首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Type I and type II brain corticosteroid receptors are regulated by adrenal hormones as well as being under neural control. Recent studies have indicated that neurotransmitters such as serotonin and noradrenaline are also involved in the regulation of corticosteroid receptors. In a previous study, we showed that dopamine also modulates activity of the corticosteroid receptor system. In the present study, we examined the roles of the dopamine D1 and D2 receptor subtypes in the regulation of corticosteroid receptors. Adrenalectomized rats whose corticosterone levels were maintained within normal limits by corticosterone replacement implants, were injected intraperitoneally with the D1 agonist SKF 38393 or the D2 agonist LY 171555. Corticosteroid receptors were assayed in the ventral striatum and hippocampus. We have shown that the D1 agonist SKF 38393 decreased type II receptor affinity in both regions, whereas the D2 agonist LY 171555 had no effects.

The results show that the influence of the dopaminergic system on corticosteroid receptors appears to be mediated by D1 receptors.  相似文献   


2.
3.
A.M. Alam  M.S. Starr   《Neuroscience》1994,60(4):1039-1047
The discrete localization of D3 receptors in the nucleus accumbens and subjacent islands of Calleja bears a close resemblance to the dopamine-sensitive anticonvulsant site in the anteroventral striatum. To determine if these D3 receptors were capable of attenuating limbic motor seizures induced by pilocarpine, dopamine agonists with preferential or non-selective D3 affinity were injected stereotaxically into these limbic brain regions of the rat via indwelling cannulae prior to pilocarpine challenge. Reliable clonic seizures were obtained by administering the proconvulsive dopamine D1 agonist SKF 38393 (10mg/kg i.p.) followed by a subconvulsant dose of pilocarpine (280–300 mg/kg i.p.). Bilateral intra-accumbens pretreatment with the D3 > D2 agonist RU 24213 (0.2 pmol-7 nmol) significantly delayed the onset of seizures, with a minimum effective dose of 2 pmol, without altering their frequency or severity. The more selective D3 agonist LY 171555 (0.2 pmol-7.8 nmol) was less potent, and only attenuated pilocarpine-induced seizures at a dose (500 pmol) that would have stimulated accumbens D2 receptors as well. Intra-accumbens injections of the highly potent and selective D3 agonist 7-OH-DPAT (20 pmol to 7 nmol) afforded no protection against pilocarpine-induced seizures. Apomorphine, a mixed D1D2D3 agonist, delayed seizure onset at 100–500 pmol, but not at higher doses. RU 24213, LY 171555 and 7-OH-DPAT were all modestly anticonvulsant when microinjected into the islands of Calleja at D2D3 unselective doses.

These data support the notion that dopamine systems limit seizure propagation through the limbic forebrain, but suggest this protective effect is mediated by D2 rather than D3 receptors.  相似文献   


4.
The influence of dopaminergic activity on the function of GABAergic neurons in striatum was examined by administrating rats the irreversible D2 dopamine receptor antagonist, fluphenazine-N-mustard (FNM), and determining the level of glutamic acid decarboxylase (GAD) mRNA in striatum. Rats were given either an acute single injection or chronic daily injections of FNM (20 gmmol/kg, i.p.) for 6 days. The level of GAD mRNA in striatum was determined by in situ hybridization histochemistry. The results showed that acute treatment with FNM failed to significantly change striatal GAD mRNA. However, chronic FNM treatment significantly increased in the level of striatal GAD mRNA. These results demonstrate that irreversible blockade of D2 dopamine receptors increases the expression of GAD mRNA in rat striatum.  相似文献   

5.
Recent evidence suggests that repeated stimulation of D1 dopamine receptors within the rat striatum leads to an enhancement of both D1 and D2 dopamine receptor-mediated responses. The present study used both behavioral observations and extracellular single unit recording techniques to investigate this phenomenon following repeated administration of selective D1 dopamine receptor agonists. Groups of rats received twice daily administration of either saline or the partial D1 dopamine receptor agonist SKF 38393 (8 mg/kg, s.c.) for three weeks. Rats were tolerant to the ability of SKF 38393 to enhance grooming behavior when tested immediately following the last of the 42 treatment injections. However, the ability of this last SKF 38393 injection to potentiate oral stereotyped behavior following administration of the D2 DA agonist quinpirole was still evident. Following a one-day withdrawal, grooming responses to SKF 38393 had returned to normal. At this time, administration of quinpirole, without concomitant SKF 38393, failed to significantly promote oral stereotypies, as is typical of normal rats. Following a one-week withdrawal period, SKF 38393-induced grooming behavior was significantly enhanced and quinpirole, administered without SKF 38393, produced pronounced oral stereotyped behavior in 10 of 12 rats tested. Following a one-month withdrawal, these sensitized responses were no longer evident. Single-cell recordings from rat lateral striatal neurons revealed similar time-dependent alterations in the effects of iontophoretically administered SKF 38393 and quinpirole. Current-response curves revealed that, without a withdrawal period, striatal neurons were subsensitive to the inhibitory effects of SKF 38393 but not quinpirole. The decreased inhibitory responses of striatal neurons to SKF 38393 returned to normal levels after a one-day withdrawal. Following a one-week withdrawal, the effects of both agonists were significantly greater than that in saline-treated controls. Normosensitivity was evident following a one-month withdrawal. Repeated administration of the full D1 DA agonist SKF 81297 (0.5 mg/kg, s.c., twice daily) also resulted in sensitized responses of striatal neurons following a one-week withdrawal, demonstrating that the sensitization to SKF 38393 was not due to its partial agonist character. The present findings provide both behavioral and electrophysiological evidence that repeated stimulation of D1 dopamine receptors results in a brief subsensitivity, followed by transient sensitization of the D1 receptors. The enhanced effects of D2 dopamine agonists might be due to an enhanced synergism (enabling) produced by endogenous dopamine stimulating supersensitive D1 receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Inositol phospholipids have been labelled with [3H]inositol in a lactotroph-enriched preparation of dissociated bovine anterior pituitary cells. Stimulation of cells with thyrotropin-releasing hormone receptor agonists leads to accumulation of [3H]inositol phosphates, and this effect may be inhibited by dopamine (DA) agonists. The DA agonist effect may be prevented by D2 DA receptor selective antagonists. Thus the D2 receptors on these cells are linked to inhibition of inositol phospholipid metabolism, and this provides a functional assay for the receptor.  相似文献   

7.
Dopamine (DA) deafferentation of the dorsolateral striatum has been shown to prevent habit development, leaving instrumental behavior under action–outcome control that is persistently sensitive to modification of the motivational value of the reward. The present experiment further explored the basis of this dysfunction by examining the ability of intrastriatal DA agonist injections (D1 SKF 38393 or D2/D3 Quinpirole) during overtraining of a signaled instrumental task to restore habit formation in rats subjected to bilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal dopaminergic pathway. Overtraining was followed by a test of goal sensitivity by satiety-specific devaluation of the reward. The results confirmed the impaired shift in performance from action to habit in control lesioned rats. However, lesioned rats repeatedly injected with quinpirole D2/D3 agonist showed an increase in non-rewarded instrumental responses (intertrials periods) during overtraining, suggesting the development of perseverative behavior. Following the procedure of devaluation, quinpirole D2/D3 agonist treatment, and to a lesser extent SKF 38393 D1 agonist, caused the persistence of sensitivity to reward devaluation, indicating clear goal-directed behavior despite extended training. This absence of restoration of habit formation by DA agonist treatment is discussed in the light of DA agonist effects in Parkinson patients.  相似文献   

8.
The purpose of this study was to examine whether improvement in motor function could be demonstrated in old rats, and to see if GDNF affected post-synaptic DA function. Aged (20 month old) versus young rats were tested following GDNF treatment for postural control by using an inclined balance beam and a wire grip strength test. Rats were also examined electrophysiologically for spontaneous striatal cell firing rate alone and in the presence of DA receptor agonists, and histologically for the intensity of striatal TH staining, and number of DA containing nigral cells. Behavior was significantly improved in the aged animals who received central GDNF infusions, although the extent of improvement was less than what has been observed in 16-month-old rats. There was no effect of GDNF treatment in the aged animals on spontaneous firing rate in the striatum, or on the post synaptic response to locally applied D(1) and D(2) receptor family agonists. However, there was an effect of age alone on firing rate, and on the response to locally applied SKF 38393 and quinpirole. By using unbiased cell counting we observed no age-related decline in the number of TH positive cells in the substantia nigra. There was no effect of GDNF on the number of TH positive cells in the substantia nigra in either young or aged rats, although there were morphological improvements in DA neurons of the GDNF treated aged rats. These results replicate earlier studies showing an effect of age on striatal firing rate and dopamine receptor function, and suggest that the GDNF mediated improvement in behavior may be located other than post synaptically within the striatum.  相似文献   

9.
Pollack AE  Yates TM 《Neuroscience》1999,94(2):505-514
Repeated dopamine agonist administration to rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway potentiates behavioral and neuronal activation in response to subsequent dopamine agonist treatment. This response sensitization has been termed "priming" or "reverse-tolerance". Our prior work has shown that three pretreatment injections of the mixed D1/D2 agonist apomorphine (0.5 mg/kg) into 6-hydroxydopamine-lesioned rats permits a previously inactive dose of the D2 agonist quinpirole (0.25 mg/kg) to induce robust contralateral rotation and striatal Fos expression in striatoentopeduncular "direct" pathway neurons. These striatal neurons typically express D1 but not D2 receptors. Because apomorphine acts as an agonist at both D1 and D2 receptors, the present study sought to determine whether D1, D2, or concomitant D1/D2 receptor stimulation was required to prime D2-mediated contralateral rotation and striatal Fos expression. Twenty-one days following unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle, rats received three pretreatment injections, at three- to six-day intervals, with either: the mixed D1/D2 agonist apomorphine, the D1 agonist SKF38393, the D2 agonist quinpirole, or a combination of SKF38393 + quinpirole. Ten days following the third pretreatment injection, 6-hydroxydopamine-lesioned rats were challenged with the D2 agonist quinpirole (0.25 mg/kg). Pretreatment with SKF38393 (10 mg/kg), quinpirole (1 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted an otherwise inactive dose of quinpirole (0.25 mg/kg) to induce robust contralateral rotation which was similar in magnitude to that observed following apomorphine priming. However, only pretreatment with SKF38393 (10 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted the same dose of quinpirole (0.25 mg/kg) to induce striatal Fos expression. These results demonstrate that while prior stimulation of D1, D2 or D1/D2 receptors can effectively prime D2-mediated contralateral rotation, prior stimulation of D1 receptors is required to prime D2-mediated striatal Fos expression. This study demonstrates that priming of 6-hydroxydopamine-lesioned rats with a D1 agonist permits a subsequent challenge with a D2 agonist to produce robust rotational behavior that is accompanied by induction of immediate-early gene expression in neurons that comprise the "direct" striatal output pathway. These responses are equivalent to the changes observed in apomorphine-primed 6-hydroxydopamine-lesioned rats challenged with D2 agonist. In contrast, D2 agonist priming was not associated with D2-mediated induction of striatal immediate-early gene expression even though priming of D2-mediated rotational behavior was not different from that observed following priming with apomorphine or D1 agonist. Therefore, while priming-induced alterations in D2-mediated immediate early gene expression in the "direct" striatal output pathway may contribute to the enhanced motor behavior observed, such changes in striatal gene expression do not appear to be required for this potentiated motor response in dopamine-depleted rats.  相似文献   

10.
Dopamine (DA) receptor responsitivity was investigated in adult rats that received intrastriatal (i.s.) injections of 6-OHDA (20 μg per striatum) on day of birth or postnatal Day 1 (Day 0/Day 1). Neonatally lesioned rats exhibited self-biting behavior and increases in stereotypic gnawing following treatment with the mixed D1/D2 receptor agonist apomorphine (0.32–3.2 mg/kg) or the D1-like receptor agonist SKF38393 (10 mg/kg). Increases in locomotor activity, rearing, and paw treading were also observed in the lesioned rats after SKF38393 (1–10 mg/kg) treatment. The incidences of the prototypical D1 receptor-mediated behaviors, grooming and abnormal perioral movements (i.e., oral dyskinesias) were not increased in the lesioned rats. However, the low dose (0.32 mg/kg) of apomorphine as well as all doses of the D2-like receptor agonist quinpirole (0.32–3.2 mg/kg) induced grooming in the lesioned rats, which was not observed in nonlesioned control rats. Autoradiographs of [3H]mazindol binding to high affinity DA uptake sites revealed an extensive loss of DA terminals in the striata of the neonatally lesioned rats. These data suggest that near-total (≥95%) DA depletions on Day 0/Day 1 result in long-term alterations in the functional sensitivity of DA receptors, as well as possible changes in the interactions between D1 and D2 receptors. Comparisons of these results with those seen following lesions of the early-developing DA system (“patch-selective” lesions) and lesions made at other time points will be discussed. © 1998 John Wiley & Sons, Inc. Dev Psychobiol 32: 313–326, 1998  相似文献   

11.
Current models of basal ganglia function predict that dopamine agonist-induced motor activation is mediated by decreases in basal ganglia output. This study examines the relationship between dopamine agonist effects on firing rate in basal ganglia output nuclei and rotational behavior in rats with nigrostriatal lesions. Extracellular single-unit activity ipsilateral to the lesion was recorded in awake, locally-anesthetized rats. Separate rats were used for behavioral experiments. Low i.v. doses of D1 agonists (SKF 38393, SKF 81297, SKF 82958) were effective in producing rotation, yet did not change average firing rate in the substantia nigra pars reticulata or entopeduncular nucleus. At these doses, firing rate effects differed from neuron to neuron, and included increases, decreases, and no change. Higher i.v. doses of D1 agonists were effective in causing both rotation and a net decrease in rate of substantia nigra pars reticulata neurons. A low s.c. dose of the D1/D2 agonist apomorphine (0.05 mg/kg) produced both rotation and a robust average decrease in firing rate in the substantia nigra pars reticulata, yet the onset of the net firing rate decrease (at 13-16 min) was greatly delayed compared to the onset of rotation (at 3 min). Immunostaining for the immediate-early gene Fos indicated that a low i.v. dose of SKF 38393 (that produced rotation but not a net decrease in firing rate in basal ganglia output nuclei) induced Fos-like immunoreactivity in the striatum and subthalamic nucleus, suggesting an activation of both inhibitory and excitatory afferents to the substantia nigra and entopeduncular nucleus. In addition, D1 agonist-induced Fos expression in the striatum and subthalamic nucleus was equivalent in freely-moving and awake, locally-anesthetized rats. The results show that decreases in firing rate in basal ganglia output nuclei are not necessary for dopamine agonist-induced motor activation. Motor-activating actions of dopamine agonists may be mediated by firing rate decreases in a small subpopulation of output nucleus neurons, or may be mediated by other features of firing activity besides rate in these nuclei such as oscillatory firing pattern or interneuronal firing synchrony. Also, the results suggest that dopamine receptors in both the striatum and at extrastriatal sites (especially the subthalamic nucleus) are likely to be involved in dopamine agonist influences on firing rates in the substantia nigra pars reticulata and entopeduncular nucleus.  相似文献   

12.
The modulatory effects of dopamine (DA) on the visual responses of relay cells of the dorsal aspect of cat lateral geniculate nucleus (dLGN) were tested using local micro-iontophoretic application of DA and application of the receptor-specific agonists SKF38393 (SKF, D1/D5) and quinpirole (QUIN, D2/D3/D4) in the anaesthetized alcuronium-treated cat. The effects of DA and QUIN were clearly dose-dependent: small amounts caused a weak and transient facilitation of visual activity (10–30 % increase) preferentially in Y-type relay cells, which changed to a moderate reduction of visual responses when the dose was increased (50 %, maximal 70 %). The effect of SKF was mainly suppressive and increased with the amount of drug applied (up to 90 % reduction). The selective antagonists SCH23390 (SCH, D1) and sulpiride (SULP, D2) reduced the effects of co-applied DA agonists. We found little evidence for a specific dopaminergic modulation of the surround inhibition (stimulus-driven lateral inhibition) although DA slightly facilitated the transmission of weak signals (small stimuli). Nevertheless, some dopaminergic effects seem to be mediated via inhibitory interneurons regulating the strength of sustained or recurrent inhibition. Application of DA agonists during blockade of GABAA receptors indicates a direct suppression of relay cells via D1 receptors, an excitation of relay cells via D2 receptors and - with increasing amounts of D2 agonist - probably also an excitation of inhibitory interneurons, which results in an indirect inhibition of dLGN relay cells (predominantly of the X-type). The results are discussed in relation to the impairment of visual functions in Parkinson's disease.  相似文献   

13.
The anatomical distributions and affinity states of dopamine D1 and D2 receptors were compared in the rat central nervous system using quantitative autoradiography. [3H]SCH23390 and [3H]spiperone (in the presence of 100 nM mianserin) were used to label the D1, and D2 receptors, respectively. The densities of D1 and D2 receptors displayed a positive correlation among 21 brain regions (Pearson correlation coefficient, r = 0.80, P < 0.001).

The affinity states for the D1 and D2 receptors were found to be quite different from each other, and different from the results obtained by others using homogenate preparations. Both the D1 and D2 receptors were best modeled using a two-state model. In the absence of exogenous guanine nucleotides and using the nonselective agonist dopamine as the competitor, the D1 receptor was primarily in a low affinity agonist state (RH = 21 ± 6%), whereas the D2 receptor was primarily in the high affinity agonist state (RH = 77 ± 3%). In the presence of 10 μM guanylyl-imidodiphosphate orguanosine-5'-O-(2-thiophosphate) both the D1 and the D2 receptor were completely in a low affinity agonist state (RL = 100%). These affinity states were found both in the nucleus accumbens and olfactory tubercle using dopamine as the competitor and in the striatum using selective D1 or D2 agonists as competitors.

Receptor occupancy of the D2 receptor with either an agonist or antagonist did not alter the affinity states of the D1 receptor, and conversely, receptor occupancy of the D1 receptor did not alter the affinity states of the D2 receptor.

The correlation between densities of D1 and D2 receptors provides an anatomical framework for evaluating behavioral and electrophysiological evidence of an interaction between the two dopamine receptor subtypes. This interaction does not appear to be due to a sharing or coupling of G-proteins in such a way that binding to one dopamine receptor subtype alters the affinity state of the other receptor subtype. The differences between dopamine receptor distributions described by labeled agonists and antagonists may be due in part to differences in their affinity states. The low proportion of high affinity state D1 receptors may explain some of the difficulties in assigning specific behavioral roles to the D1 receptor.  相似文献   


14.
W Gong  D B Neill  M Lynn  J B Justice 《Neuroscience》1999,93(4):1349-1358
Ventral pallidal dopamine has been recently shown to play an important role in psychostimulant reward and locomotor activation. The aim of the present study was to compare the roles of ventral pallidal D1 and D2 receptors in evoking locomotor activity with those in the nucleus accumbens. The D1 agonist SKF 38393 and the D2 agonist quinpirole hydrochloride (0.3-3 microg/ 0.5 microl) were bilaterally injected into ventral pallidum or nucleus accumbens through pre-implanted cannulae. In the ventral pallidum, 0.3-1 microg SKF 38393 increased locomotor activity while 3 microg had no effect; 3 microg quinpirole suppressed locomotion while 0.3-1 microg had no effect. Locomotor activity induced by an equigram (0.3 microg) mixture of SKF 38393 and quinpirole, while significantly higher than that induced by 0.3 microg quinpirole was not significantly higher than that induced by 0.3 microg SKF 38393 alone. At the 3 microg dose, SKF 38393 injections into anterior ventral pallidum increased activity; injections into posterior ventral pallidum decreased activity. In the nucleus accumbens, 0.3-3 microg SKF 38393 dramatically increased locomotor activity while quinpirole moderately increased locomotion. In the group that had previously received the full quinpirole dose range, injection of the equigram (0.3 microg) mixture of SKF 38393 and quinpirole induced locomotor activation which was higher than that induced by either drug alone or by the addition of the effect of each drug alone, i.e. synergy occurred. Moreover, rats that had previously received SKF 38393 developed a sensitized locomotor response to subsequent SKF 38393, quinpirole or the mixture of these two drugs. The difference in locomotor response to dopamine agonists between the ventral pallidum and nucleus accumbens is consistent with electrophysiological evidence collected at these two sites. These findings suggest that, unlike the nucleus accumbens, where D1 and D2 receptor activation may facilitate each other to induce a synergistic effect on locomotor activity, ventral pallidal D1 and D2 receptors may be located on different neurons and coupled with different, if not opposite, behavioral output.  相似文献   

15.
Altered activity of the entopeduncular nucleus, the rodent homologue of the globus pallidus internal segment in primates, is thought to mediate behavioral consequences of midbrain dopamine depletion in rodents. Few studies, however, have examined dopaminergic modulation of spiking activity in this nucleus. This study characterizes changes in entopeduncular neuronal activity after nigrostriatal dopaminergic lesion and the effects of systemic treatment with selective D(1) (SKF 38393) and D(2) (quinpirole) agonists in lesioned rats. Extracellular single-unit recordings were performed in awake immobilized rats, either in neurologically intact animals (n = 42) or in animals that had received unilateral 6-hydroxydopamine infusion into the medial forebrain bundle several weeks previously (n = 35). Nigrostriatal lesion altered baseline activity of entopeduncular neurons in several ways. Interspike interval distributions had significantly decreased modes and significantly increased coefficient of variation, skewness and kurtosis; yet interspike interval mean (the inverse of firing rate) was not affected. Also, spectral analysis of autocorrelograms indicated that lesion significantly reduced the incidence of regular-spiking neurons and increased the incidence of neurons with 4-18 Hz oscillations. Dopamine agonist treatment reversed some lesion-induced effects: quinpirole reversed changes in interspike interval distribution mode and coefficient of variation, while combined quinpirole and SKF 38393 blocked the appearance of 4-18 Hz oscillations. However, no agonist treatment normalized all aspects of entopeduncular activity. Additionally, inhibition of firing rates by D(1) or combined D(1)/D(2) receptor activation indicated that dopamine agonists affected the overall level of entopeduncular activity in a manner similar to that found in the substantia nigra pars reticulata and globus pallidus internal segment after dopamine neuron lesion. These data demonstrate that lesion of the nigrostriatal tract leads to modifications of several aspects of firing pattern in the rodent entopeduncular nucleus and so expand on similar findings in the rodent substantia nigra pars reticulata and in the globus pallidus internal segment in humans and nonhuman primates. The results support the view that dysfunction in the basal ganglia after midbrain dopamine neuron loss relates more consistently to abnormal activity patterns than to net changes in firing rate in the basal ganglia output nuclei, while overall decreases in firing rate in these structures may play a more important role in adverse motor reactions to dopamine agonist treatments.  相似文献   

16.
There is good evidence that interference with the mesolimbic dopamine (DA) system results in impaired maternal responding in postpartum female rats. However, whether activation of the mesolimbic DA system is capable of promoting maternal behavior has not been investigated. This study examined whether increasing DA activity in various brain regions of pregnancy-terminated, naive female rats would stimulate the onset of maternal behavior. Experiments 1 and 2 examined the effects of microinjection of various doses (0, 0.2, or 0.5 microg/0.5 microl/side) of a D1 DA receptor agonist, SKF 38393, or a D2 DA receptor agonist, quinpirole, into the nucleus accumbens (NA) on latency to show full maternal behavior, and Experiment 3 determined the effects of SKF 38393 injection into a control site. Finally, because the medial preoptic area (MPOA) is also important for maternal behavior, receives DA input, and expresses DA receptors, the authors examined whether microinjection of SKF 38393 into MPOA was capable of stimulating the onset of maternal behavior. Results indicated that microinjection of SKF 38393 into either the NA or the MPOA facilitates maternal responding in pregnancy-terminated rats.  相似文献   

17.
Dopamine activation of endogenous cannabinoid signaling in dorsal striatum   总被引:11,自引:0,他引:11  
We measured endogenous cannabinoid release in dorsal striatum of freely moving rats by microdialysis and gas chromatography/mass spectrometry. Neural activity stimulated the release of anandamide, but not of other endogenous cannabinoids such as 2-arachidonylglycerol. Moreover, anandamide release was increased eightfold over baseline after local administration of the D2-like (D2, D3, D4) dopamine receptor agonist quinpirole, a response that was prevented by the D2-like receptor antagonist raclopride. Administration of the D1-like (D1, D5) receptor agonist SKF38393 had no such effect. These results suggest that functional interactions between endocannabinoid and dopaminergic systems may contribute to striatal signaling. In agreement with this hypothesis, pretreatment with the cannabinoid antagonist SR141716A enhanced the stimulation of motor behavior elicited by systemic administration of quinpirole. The endocannabinoid system therefore may act as an inhibitory feedback mechanism countering dopamine-induced facilitation of motor activity.  相似文献   

18.
The present study has employed the technique of fast cyclic voltammetry to measure electrically-evoked dopamine release within the central amygdaloid complex in a rat brain slice. Local electrical stimulation caused the release of an electroactive substance which was identified, biochemically and pharmacologically, as being neuronal dopamine. Dopamine release could be inhibited by the dopamine D2 receptor agonist, quinpirole, but not by the D1 receptor agonist, SKF38393. Quinpirole-induced inhibitions were antagonized by sulpiride, metoclopramide and clozapine but not by SCH23390. It is concluded that dopamine release in the amygdala can be modulated by presynaptic D2 receptors which appear to be the same type as those found in striatum and nucleus accumbens.  相似文献   

19.
20.
Previous single exposure (priming) to a dopamine receptor agonist greatly enhances the contralateral turning behaviour elicited by dopamine D1 receptor agonists in unilaterally 6-hydroxydopamine lesioned rats. In the present study we have investigated the levels of glutamate decarboxylase 67 and glutamate decarboxylase 65 messenger RNA in the striatum of 6-hydroxydopamine-lesioned rats primed with L-3,4-dihydroxyphenylalanine (L-DOPA) and challenged with the D1 receptor agonist SKF 38393, three days thereafter. As previously reported, levels of glutamate decarboxylase 67 messenger RNA increased in the striatum denervated by the 6-hydroxydopamine lesion as compared with the intact one. Striatal glutamate decarboxylase 67 messenger RNA levels, measured three days after priming with L-DOPA (50 mg/kg), further increased in the lesioned striatum while were not modified in the intact one. Administration of SKF 38393 (3 mg/kg) elicited a more intense contralateral turning behaviour in primed than in drug-naive 6-hydroxydopamine-lesioned rats but did not induce any change in striatal glutamate decarboxylase 67 messenger RNA. In contrast, striatal levels of glutamate decarboxylase 65 messenger RNA were not modified by either 6-hydroxydopamine lesions or priming with L-DOPA. The results show that priming with L-DOPA induces long-lasting changes in GABAergic neurons of the 6-hydroxydopamine-lesioned striatum. These changes might play a role in the increased behavioural response of striatal D1 receptors induced by priming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号