首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type IIA and IIB von Willebrand disease (vWD) result from qualitative abnormalities of von Willebrand factor (vWF) characterized by an absence in plasma of high molecular weight vWF multimers and an abnormal reactivity of vWF towards platelet glycoprotein (GP) Ib, which is decreased in type IIA and increased in type IIB. In this report, we describe the case of a patient having a IIA vWD phenotype associated with an intermittent thrombocytopenia atypical in this subtype but observed in type IIB vWD. The patient plasma vWF showed an absence of high molecular weight and intermediate multimers and had a decreased binding capacity to GPIb. The affinity of botrocetin was normal for plasma vWF from the propositus. Analysis of the propositus vWF gene showed the presence of a substitution Val 551 to Phe of the mature vWF subunit. This mutation is localized within a 509-695 disulphide loop of the vWF that plays an important role in the binding to GPIb and is where most of the molecular defects described so far were associated with type-IIB vWD. We have reproduced the Val 551 Phe substitution onto the vWF cDNA, expressed it in COS-7 cells, and performed structural and functional analysis of the mutant recombinant protein (rvWFPhe 551). The rvWFPhe 551 had a normal multimeric structure and showed the capacity to spontaneously interact with GPIb. Botrocetin had a decreased affinity for rvWFPhe 551. In conclusion, the Val 551 Phe mutation modifies the affinity of vWF for platelet GPIb, as does a type IIB mutation, and may be responsible for the thrombocytopenia of the patient and the clearance of the high molecular weight and intermediate- sized multimers of vWF from the plasma. The study of the rvWFPhe 551 has confirmed the discrepancy between the IIA phenotype and the IIB genotype of the patient.  相似文献   

2.
von Willebrand factor (vWF) supports platelet adhesion on thrombogenic surfaces by binding to platelet membrane glycoprotein (GP) Ib in the GP Ib-IX receptor complex. This interaction is physiologically regulated so that it does not occur between circulating vWF and platelets but, rather, only at a site of vascular injury. The abnormal vWF found in type IIB von Willebrand disease, however, has a characteristically increased affinity for GP Ib and binds to circulating platelets. We have analyzed the molecular basis of this abnormality by sequence analysis of a type IIB vWF cDNA and have identified a single amino acid change, Trp550 to Cys550, located in the GP Ib-binding domain of the molecule comprising residues 449-728. Bacterial expression of recombinant fragments corresponding to this vWF domain yielded molecules that, whether containing a normal Trp550 or a mutant Cys550 residue, bound directly to GP Ib in the absence of modulators and with similar affinity. In contrast, mammalian cell expression of the same segment of sequence yielded molecules that, when containing the normal Trp550, did not bind to GP Ib directly but, like native vWF, bound in the presence of ristocetin. However, molecules containing the point mutation (Cys550) behaved like type IIB vWF--namely, bound to GP Ib even without ristocetin modulation and, in the presence of ristocetin, had 10-fold higher affinity than molecules with normal sequence. These results identify a region of vWF that, although not thought to be directly involved in binding to GP Ib, may modulate the interaction through conformational changes.  相似文献   

3.
4.
Type IIA von Willebrand disease (vWD) is characterized by the loss of high and intermediate weight multimers of von Willebrand factor (vWF) from plasma. The 3' end of exon 28 in the vWF gene from four type IIA vWD patients was amplified by the polymerase chain reaction, cloned and sequenced. Sequencing identified two potential missense mutations resulting in the amino acid substitutions Arg 834-->Gln and Glu 875-->Lys in the mature vWF subunit within an area of vWF where mutations in type IIA vWD have been reported. Neither of these amino acid substitutions was found in over 100 normal alleles tested by allele specific oligonucleotide hybridization. A polymorphism (Val 802-->Leu) was identified in another patient. Other areas of exon 28 were analysed by denaturing gradient gel electrophoresis (DGGE) and DNA from one patient demonstrated an irregular DGGE pattern on the 5' end of the exon. Sequencing demonstrated an amino acid substitution of an arginine for cysteine at position 509 adjacent to an area of vWF where defects associated with type IIB vWD have been found. This substitution was not found in 100 normal chromosomes tested by restriction enzyme digestion. The Cys 509-->Arg substitution eliminates an intramolecular disulphide bridge formed by Cys 509 and Cys 695 which is important to maintain the configuration of vWF functional domains that interact with platelet glycoprotein Ib-IX.  相似文献   

5.
Type IIB von Willebrand disease is an autosomal dominant bleeding disorder characterized by the selective loss of high molecular weight von Willebrand factor (vWF) multimers in plasma, presumably due to their abnormally increased reactivity with platelets. We and others have recently identified a panel of missense mutations clustered in the platelet glycoprotein Ib binding domain of vWF from patients with type IIB von Willebrand disease. We now report functional analysis of one of the most frequent type IIB missense mutations, Arg-543----Trp (vWF R543W). vWF from a human umbilical vein endothelial cell culture heterozygous for the vWF R543W mutation showed markedly increased binding of large vWF multimers to platelets in the presence of a low dose of ristocetin compared to vWF from a normal control culture. Recombinant vWF containing the vWF R543W mutation expressed in COS-7 cells also demonstrated increased binding of large vWF multimers. Mixed multimers obtained by cotransfection of mutant and wild-type cDNAs showed partial dominance of the vWF R543W mutation. Thus these data demonstrate that the vWF R543W mutation alone is sufficient to confer increased binding of large vWF multimers to platelets in a dominant fashion and that no other factors relating to vWF posttranslational processing or secretion in endothelial cells are required for this effect.  相似文献   

6.
von Willebrand factor (vWF) is a multimeric glycoprotein that mediates the adhesion of platelets to the subendothelium by binding to platelet glycoprotein Ib. For human vWF, this interaction can be induced in vitro by the antibiotic ristocetin or the snake venom protein botrocetin. A missense mutation, Gly-561-->Ser, was identified within the proposed glycoprotein Ib binding domain of vWF in the proband with von Willebrand disease type B, a unique variant characterized by no ristocetin-induced, but normal botrocetin-induced, binding to glycoprotein Ib. The corresponding mutant recombinant protein, rvWF(G561S), formed normal multimers and exhibited the same functional defect as the patient's plasma vWF, confirming that this mutation causes von Willebrand disease type B. These data show that botrocetin and ristocetin cofactor activities of vWF can be dissociated by a point mutation and confirm that these mediators promote vWF binding to platelets by different mechanisms. The normal botrocetin-induced binding and the defective ristocetin-induced binding of rvWF(G561S) suggest that the primary defect in von Willebrand disease type B may be a failure of normal allosteric regulation of the glycoprotein Ib binding function of vWF.  相似文献   

7.
We compared the properties of plasma von Willebrand factor (vWF) from normal individuals and from two patients with type IIA (Glu875Lys) and type IIB (duplication of Met 540) von Willebrand disease (vWD) with the corresponding fully multimerized recombinant proteins. We included cryosupernatant from normal human plasma and type IIA plasma (Cys509Arg). Functions of vWF were analyzed by binding assays to platelets in the presence of ristocetin or botrocetin. Parameters of binding (number of binding sites per vWF subunit, and dissociation constant Kd) were quantitatively estimated from the binding isotherms of 125I-botrocetin or glycocalicin to vWF, independently of the size of the multimers. We found that ristocetin- or botrocetin-induced binding to platelets was correlated in all cases with the size of vWF multimers. In the absence of inducer, only type IIB rvWF Met-Met540 spontaneously bound to platelets. No significant difference of binding of purified botrocetin to vWF was found between normal and patients' plasma, or between wild-type rvWF (rvWF-WT) and rvWF-Lys875. In contrast, affinity of botrocetin for type IIB rvWF Met-Met540 was decreased. Botrocetin-induced binding of glycocalicin to vWF from all plasma and cryosupernatant was similar. Compared with rvWF-WT, binding of glycocalicin to rvWF-Lys875 was normal. In contrast, the affinity for type IIB rvWF Met-Met540 was 10-fold greater. Thus, our data suggest that, in the patients tested, the abnormal IIA phenotype results from the lack of large-sized multimers and is independent of the point mutations. In contrast, the type IIB mutation is directly involved by providing a conformation to the vWF subunits that allows the high molecular weight multimers to spontaneously interact with platelet glycoprotein Ib.  相似文献   

8.
The defective von Willebrand Factor (vWF) in type IIA von Willebrand disease (vWD) has decreased binding affinity for platelet membrane glycoprotein Ib (GPIb) while in type IIB vWD, the abnormal vWF has increased affinity for this receptor. Segments of exon 28 of the vWF gene were amplified by the polymerase chain reaction and sequenced in two patients with type IIA and two patients with type IIB vWD. One type IIB patient showed an arginine to tryptophan substitution at amino acid residue 543 in the mature vWF and the other patient had a valine to methionine change at residue 553. Including these two new cases, substitutions at residues 543 and 553 now account for more than half of the documented mutations in patients with type IIB vWD. One patient with type IIA vWD showed an isoleucine to threonine change at amino acid 865. This substitution has been reported in another patient with type IIA vWD. The other patient showed a novel proline to serine change at residue 885. The C to T nucleotide transition which causes the amino acid change was not found in over 100 normal chromosomes tested by allele specific oligonucleotide hybridization and was linked to type IIA vWD in the family. This potential mutation is more carboxyterminal in the vWF subunit than other reported mutations in type IIA vWD. It is apparent that mutations associated with type IIA vWD are not as tightly grouped as defects in type IIB vWD, supporting the evidence that the type IIA vWD phenotype is generated by diverse mechanisms.  相似文献   

9.
The study identified 10 patients from 6 families with prolonged bleeding time, decreased von Willebrand factor (vWF) ristocetin cofactor activity (RCoF) to vWF:Ag (antigen) ratio, and reduced ristocetin-induced platelet agglutination as well as ristocetin- or botrocetin-induced binding of plasma vWF to platelet glycoprotein Ib (GpIb). In addition, all patients showed a decrease of intermediate-molecular-weight (intermediate-MW) and high-molecular-weight (HMW) multimers of vWF. In the heterozygous state, a cysteine-to-threonine (C --> T) transversion was detected at nucleotide 4193 of the VWF gene of all patients and lead to the arginine (R)522C substitution in the A1 loop of vWF mature subunit (R1315C in the preprovWF). By in vitro mutagenesis of full-length complementary DNA (cDNA) of vWF and transient expression in COS-7 cells, the mutated C552 recombinant vWF (C552rvWF) was found to exhibit decreased expression, abnormal folding, and lack of intermediate-MW and HMW multimers. In addition, direct binding of botrocetin to C552rvWF, as well as ristocetin- and botrocetin-induced binding of C552rvWF to GpIb, was markedly decreased. Although being localized in an area of the A1 loop of vWF where most of the type 2B mutations that induce a gain-of-function have been identified, the R552C mutation induces a 2A-like phenotype with a decrease of intermediate-MW and HMW multimers as well as a loss-of-function of vWF in the presence of either ristocetin or botrocetin. (Blood. 2001;97:952-959)  相似文献   

10.
Botrocetin, a protein isolated from the venom of the snake Bothrops jararaca, induces platelet aggregation/agglutination by von Willebrand factor (vWF) binding to the membrane glycoprotein (GP) Ib, an action resembling that of ristocetin. However, some differences in the interaction between vWF and platelet GPIb induced by these two substances have been reported. We have recently shown that the GPIb binding domain on the vWF molecule, in both instances, resides in the tryptic 52/48 kDa fragment extending from amino acid residue 449 to 728 of the constituent subunit. In the present report, we demonstrate that botrocetin does not induce agglutination of formalin-fixed platelets from a patient with Bernard-Soulier syndrome congenitally lacking GPIb and GPIX as well as GPV, a finding similar to that shown with ristocetin. A monoclonal antibody against GPIb (AP-1) inhibits either ristocetin- or botrocetin-dependent vWF binding to formalin-fixed platelets from normal individuals. Therefore, botrocetin-induced vWF binding to formalin-fixed platelets may reflect the interaction between vWF and platelet GPIb. To strengthen this concept, we have now found that heightened botrocetin-induced type IIB vWF binding to platelet GPIb causes hyperagglutination of normal platelets.  相似文献   

11.
von Willebrand disease Normandy (vWD Normandy) is a recently described phenotype in which a mutant von Willebrand factor (vWF) appears structurally and functionally normal except that it does not bind to blood coagulation factor VIII. This interaction is required for normal survival of factor VIII in the circulation; consequently, vWD Normandy can present as apparent hemophilia A but with autosomal recessive rather than X chromosome-linked inheritance. A vWF missense mutation, Thr28----Met, was identified in the propositus in or near the factor VIII binding site. The corresponding mutant recombinant vWF(T28M) formed normal multimers and had normal ristocetin cofactor activity. However, vWF(T28M) exhibited the same defect in factor VIII binding as natural vWF Normandy, confirming that this mutation causes the vWD Normandy phenotype. The distinction between hemophilia A and vWD Normandy is clinically important and should be considered in families affected by apparent mild hemophilia A that fail to show strict X chromosome-linked inheritance and, particularly, in potential female carriers with low factor VIII levels attributed to extreme lyonization.  相似文献   

12.
A variant of von Willebrand disease (vWD) was identified in six members of a kindred spanning four generations. The proband was a 46-year-old woman with a lifelong history of bleeding, a prolonged bleeding time (> 15 minutes), markedly elevated von Willebrand factor (vWF) antigen (vWF:Ag = 2.09 U/mL), slightly reduced ristocetin cofactor activity, and a plasma vWF multimer pattern similar to that of vWD type IIC. Similar findings were observed in her three children, mother, and brother. In affected family members, platelet and plasma vWF multimer patterns were discrepant with higher molecular weight multimers observed in platelet vWF. Following a 1-Des-amino-8-D-arginine vasopressin (DDAVP) challenge, the proband failed to normalize her bleeding time even though vWF: Ag rose by 70% and higher molecular weight multimers were increased slightly. Genetic studies were consistent with autosomal dominant inheritance of a mutation within the vWF gene. By sequencing of cloned genomic DNA, mutations were excluded in exons 4, 5, 14, and 15, which encode regions of the vWF propeptide proposed to be important in multimer biosynthesis. Mutations also were excluded in exons 28 to 31, which encompass the known mutations that cause vWD types IIA, IIB, and B. This new variant of vWD, characterized by autosomal dominant inheritance, a qualitative defect that resembles vWD type IIC, and increased plasma vWF:Ag, was tentatively designated vWD type IIC Miami.  相似文献   

13.
This report examines the genetic basis of a variant form of moderately severe von Willebrand disease (vWD) characterized by low plasma von Willebrand factor antigen (vWF:Ag) levels and normal multimerization, typical of type 1 vWD, but disproportionately-low agonist-mediated platelet-binding activity. We identified an in-frame deletion in vWF exon 28 in three generations of affected family members, who are heterozygous for this mutation. The deletion of nucleotides 4,173-4,205 results in the loss of amino acids Arg629-Gln639 in the Cys509-Cys695 loop of the A1 domain in mature vWF. The secreted mutant vWF showed a normal multimeric profile but did not bind to platelets in the presence of optimal concentrations of either ristocetin or botrocetin. The mutant vWF also failed to interact with heparin, and with vWF monoclonal antibody AvW3, which blocks the binding of vWF to GPlb. In addition, mutant vWF showed reduced secretion from transfected cells concomitant with increased intracellular levels. These results confirm that the deletion is the genetic defect responsible for the reduced interaction of vWF with platelets. We have designated this new variant type 2M:Milwaukee-1 vWD. Our analysis suggests that the potential frequency of this phenotype in individuals diagnosed with type 1 vWD is about 0.5%.  相似文献   

14.
Cooney  KA; Ginsburg  D 《Blood》1996,87(6):2322-2328
von Willebrand factor (vWF) is a multimeric glycoprotein that forms an adhesive link following vascular injury between the vessel wall and its primary ligand on the platelet surface, glycoprotein Ib (GpIb). Type 2b von Willebrand disease (vWD) is a qualitative form of vWD resulting from enhanced binding of vWF to platelets. Molecular characterization of the vWF gene in patients with type 2b vWD has resulted in identification of a panel of mutations associated with this disorder, all clustered within the GpIb binding domain in exon 28 of the vWF gene. We have expressed six of the most common type 2b vWD mutations in recombinant vWF and show that each mutation produces a similar increase in vWF binding to platelets in the absence or presence of ristocetin. Furthermore, expression of more than one type 2b vWD mutation in the same molecule (cis) or in different molecules within the same multimer (trans) failed to produce an increase in vWF platelet binding compared with any of the individually expressed mutations. Taken together, these data support the hypothesis that the vWF GpIb binding domain can adopt either a discrete "on" or "off" conformation, with most type 2b vWD mutations resulting in vWF locked in the on conformation. This model may have relevance to other adhesive proteins containing type A domains.  相似文献   

15.
Endothelial cells were isolated from the umbilical vein of a patient with subtype IIB von Willebrand disease, and the biosynthesis and function of von Willebrand factor (vWF) synthesized by these cells were compared with those of vWF synthesized by endothelial cells from normal individuals. The patient's endothelial cells synthesized, stored, and secreted vWF indistinguishably from normal endothelial cells: it was synthesized as a prepolypeptide of Mr 270,000 and had a mature form of Mr 220,000; the full spectrum of multimers was found both inside the cells and in the culture medium; it was stored normally, in the Weibel-Palade bodies; and similar amounts of vWF were secreted into the medium and deposited in the extracellular matrix. In a perfusion set-up, the extracellular matrix from IIB cells supported platelet adhesion similarly to the matrix from normal cells. vWF secreted constitutively by IIB cells into the culture medium bound to platelets at concentrations of ristocetin lower than those necessary for vWF from normal cells. vWF stored in the Weibel-Palade bodies of type IIB cells was released upon stimulation with phorbol ester and bound almost completely to platelets even in the absence of ristocetin. Moreover, spontaneous platelet aggregation was induced by vWF synthesized by type IIB cells. These data support the hypothesis that the absence of highly multimeric forms of vWF in plasma of type IIB von Willebrand disease patients is due to specific removal of these multimers by platelets.  相似文献   

16.
Kroner  PA; Foster  PA; Fahs  SA; Montgomery  RR 《Blood》1996,87(3):1013-1021
In this report we describe the further investigation of the von Willebrand factor (vWF)/FVIII interaction in a type 1 von Willebrand disease patient characterized by discrepant VIII:C levels as determined by one-stage and two-stage VIII:C assays. A solid-phase binding assay shows that this patient's plasma vWF is moderately defective in capturing recombinant FVIII. Sequence analysis of the FVIII-binding domain encoded by the vWF mRNA of the affected individual identified mutations in both vWF alleles. In allele A, the mutations C2344T and T2451A result in the substitution of Trp for Arg19 (R19W) and of G1n for His54 (H54Q) in mature vWF, respectively. This allele also contains a reported polymorphism (A2365G, Thr26Ala). Allele B, which is underexpressed at the RNA level, contains a one-nucleotide deletion in the FVIII-binding domain (delta G2515) that results in the premature termination of translation. Analysis of the binding of FVIII by full- length vWF transiently expressed in COS-7 cells confirms that the combined R19W and H54Q substitutions are the cause of the defective vWF/FVIII interaction in this patient. The FVIII-binding defect of vWF containing either mutation alone is approximately half that of the double mutant, which suggests that the effect of these mutations is additive. The mutant proteins are recognized equally well by vWF monoclonal antibodies MBC105.4, 32B12, and 31H3, which block the binding of FVIII by vWF, indicating that amino acids Arg19, Thr26, and His54 are not critical residues in the epitopes of these antibodies.  相似文献   

17.
Summary. Type 2B von Willebrand disease (vWD) is characterized by an increased affinity of von Willebrand factor (vWF) for binding to platelet glycoprotein lb (Gplb). Most type 2B candidate mutations are clustered in the 509-695 disulphide loop but three of them (H505D, L697V and A698V) are outside this loop. We confirm here that the A698V mutation is a type 2B mutation by its expression in Cos-7 cells. As the L697V and A698V type 2B mutations both induce the presence of a valine residue in the 694-708 sequence, we created and expressed different mutated recombinant vWFs (rvWFs), in substituting the other leucine and alanine residues of this sequence (at positions 694, 701 and 706) into valine residues. V694rvWF and V706rvWF displayed decreased ristocetin-induced GpIb binding showing that it is not always the presence of a valine residue that may explain the increased affinity of type 2B vWF for GpIb. We also compared the interaction with platelets of V697rvWF and V698rvWF to those obtained with rvWFs reproducing two prevalent type 2B mutations located in the loop (R543W and V553M). We show that the two mutations located in the loop are more reactive than the two mutations identified outside the loop.  相似文献   

18.
von Willebrand factor (vWF) and factor VIII (FVIII) circulate in plasma as a noncovalently linked protein complex. The FVIII/vWF interaction is required for the stabilization of procoagulant FVIII activity. Recently, we reported a new variant of von Willebrand disease (vWD) tentatively named "Normandy," characterized by plasma vWF that appears to be structurally and functionally normal except that it does not bind FVIII. Three patients from one family were found to be homozygous for a C----T transition at codon 816 converting Arg 53 to Trp in the mature vWF subunit. To firmly establish a causal relationship between this missense mutation and vWD Normandy phenotype, we have characterized the corresponding recombinant mutant vWF(R53W). Expressed in COS-7 cells or CHO cell lines, normal vWF and vWF(R53W) were processed and formed multimers with equal efficiency. However, vWF(R53W) exhibited the same defect in FVIII binding as did plasma vWF from patients with vWD Normandy, confirming that this mutation is responsible for the vWD Normandy phenotype. These results illustrate the importance of Arg 53 of the mature vWF subunit for the binding of FVIII to vWF, and identify an amino acid residue within a disulfide loop not previously known to be involved in this interaction.  相似文献   

19.
In eight members of one family, platelets in platelet-rich plasma aggregated at much lower ristocetin concentrations than normal. Ivy bleeding time was variously prolonged, and von Willebrand factor antigen (vWF:Ag), ristocetin cofactor activity, and factor VIII coagulant activity were decreased. Most of the affected members had had slight to rather severe bleeding symptoms. Platelet-type von Willebrand's disease (vWD) could be ruled out. All multimers of vWF:Ag were found in plasma as well as platelets. Administration of 1-desamino-8-D-arginine vasopressin (DDAVP) to the propositus did not cause thrombocytopenia, and platelet-poor plasma obtained immediately after did not aggregate normal platelets. The molecular defect in this family, inherited as an autosomal dominant, resembles the one in type IIB because of the response to ristocetin but differs from IIB because all vWF:Ag multimers are present in plasma and the response to DDAVP is atypical. We conclude that this family has a new subtype of vWD and propose that structural as well as functional criteria should be used for a proper classification of vWD.  相似文献   

20.
Type IIA von Willebrand disease (vWD), the most common type II vWD variant, is characterized by decreased binding of von Willebrand factor (vWF) to platelet glycoprotein Ib (Gplb) and by a decrease in large and intermediate vWF multimers. Mutations reported to cause vWD type IIA are clustered within the A2 domain of vWF, which is encoded by exon 28. Genomic DNA from affected members of 12 unrelated families with type IIA vWD were screened for these mutations by a rapid, nonradioactive, allele-specific oligonucleotide (ASO) hybridization method. Oligonucleotides containing each of eight mutations were cross-linked onto a nylon membrane by UV irradiation. A fragment of vWF exon 28 was amplified from peripheral blood leukocyte DNA using biotinylated primers and hybridized to the immobilized oligonucleotides. Positive signals were detected with an avidin-alkaline phosphatase conjugate and chemiluminescent substrate. Thus, in a single hybridization reaction, a patient sample could be analyzed for a large number of mutations simultaneously. Polymerase chain reaction (PCR) products from four patients did not contain any of the tested mutations and therefore were sequenced. Three additional candidate missense mutations, two of them novel, were identified: Arg(834)-->Gln in one patient, Gly(846)-->Arg in one patient, and Val(902)-->Glu in three ostensibly unrelated patients. By ASO hybridization, the mutations were confirmed in the affected patients and excluded in unaffected relatives and 50 normal controls. In one family, the Val(902)-->Glu mutation was shown to be a de novo mutation. This rapid screening method is applicable to other subtypes of vWD for which mutations have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号