首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Short-term infection of MDCK II monolayers with Salmonella typhimurium SL1344 caused a progressive decrease in transepithelial electrical resistance concomitant with decreased cation permselectivity and increased paracellular inulin flux. Cytochemical staining of F-actin, E-cadherin, and ZO-1 revealed the concentration of each junctional protein in invaded cells as a result of contraction at their apical poles and resultant distortion of adjacent uninvaded cells.  相似文献   

2.
Nectins, Ca(2+)-independent immunoglobulin-like cell adhesion molecules (CAMs), first form cell-cell adhesion where cadherins are recruited, forming adherens junctions (AJs) in epithelial cells and fibroblasts. In addition, nectins recruit claudins, occludin, and junctional adhesion molecules (JAMs) to the apical side of AJs, forming tight junctions (TJs) in epithelial cells. Nectins are associated with these CAMs through peripheral membrane proteins (PMPs), many of which are actin filament-binding proteins. We examined here the roles of the actin cytoskeleton in the association of nectins with other CAMs in MDCK cells stably expressing exogenous nectin-1. The nectin-1-based cell-cell adhesion was formed and maintained irrespective of the presence and absence of the actin filament-disrupting agents, such as cytochalasin D and latrunculin A. In the presence of these agents, only afadin remained at the nectin-1-based cell-cell adhesion sites, whereas E-cadherin and other PMPs at AJs, alpha-catenin, beta-catenin, vinculin, alpha-actinin, ADIP, and LMO7, were not concentrated there. The CAMs at TJs, claudin-1, occludin and JAM-1, or the PMPs at TJs, ZO-1 and MAGI-1, were not concentrated there, either. These results indicate that the actin cytoskeleton is required for the association of the nectin-afadin unit with other CAMs and PMPs at AJs and TJs.  相似文献   

3.
Fodrin, E-cadherin, and β-catenin immunolocalization was studied in 54 cases of infiltrating ductal carcinoma of the breast and compared with an in vitro model in order to study the dynamic relationship between these components of an adhesion complex. In low-grade tumours, the staining patterns were similar for both fodrin and E-cadherin, with localization of these proteins to the cell membranes. β-Catenin showed reduced membrane staining compared with non-neoplastic epithelium. High-grade tumours displayed strong membranous as well as cytoplasmic immunolocalization of fodrin, while E-cadherin staining was fragmented or lost from the membranes, with only occasional weak intracellular staining. β-Catenin showed fragmented membrane staining and cytoplasmic accumulation. In addition, nuclear staining of β-catenin was occasionally observed. In a v-src-transformed MDCK cell line, following 15min of src activation, β-catenin began to detach from the cell membrane and localize to the cytoplasm, while fodrin and E-cadherin remained unchanged. After 30–45min of src activation, the cells lost their cuboidal shape and began to lose cell-to-cell contact. Fodrin staining remained mostly membranous while that of E-cadherin and β-catenin was fragmented and spiky. After 60min of src activation, fodrin localized completely in the cell cytoplasm, while E-cadherin and β-catenin were partly cytoplasmic with fragmented and spiky membranous staining. Occasionally, β-catenin was seen in the nucleus. Both in vivo and in vitro findings clearly demonstrated a disruption of the E-cadherin/β-catenin/fodrin/cytoskeleton linkage concomitant with the loss of cell-to-cell adhesion and change in cell shape, from epithelioid to a fibroblastoid phenotype. Membranous localization of E-cadherin showed a positive correlation with oestrogen and progesterone expression, whereas loss of membranous E-cadherin and cytoplasmic accumulation of fodrin was more often observed in high-grade carcinomas and showed a positive correlation with p53 expression. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of the current study was to examine the influence of transforming growth factor (TGF)-beta 1 on proximal tubular epithelial cell-cell interaction, with particular emphasis on the regulation of adherens junction complex formation. Stimulation of the proximal tubular cell line HK-2 cells by TGF-beta 1 led to loss of cell-cell contact and disassembly of both adherens and tight junctional complexes. Adherens junction disassembly was associated with reduction of both Triton-soluble and Triton-insoluble E-cadherin, and an increase in detergent-soluble beta-catenin. Under these conditions, immunoprecipitation and Western analysis demonstrated decreased association of beta-catenin, both with E-cadherin, alpha-catenin, and the cell cytoskeleton. Confocal microscopy after immunostaining, showed decreased intensity of peripheral E-cadherin staining, and redistribution of beta-catenin expression to a perinuclear location. Tight junction disassembly was manifest by a reduction in the expression of Triton-soluble occludin and ZO-1 by Western analysis and their disassociation manifested by immunostaining and confocal microscopy. Loss of cell-cell contact and disassembly of adherens junctions were seen after addition of TGF-beta 1 to the basolateral aspect of the cells. Immunoprecipitation experiments demonstrated co-localization of E-cadherin, beta-catenin, and TGF-beta 1 RII in unstimulated cells. After TGF-beta 1 stimulation, the TGF-beta 1 RII no longer associated with either E-cadherin or beta-catenin. Dissociation of the adherens junction protein from the TGF-beta 1 receptor was associated with increased beta-catenin tyrosine phosphorylation and decreased threonine phosphorylation. Furthermore after receptor ligand binding, beta-catenin became associated with the TGF-beta 1-signaling molecules Smad3 and Smad4.  相似文献   

5.
Porphyromonas gingivalis is considered among the etiological agents of human adult periodontitis. Although in vitro studies have shown that P. gingivalis has the ability to invade epithelial cell lines, its effect on the epithelial barrier junctions is not known. Immunofluorescence analysis of human gingival epithelial cells confirmed the presence of tight-junction (occludin), adherens junction (E-cadherin), and cell-extracellular matrix junction (beta1-integrin) transmembrane proteins. These transmembrane proteins are expressed in Madin-Darby canine kidney (MDCK) cells. In addition, MDCK cells polarize and therefore serve as a useful in vitro model for studies on the epithelial cell barrier. Using the MDCK cell system, we examined the effect of P. gingivalis on epithelial barrier function. Exposure of the basolateral surfaces of MDCK cells to P. gingivalis (>10(9) bacteria/ml) resulted in a decrease in transepithelial resistance. Immunofluorescence microscopy demonstrated decreases in the amounts of immunoreactive occludin, E-cadherin, and beta1-integrin at specific times which were related to a disruption of cell-cell junctions in MDCK cells exposed to basolateral P. gingivalis. Disruption of cell-cell junctions was also observed upon apical exposure to bacteria; however, the effects took longer than those seen upon basolateral exposure. Cell viability was not affected by either basolateral or apical exposure to P. gingivalis. Western blot analysis demonstrated hydrolysis of occludin, E-cadherin, and beta1-integrin in lysates derived from MDCK cells exposed to P. gingivalis. Immunoprecipitated occludin and E-cadherin molecules from MDCK cell lysates were also degraded by P. gingivalis, suggesting a bacterial protease(s) capable of cleaving these epithelial junction transmembrane proteins. Collectively, these data suggest that P. gingivalis is able to invade the deeper structures of connective tissues via a paracellular pathway by degrading epithelial cell-cell junction complexes, thus allowing the spread of the bacterium. These results also indicate the importance of a critical threshold concentration of P. gingivalis to initiate epithelial barrier destruction.  相似文献   

6.
Distribution of airway junctional complex proteins after antigen or lipopolysaccharide challenge in sensitized or naive mice, respectively, was investigated. E-cadherin immunoreactivity was detected continuously along neighboring epithelial cell borders and between adjacent alveolar epithelial cells in naive and saline-challenged mice. Occludin and ZO-1 immunoreactivity were observed in the tight junction areas. Both challenges induced changes in epithelial morphology and phenotype, accompanied initially by focal loss of epithelial E-cadherin that increased in size with time and number of allergen challenges. Allergen challenge also led to focal loss of occludin and ZO-1. Western blot analysis revealed increased levels of sE-cadherin in lavage fluid after either challenge, and this increase correlated with lavage neutrophil numbers (P = 0.002). Immunocytochemistry of lavage cells 6 h after either challenge revealed E-cadherin epitopes within cytoplasmic vacuoles of neutrophils, the major cell type. In contrast, peripheral blood neutrophils or tissue neutrophils before epithelial transmigration were negative, suggesting that in airway inflammation, E-cadherin extracellular domain is cleaved by neutrophils during epithelial penetration, instigating the destabilization of adherens and tight junctions. This junctional deterioration could lead to a progressive decrease in epithelial integrity and induce alterations in epithelial morphology, with consequent enhanced paracellular transit of antigens and pathogens.  相似文献   

7.
Inflammatory bowel disease (IBD) consisting of ulcerative colitis (UC) and Crohn's (CD) typically displays a waxing and waning course punctuated by disease flares that are characterized by transepithelial migration of neutrophils (PMN) and altered barrier function. Since epithelial barrier function is primarily regulated by the apical most intercellular junction referred to as the tight junction (TJ), our aim was to examine expression of TJ and adherens junction (AJ) proteins in relation to PMN infiltration in mucosal tissue samples from patients with active IBD. Expression of epithelial intercellular TJ proteins (occludin, ZO-1, claudin-1, and JAM) and subjacent AJ (beta-catenin and E-cadherin) proteins were examined by immunoflourescence/confocal microscopy, immunohistochemistry, and Western blotting. Colonic mucosa from patients with UC revealed dramatic, global down-regulation of the key TJ transmembrane protein occludin in regions of actively transmigrating PMN and in quiescent areas in the biopsy samples. Significant decreases in occludin expression were observed at the protein and mRNA levels by Western and Northern blotting. In contrast, expression of other TJ and AJ proteins such as ZO-1, claudin-1, JAM, beta-catenin, and E-cadherin were down-regulated only in epithelial cells immediately adjacent to transmigrating PMN. Analysis of inflamed mucosa from Crohn's disease patients mirrored the results obtained with UC patients. No change in TJ and AJ protein expression was observed in colonic epithelium from patients with collagenous colitis or lymphocytic colitis that are respectively characterized by a thickened subepithelial collagen plate and increased intraepithelial lymphocytes. These results suggest that occludin expression is diminished in IBD by mechanisms distinct from those regulating expression of other intercellular junction proteins. We speculate that down-regulation of epithelial occludin may play a role in enhanced paracellular permeability and PMN transmigration that is observed in active inflammatory bowel disease.  相似文献   

8.
Fodrin (nonerythroid spectrin) is a 475,000 molecular weight (MW) (apparent) heterodimeric actin-binding protein usually found in mature cells at the cytoplasmic face of the plasma membrane. While its precise role is uncertain, it may participate in the establishment and/or maintenance of cell polarity, shape, and specialized receptor domains. In polarized epithelial cells, an asymmetric distribution of fodrin appears to signal phenotypic maturity. Using immunohistochemical techniques, the distribution of fodrin in enterocytes during normal crypt-to-villus maturation, and in adenomas, adenocarcinomas, and cultured Madin-Darby Canine Kidney (MDCK) cells has been studied and its abundance quantitated by immunoblotting and digital immunofluorescent confocal microscopy. During normal maturation, fodrin was found to assemble at the apex of the enterocyte, presumably in the terminal web, only in those cells near the villus tip. Villin was found in an apical location in both crypt and surface enterocytes. In adenocarcinomas of the colon (n = 11), there were enhanced levels of fodrin at the apex, and an approximately threefold increase in the total amount of fodrin per cell relative to normal crypt enterocytes. An increased percentage of this protein was also found in the cytoplasm. Adenomas (n = 7), nonconfluent MDCK cells in culture, and two (of two) cases of ductal carcinoma of the breast also demonstrated enhanced cytoplasmic and total fodrin. Supranormal levels of fodrin at the apex of enterocytes were also observed in Crohn's disease samples and in the normal-appearing enterocytes adjacent to a tumor. It is hypothesized that increased apical fodrin may signal a reaction of the microvillar brush border to pathologic stress, while increased cytoplasmic and total pools of fodrin may mark neoplastic activity. These findings may be of diagnostic value, particularly in the evaluation of small biopsies or cytologic material.  相似文献   

9.
In a cell line from human pleomorphic adenoma (AP2 cells) we studied the response of these cells to basement membrane proteins. The culture was characterized as myoepithelial-like by transmission electron microscopy and immunocytochemistry. AP2 cells were grown in contact with a reconstituted basement membrane (Matrigel). Cells grown on Matrigel showed conspicuous phenotypic alterations, depending on how the substrate was applied. Cells grown on the top of Matrigel developed a dendritic phenotype, exhibiting thin, long and intercommunicating cytoplasmic extensions resembling normal myoepithelial cells. Cells grown inside Matrigel formed multi-layered clusters. Light, confocal and transmission electron microscopy showed that these clusters were formed by double-layered epithelioid cells delimiting luminal spaces. The cells facing the lumen were cuboidal, showing microvilli at the apical plasmalemmal and junctional complexes. The spatial arrangement of basement membrane is a key modulator of morphogenetic changes and cytodifferentiation of tumour myoepithelial cell lineage in culture.  相似文献   

10.
Increased microvascular permeability is a hallmark of sepsis and septic shock. Intestinal mucosal dysfunction may allow translocation of bacteria and their products, thereby promoting sepsis and inflammation. Although Staphylococcus aureus alpha-toxin significantly contributes to sepsis and perturbs the endothelial barrier function, little is known about possible effects of S. aureus alpha-toxin on human epithelial barrier functions. We hypothesize that S. aureus alpha-toxin in the blood can impair the intestinal epithelial barrier and thereby facilitate the translocation of luminal bacteria into the blood, which may in turn aggravate a septic condition. Here, we showed that staphylococcal alpha-toxin disrupts the barrier integrity of human intestinal epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER) and reduced cellular levels of junctional proteins, such as ZO-1, ZO-3, and E-cadherin. The Caco-2 cells also responded to alpha-toxin with an elevated cytosolic calcium ion concentration ([Ca(2+)](i)), elicited primarily by calcium influx from the extracellular environment, as well as with a significant reduction in TER, which was modulated by intracellular calcium chelation. Moreover, a significantly larger reduction in TER and amounts of the junctional proteins, viz., ZO-3 and occludin, was achieved by basolateral than by apical application of the alpha-toxin. These experimental findings thus support the hypothesis that free staphylococcal alpha-toxin in the bloodstream may cause intestinal epithelial barrier dysfunction and further aggravate the septic condition by promoting the release of intestinal bacteria into the underlying tissues and the blood.  相似文献   

11.
Tight junctions are structures located in the apicobasal region of the cell membranes. They regulate paracellular solute and electrical permeability of cell layers. Additionally, they influence cellular polarity, form a paracellular fence to molecules and pathogens and divide the cell membranes to apical and lateral compartments. Tight junctions adhere to the corresponding ones of neighbouring cells and by this way also mediate attachment of the cells to one other. Molecules forming the membranous part of tight junctions include occludin, claudins, tricellulin and junctional adhesion molecules. These molecules are attached to scaffolding proteins such as ZO-1, ZO-2 and ZO-3 through which signals are mediated to the cell interior. Expression of tight junction proteins, such as claudins, may be up- or downregulated in cancer and they are involved in EMT thus influencing tumor spread. Like in tumors of other sites, lung tumors show changes in the expression in tight junction proteins. In this review the significance of tight junctions and its proteins in lung cancer is discussed with a focus on the proteins forming the membranous part of these structures.  相似文献   

12.
Tight junctions between cells and adhesion to the substratum maintain the barrier function of epithelia throughout the body. Damage to the epithelial barrier by microbial products allows penetration of bacteria and promotion of infection. We studied the effects of Pseudomonas elastase (PE) on the barrier function of epithelia by using Madin-Darby canine kidney (MDCK) epithelial cells; these cells form tight junctions (zonula occludens [ZO]) in vitro. PE decreased electrical resistance across the monolayers in a concentration- and time-dependent manner. Immunostaining of selected proteins of the ZO and zonula adherens was used to explore the effects of PE on junctional proteins. PE-treated monolayers of MDCK cells had markedly decreased immunostaining of ZO-1, a protein of the ZO, but light microscopy of PE-treated cells revealed no obvious morphologic changes. A chromium release assay indicated that, even with marked changes in transmonolayer electrical resistance, the permeability defect was not due to membrane disruption. Fluorescence staining of F-actin indicated diminution of cellular microfilaments in PE-treated cells, but E cadherin (uvomorulin), a protein of the zonula adherens, was unaffected by the enzyme. Elastases from porcine pancreas and human leukocytes with similar enzymatic activity (6 U/ml) did not decrease transmonolayer electrical resistance or degrade ZO-1. These results suggest that PE disturbs the barrier function of epithelial monolayers, in part, by changing the cell architecture and altering at least one protein of the ZO.  相似文献   

13.
Scatter factor/hepatocyte growth factor (SF/HGF), a large multifunctional polypeptide growth and motility factor, is known to play important roles during embryonic development, adult tissue growth and repair. In an established three-dimensional type I collagen model, SF/HGF induces Madin-Darby canine kidney (MDCK) epithelial cysts to form long, branching tubules (tubulogenesis). In addition, the composition of the surrounding extracellular matrix (ECM) has been shown to modulate SF/HGF-induced morphogenesis, where tubulogenesis was completely abrogated in Matrigel basement membrane. Many cellular events that occur during SF/HGF-mediated remodelling, and its modulation by the ECM, remain unclear. We have investigated these mechanisms through microscopic examination of the time-course of SF/HGF-induced responses in MDCK cysts cultured in type I collagen or Matrigel. We found that early responses to SF/HGF were matrix-independent. Changes included increased paracellular spacing between normally closely apposed lateral membranes, and the formation of filopodial processes, indicating a partial motile response. Cell-cell contact was maintained, with the persistence of cell junctions. Therefore, while one or a number of ECM components are preventing SF/HGF-primed cells from undergoing an invasive and/or migratory programme, non-permissive matrices are not preventing SF/HGF signalling to the cell. Later matrix-dependent responses, which occurred in type I collagen but not Matrigel, included the formation of basal protrusions that comprise two or more neighbouring cells, which extend to form nascent tubules. Modified polarity of cells comprising the basal protrusions was evident, with a marker for the apical membrane being found in the same region as adherens junctions and desmosomes, typically localized at lateral membranes. We propose a model for SF/HGF-induced tubulogenesis in which tubules form from basal protrusions of adjacent cells. This mechanism of in vitro tubule formation has many similarities to reported in vivo epithelial tubulogenesis.  相似文献   

14.
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the “blood–testis” barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with immunolocalization of the tight-junction-associated proteins ZO-1 (zonula occludens 1). In testes from 5-day-old mice, tight junctional complexes are absent and ZO-1 is distributed generally over the apicolateral, but not basal, Sertoli cell membrane. As cytoskeletal and reticular elements characteristic of the mature junction are recruited to the developing junctions, between 7 and 14 days. ZO-1 becomes progressively restricted to tight junctional regions. Immunogold labeling of ZO-1 on Sertoli cell plasma membrane preparations revealed specific localization to the cytoplasmic surface of tight junctional regions. In the mature animal, ZO-1 is similarly associated with tight junctional complexes in the basal aspects of the epithelium. In addition, it is also localized to Sertoli cell ectoplasmic specializations adjacent to early elongating, but not late, spermatids just prior to sperm release. Although these structures are not tight junctions, they do have a similar cytoskeletal arrangement, suggesting that ZO-1 interacts with the submembrane cytoskeleton. These results show that, in the immature mouse testis, ZO-1 is present on the Sertoli cell plasma membrane in the absence of recognizable tight junctions. In the presence of tight junctions however, ZO-1 is found only at the sites of junctional specializations associated with tight junctions and with elongating spermatids.  相似文献   

15.
Kidney development is regulated by a coordinated reciprocal induction of metanephric mesenchymal (MM) and ureteric bud (UB) cells. Here, established MM and UB progenitor cell lines were recombined in three-dimensional Matrigel implants in SCID mice. Differentiation potential was examined for changes in phenotype, organization, and the presence of specialized proteins using immunofluorescence and bright-field and electron microscopy. Both cell types, when grown alone, did not develop into specialized structures. When combined, the cells organized into simple organoid structures of polarized epithelia with lumens surrounded by capillary-like structures. Tracker experiments indicated the UB cells formed the tubuloid structures, and the MM cells were the source of the capillary-like cells. The epithelial cells stained positive for pancytokeratin, the junctional complex protein ZO-1, collagen type IV, as well as UB and collecting duct markers, rearranged during transfection (RET), Dolichos biflorus lectin, EndoA cytokeratin, and aquaporin 2. The surrounding cells expressed α-smooth muscle actin, vimentin, platelet endothelial cell adhesion molecule 1 (PECAM), and aquaporin 1, a marker of vasculogenesis. The epithelium exhibited apical vacuoles, microvilli, junctional complexes, and linear basement membranes. Capillary-like structures showed endothelial features with occasional pericytes. UB cell epithelialization was augmented in the presence of MM cell-derived conditioned medium, glial-derived neurotrophic factor (GDNF), hepatocyte growth factor (HGF), or fibronectin. MM cells grown in the presence of UB-derived conditioned medium failed to undergo differentiation. However, UB cell-derived conditioned medium induced MM cell migration. These studies indicate that tubulogenesis and vasculogenesis can be partially recapitulated by recombining individual MM and UB cell lineages, providing a new model system to study organogenesis ex vivo.  相似文献   

16.
Several studies have reported loss or alteration of expression of E-cadherin in breast cancer and more recently changes in levels of expression of the catenins. We used immunofluorescence to examine E-cadherin, alpha-catenin, beta-catenin, and p120ctn (formerly p120CAS) expression in 91 cases of invasive ductal carcinoma. As expected, all four proteins co-localize to the junctional regions of the cells. Although nuclear localization has been described for beta-catenin in colonic polyps, no examples were found in these breast cancer cases. We found that, although alteration is common in the catenins and E-cadherin, complete loss, as exemplified by E-cadherin in lobular carcinoma (where E-cadherin is frequently mutated), is rarely seen. In contrast, the catenin-related protein p120ctn shows an expression pattern that is significantly unrelated to the other catenins (or E-cadherin), including complete loss of expression in approximately 10% of the cases. No statistically significant correlations with traditional prognostic indicators were observed with any of these proteins. We conclude 1) that expression of E-cadherin and alpha- and beta-catenin are generally retained at the membrane although frequently reduced or altered, 2) that complete loss of p120ctn expression is seen in approximately 10% of the cases, and 3) that there is a significant correlation in the expression of E-cadherin and the catenins but no correlation between these molecules and p120ctn, suggesting an absence of coordinate regulation.  相似文献   

17.
The E-cadherin–catenin complex is important for cell–cell adhesion of epithelial cells. Impairment of one or more components of this complex is associated with poor differentiation and increased invasiveness of carcinomas. Oesophageal adenocarcinomas causes early metastases, progress rapidly, and consequently have a poor prognosis. By means of immunohistochemistry, the expression of E-cadherin and alpha- and beta-catenin was studied in 65 oesophageal adenocarcinomas and 15 lymph node metastases. Expression of these proteins was evaluated with respect to clinico-pathological parameters and patient survival. Expression of the proteins was strongly correlated. In carcinomas, reduced expression of E-cadherin, alpha-catenin, and beta-catenin was found in 74, 60, and 72 per cent, respectively. Expression of E-cadherin and alpha-catenin correlated significantly with stage and grade of the carcinomas, whereas expression of beta-catenin correlated only with grade. Reduced expression of all three proteins correlated with shorter patient survival. In contrast to grade, E-cadherin and beta-catenin were significant prognosticators for survival, independent of disease stage. We conclude that in oesophageal adenocarcinomas, decreased expression of E-cadherin, alpha-catenin and beta-catenin are related events. Furthermore, expression of at least E-cadherin and beta-catenin is significantly correlated with poor prognosis. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Intercellular contacts, mediated by E-cadherin, are essential for germ cell migration and maturation. Furthermore, it has been suggested that decrease or loss of E-cadherin correlates with tumour progression and invasive behaviour. beta-catenin is involved in a number of different processes, including cell--cell interaction when bound to cadherins, and determination of cell fate in pluripotent cells when activated via the Wnt signal-transduction pathway. To shed more light on the role of these factors in normal fetal germ cell development and the pathogenesis of germ cell tumours (GCTs), the present study investigated the presence and localization of E-cadherin and beta-catenin by immunohistochemistry. E-cadherin was only weakly expressed in or absent from fetal germ cells of the second and third trimesters, and was not expressed in carcinoma in situ/intratubular germ cell neoplasia unclassified (CIS/ITGCNU) and gonadoblastoma, the precursor of an invasive GCT in dysgenetic gonads. In GCTs, it was generally not expressed in seminoma and dysgerminoma, but was found in the vast majority of non-seminoma cells. beta-catenin was found in the cytoplasm of fetal germ cells at all gestational ages and in spermatogenesis in post-pubertal testes. It was also present in CIS/ITGCNU and gonadoblastoma. Whereas seminomas and dysgerminoma were negative, non-seminoma cells were frequently found to express beta-catenin. Expression of both factors therefore reflects the degree of differentiation of these tumours. No differences for either E-cadherin or beta-catenin were observed between samples of tumours resistant or sensitive to chemotherapy, and E-cadherin expression did not correlate with vascular invasion. E-cadherin and beta-catenin therefore play a role in both normal and malignant germ cell development and differentiation that warrants further investigation, but they seem to be of limited value as predictive or prognostic factors in GCTs.  相似文献   

19.
The formation of tight junctions (TJs) is dependent on the formation of adherens junctions (AJs) in MDCK cells. E-Cadherin and nectin are major cell-cell adhesion molecules (CAMs) at AJs, whereas claudin, occludin and junctional adhesion molecule (JAM) are major CAMs at TJs. When MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 mm Ca(2+), nectin first forms cell-cell adhesion and recruits E-cadherin to the nectin-based cell-cell adhesion sites to form AJs. Thereafter, nectin recruits first JAM-A and then claudin-1 and occludin to the apical side of AJs to form TJs. In contrast, when MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 microm Ca(2+) in the presence of a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a TJ-like structure is formed without the formation of the E-cadherin-based AJs. We showed here that GFP-E-cadherin, which did not trans-interact due to 2 microm Ca(2+) but associated with alpha- and beta-catenins and p120(ctn), was recruited to the nectin-based cell-cell adhesion sites by the action of TPA. The nectin inhibitors, which inhibited the trans-interaction of nectin, inhibited the recruitment of GFP-E-cadherin and their associating catenins by the action of TPA. Microbeads coated with the extracellular fragment of nectin recruited not only cellular nectin but also GFP-E-cadherin and their associating catenins by the action of TPA. These results indicate that when the TJ-like structure is formed by the action of TPA, non-trans-interacting E-cadherin and its associating catenins are recruited to the nectin-based cell-cell adhesion sites and that the trans-interaction of E-cadherin is not essential for the formation of TJs.  相似文献   

20.
Role of nectin in organization of tight junctions in epithelial cells   总被引:4,自引:0,他引:4  
BACKGROUND: In polarized epithelial cells, cell-cell adhesion forms specialized membrane structures comprised of claudin-based tight junctions (TJs) and of E-cadherin-based adherens junctions (AJs). These structures are aligned from the apical to the basal side of the lateral membrane, but the mechanism of this organization remains unknown. Nectin is a Ca2+ independent immunoglobulin-like cell-cell adhesion molecule which localizes at AJs. Nectin is associated with E-cadherin through their respective cytoplasmic tail-binding proteins, afadin and catenins, and involved in the formation of AJs in cooperation with E-cadherin. We show here that nectin is also involved in the formation of TJs. RESULTS: During the formation of the junctional complex consisting of AJs and TJs in Madin-Darby canine kidney (MDCK) cells, claudin and occludin accumulated at the apical sites of the nectin-based cell-cell adhesion sites. This accumulation of claudin and occludin was inhibited by inhibitors acting on the trans interaction of nectin. The barrier function of TJs was also impaired by the nectin inhibitors. It has been shown that a phorbol ester promotes the formation of a TJ-like structure in an E-cadherin-independent manner. This phorbol ester-induced formation of the TJ-like structure was also inhibited by the nectin inhibitors. CONCLUSIONS: These results suggest a role of the nectin-afadin system in the organization of TJs as well as AJs in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号