptor antagonists (inhibitory postsynaptic currents [IPSCs]). This depolarization-induced suppression of inhibition (DSI) was abrogated by the cannabinoid CB1 receptor antagonist AM251 (1 microM). A correlation existed between the degree of DSI and the degree of reduction of evoked IPSCs by the CB1 receptor agonist WIN55,212-2 (1 microM). The cholinergic receptor agonist carbachol (0.5-5 microM) enhanced DSI, but suppression of spontaneous IPSCs was barely detectable pointing to the existence of GABA release sites without CB1 receptors. In dopamine, but not in GABAergic neurons DSI was enhanced by the dopamine D1 receptor antagonist SCH23390 (3-10 microM). Both the antagonist for CB1 receptors and the antagonist for dopamine D1 receptors enhanced or reduced, respectively, the amplitudes of evoked IPSCs. This tonic influence persisted if the receptor for the other ligand was blocked. We conclude that endocannabinoids and dopamine can be co-released. Retrograde signaling through endocannabinoids and dopamine changes inhibition independently from each other. Activation of dopamine D1 receptors emphasizes extrinsic inhibition and activation of CB1 receptors promotes intrinsic inhibition.  相似文献   

16.
The aim of this study was to investigate the relationship between the cells possessing the alpha3 or alpha5 nicotinic acetylcholine receptor subunits and the enzyme acetylcholinesterase, with respect to tyrosine hydroxylase immunoreactive dopaminergic neurons in the rat substantia nigra. Most, but certainly not all, acetylcholinesterase immunoreactive cells were located in the pars compacta. In the substantia nigra pars compacta there were in turn two populations of acetylcholinesterase containing neurons: those that were tyrosine hydroxylase reactive and those that were not. Double label studies, that included an antibody immunoreactive against a common immunogen on alpha1 of muscle and alpha3 and alpha5 neuronal nicotinic acetylcholine receptor subunits, revealed that nearly all nicotinic receptor positive cells were also tyrosine hydroxylase neurons. However, a minority non-tyrosine hydroxylase population was alpha3- and/or alpha5-nAChR positive and these were always AChE-immunoreactive. In summary, there appears to be a close correlation between nicotinic receptors and acetylcholinesterase in the substantia nigra, irrespective of the transmitter phenotype in different neuronal subpopulations.  相似文献   

17.
Dopaminergic neurons in vivo fire spontaneously in three distinct patterns or modes. It has previously been shown that the firing pattern of substantia nigra dopaminergic neurons can be differentially modulated by local application of GABA(A) and GABA(B) receptor antagonists. The GABA(A) antagonists, bicuculline or picrotoxin, greatly increase burst firing in dopaminergic neurons whereas GABA(B) antagonists cause a modest shift away from burst firing towards pacemaker-like firing. The three principal GABAergic inputs to nigral dopaminergic neurons arise from striatum, globus pallidus and from the axon collaterals of nigral pars reticulata projection neurons, each of which appear to act in vivo primarily on GABA(A) receptors (see preceding paper). In this study we attempted to determine on which afferent pathway(s) GABA(A) antagonists were acting to cause burst firing. Substantia nigra dopaminergic neurons were studied by single unit extracellular recordings in urethane anesthetized rats during pharmacologically induced inhibition and excitation of globus pallidus. Muscimol-induced inhibition of pallidal neurons produced an increase in the regularity of firing of nigral dopaminergic neurons together with a slight decrease in firing rate. Bicuculline-induced excitation of globus pallidus neurons produced a marked increase in burst firing together with a modest increase in firing rate. These changes in firing rate were in the opposite direction to what would be expected for a monosynaptic GABAergic pallidonigral input. Examination of the response of pars reticulata GABAergic neurons to similar manipulations of globus pallidus revealed that the firing rates of these neurons were much more sensitive to changes in globus pallidus neuron firing rate than dopaminergic neurons and that they responded in the opposite direction. Pallidal inhibition produced a dramatic increase in the firing rate of pars reticulata GABAergic neurons while pallidal excitation suppressed the spontaneous activity of pars reticulata GABAergic neurons. These data suggest that globus pallidus exerts significant control over the firing rate and pattern of substantia nigra dopaminergic neurons through a disynaptic pathway involving nigral pars reticulata GABAergic neurons and that at least one important way in which local application of bicuculline induces burst firing of dopaminergic neurons is by disinhibition of this tonic inhibitory input.  相似文献   

18.
The morphological organization of the tegmental pedunculopontine nucleus, midbrain extrapyramidal area, substantia nigra and subthalamic nucleus and their interrelationships were studied in rat organotypic culture using immunohistochemistry and NADPH-diaphorase histochemistry. Three coronal sections, one containing the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, another with the substantia nigra and the third with the subthalamic nucleus, were obtained from postnatal 1-2-day-old rats. These sections were co-cultured for 3-4 weeks using the roller-tube technique. In the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, the distribution pattern of cholinergic neurons was similar to that found in the in vivo study. We could, therefore, identify the subdivisions of the tegmental pedunculopontine nucleus (i.e., pars compacta and pars dissipata) and the midbrain extrapyramidal area. As in the in vivo situation, glutamate immunoreactive neurons were also located in these areas. Approximately 10% of NADPH-diaphorase positive neurons in the tegmental pedunculopontine nucleus, were glutamate immunoreactive. In the substantia nigra, as in the in vivo, tyrosine hydroxylase immunoreactive (putative dopaminergic) neurons were identified predominantly in the substantia nigra pars compacta, and parvalbumin immunoreactive neurons (putative GABAergic) mainly in the substantia nigra pars reticulata. The subthalamic nucleus was ladened with glutamate immunoreactive neurons. NADPH-diaphorase stained axons originating from the tegmental pedunculopontine nucleus were traced into the substantia nigra and subthalamic nucleus. They were often in close apposition to tyrosine hydroxylase immunoreactive neurons in the substantia nigra. Parvalbumin immunoreactive fibers from the substantia nigra projected heavily to the midbrain extrapyramidal area, but only sparsely to the tegmental pedunculopontine nucleus and the subthalamic nucleus. These findings indicate that the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, substantia nigra and subthalamic nucleus in the organotypic culture have retained a basic morphological organization and connectivity similar to those seen in the in vivo situation. Therefore, this preparation could be a useful model to conduct further studies to investigate functional circuits among the structures represented.  相似文献   

19.
Unilateral neurotoxin lesion of rat caudate-putamen and globus pallidus resulted in delayed, transneuronal degeneration of GABAergic substantia nigra pars reticulata neurons. To explore whether the disinhibition of endogenous glutamate excitatory input played a role in the degeneration of substantia nigra pars reticulata neurons, animals with unilateral striatal-pallidal lesions received three daily intraperitoneal injections of either dizocilpine maleate (MK-801, 1 or 10 mg/kg), an N-methyl-D-aspartate glutamate receptor blocker, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX, 30 mg/kg), an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor blocker, that began 24 h after the striatal-pallidal neurotoxin lesion. Drug treatment affected neither the volume of the initial lesion nor the volume of striatal-pallidal glial fibrillary acidic protein immunoreactivity. Neuron number in the substantia nigra pars reticulata ipsilateral to the lesioned striatopallidum was reduced on average by 37% in untreated control rats, in low dose MK-801, and NBQX-treated rats (P<0.0001). However, in animals treated with high doses of MK-801 there was no difference in the number of neurons in the substantia nigra pars reticulata ipsilateral or contralateral to the neurotoxin lesion. These data demonstrate that dose-related treatment with N-methyl-D-aspartate glutamate receptor blockers protects substantia nigra pars reticulata neurons, and suggests that glutamatergic mechanisms play a role in delayed transneuronal degeneration.  相似文献   

20.
The neurotoxic properties of the proposed retrograde neurotoxin volkensin were investigated. Unilateral intrastriatal injections of volkensin (n = 8) caused a 60-79% decrease in substantia nigra pars compacta (SNc) cell number on the ipsilateral side as compared to the contralateral side. This decrease was associated with a 35-56% decrease in [3H]sulpiride binding to dopamine D2 receptors in the SNc. In the substantia nigra pars reticulata (SNr) there was a 17-24% decrease in [3H]SCH 23390 binding to dopamine D1 receptors on the ipsilateral as compared to the contralateral side. The cell loss and decrease in D2 binding is attributed to the retrograde neurotoxic properties of volkensin. The decrease in D1 binding is believed to reflect loss of presynaptic receptors from terminals of striato-nigral neurons, and thus the anterograde neurotoxicity of volkensin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号