首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

We sought to investigate the role of ErbB3-mediated signalling on the interaction between pancreatic cancer-associated fibroblasts (CAF) and carcinoma cells in an effort to disrupt tumourigenic pancreatic ductal adenocarcinoma (PDAC) stromal–epithelial cross-communication.

Methods:

Primary CAF cultures were established from human PDAC surgical specimens. AsPC-1 pancreatic cancer cell murine subcutaneous xenografts were developed in the presence and absence of CAF and were subsequently treated with epidermal growth factor receptor (EGFR) inhibitors (erlotinib) and ErbB3 inhibitors (MM-121, monoclonal ErbB3 antibody).

Results:

Cancer-associated fibroblasts were found to secrete neuregulin-1 (NRG-1), which promoted proliferation via phosphorylation of ErbB3 and AKT in AsPC-1 PDAC cells. This signalling cascade was effectively inhibited both in vitro and in vivo by specific ErbB3 blockade with MM-121, with greater degree of tumourigenesis inhibition when combined with erlotinib. The CAF–AsPC-1 pancreatic cancer xenografts reached significantly greater tumour volume than those xenografts lacking CAF and were resistant to the anti-tumour effects of EGFR inhibition with erlotinib.

Conclusion:

Cancer-associated fibroblasts-derived NRG-1 promote PDAC tumourigenesis via ErbB3-AKT signalling and overcomes single-agent EGFR inhibition. Disruption of this stromally mediated tumourigenic mechanism is best obtained through combined EGFR-ErbB3 inhibition with both erlotinib and MM-121. We have identified the NRG-1/ErbB3 axis as an attractive molecular target for the interruption of tumourigenic stromal–epithelial interactions within the PDAC microenvironment.  相似文献   

2.

Background:

Impaired drug transport is an important factor that reduces the efficacy of anticancer agents against pancreatic cancer. Here, we report a novel combination chemotherapy using gemcitabine (GEM) and internalised-RGD (iRGD) peptide, which enhances tumour-specific drug penetration by binding neuropilin-1 (NRP1) receptor.

Methods:

A total of five pancreatic cancer murine models (two cell line-based xenografts (CXs) and three tumour grafts (TGs)) were treated with either GEM (100 mg kg−1, q3d × 4) alone or GEM plus iRGD peptide (8 μmol kg−1). Evaluation of NRP1 expression in xenografts and 48 clinical cancer specimens was performed by immunohistochemistry (IHC).

Results:

We identified a subset of pancreatic cancer models that showed NRP1 overexpression sensitive to iRGD co-administration. Treatment with GEM plus iRGD peptide resulted in a significant tumour reduction compared with GEM monotherapy in CXs, but not remarkable in TGs. Potential targets of iRGD were characterised as cases showing NRP1 overexpression (IHC-2+/3+), and these accounted for 45.8% of the clinical specimens.

Conclusions:

Internalised RGD peptide enhances the effects of co-administered drugs in pancreatic cancer models, its efficacy is however only appreciable in those employing cell lines. Therefore, the clinical application needs to be given careful consideration.  相似文献   

3.

Background:

Germline mutations of the BRCA tumour suppressors have been associated with increased risk of pancreatic cancer. Clinical evidence suggests that these patients may be more sensitive to treatment with cisplatin. As the frequency of germline BRCA mutations is low, definitive experimental data to support the clinical observations are still missing.

Methods:

We tested gemcitabine and cisplatin sensitivity of four BRCA1 and BRCA2 mutant and three BRCA1 and BRCA2 wild-type (WT) patient-derived pancreatic cancer xenografts.

Results:

We observed treatment sensitivity to gemcitabine and cisplatin in the BRCA WT and mutant models. The BRCA1 and BRCA2 mutant xenografts were significantly more sensitive to cisplatin although these models also showed sensitivity to gemcitabine. The BRCA1 and BRCA2 WT models showed sensitivity to gemcitabine but not cisplatin. Treatment sensitivity in the xenograft models closely resembled treatment response in the corresponding patients.

Discussion:

We have characterised a panel of xenografts derived from pancreatic cancer patients carrying germline BRCA mutations, and shown that their genetic features resemble the patient donor. Our results support further clinical testing of treatment regimens combining gemcitabine and platinum drugs in this patient population, as well as preclinical research aiming to identify mechanisms of cisplatin resistance in BRCA mutant pancreatic cancers.  相似文献   

4.

Background:

The current standard of care for pancreatic cancer is weekly gemcitabine administered for 3 of 4 weeks with a 1-week break between treatment cycles. Maximum tolerated dose (MTD)-driven regimens as such are often associated with toxicities. Recent studies demonstrated that frequent dosing of chemotherapeutic drugs at relatively lower doses in metronomic regimens also confers anti-tumour activity but with fewer side effects.

Methods:

Herein, we evaluated the anti-tumour efficacy of metronomic vs MTD gemcitabine, and investigated their effects on the tumour microenvironment in two human pancreatic cancer xenografts established from two different patients.

Results:

Metronomic and MTD gemcitabine significantly reduced tumour volume in both xenografts. However, Ktrans values were higher in metronomic gemcitabine-treated tumours than in their MTD-treated counterparts, suggesting better tissue perfusion in the former. These data were further supported by tumour-mapping studies showing prominent decreases in hypoxia after metronomic gemcitabine treatment. Metronomic gemcitabine also significantly increased apoptosis in cancer-associated fibroblasts and induced greater reductions in the tumour levels of multiple pro-angiogenic factors, including EGF, IL-1α, IL-8, ICAM-1, and VCAM-1.

Conclusion:

Metronomic dosing of gemcitabine is active in pancreatic cancer and is accompanied by pronounced changes in the tumour microenvironment.  相似文献   

5.

Background:

Limited knowledge is available on alterations induced by cytostatic drugs on magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters of human cancers, in absence of apoptosis or cytotoxicity. We here investigated the effects of a cytostatic cisplatin (CDDP) treatment on 1H MRS and MRI of HER2-overexpressing epithelial ovarian cancer (EOC) cells and in vivo xenografts.

Methods:

High-resolution MRS analyses were performed on in vivo passaged SKOV3.ip cells and cell/tissue extracts (16.4 or 9.4 T). In vivo MRI/MRS quantitative analyses (4.7 T) were conducted on xenografts obtained by subcutaneous implantation of SKOV3.ip cells in SCID mice. The apparent diffusion coefficient (ADC) and metabolite levels were measured.

Results:

CDDP-induced cytostatic effects were associated with a metabolic shift of cancer cells towards accumulation of MRS-detected neutral lipids, whereas the total choline profile failed to be perturbed in both cultured cells and xenografts. In vivo MRI examinations showed delayed tumour growth in the CDDP-treated group, associated with early reduction of the ADC mean value.

Conclusion:

This study provides an integrated set of information on cancer metabolism and physiology for monitoring the response of an EOC model to a cytostatic chemotherapy, as a basis for improving the interpretation of non-invasive MR examinations of EOC patients.  相似文献   

6.

Background:

Pancreatic cancer is a deadly disease characterised by high incidence of TP53 mutations. Restoration of TP53 function is perceived as a highly attractive therapeutic strategy, whose effects are not well characterised.

Methods:

The current work adapted an inducible strategy of stage-specific reexpression of wild-type (wt) TP53 in an in vivo orthotopic mouse model of pancreatic cancer.

Results:

The reconstitution of wt TP53 function in TP53-mutant DanG and MiaPaCa-2 cells caused G1 cell cycle arrest but no evidence of apoptosis induction. Consistent with subcutaneous xenograft models, we found that wt TP53 reduced primary tumour growth. Wt TP53 reexpression during early tumour growth led to significant increase in vascularisation. This correlated with an unexpectedly high rate of micro-metastases in lymph nodes of animals with wt TP53 induction, despite the 90% decrease in median primary tumour weight. Reexpression of wt TP53 later in tumour development did not significantly affect the number of CD31-reactive vessels, but increased lymphatic vessel density.

Conclusion:

The increased number of lymphatic vessels and micro-metastases suggests that wt TP53 induction complexly affected the biology of different tumour constituents of pancreatic cancer. Our observation suggests that combination of the inducible system with an orthotopic model can yield important insights into in vivo pancreatic cancer biology.  相似文献   

7.

Background:

Limited epidemiological studies show inverse associations between dietary flavonoid intake and pancreatic cancer risk, but results are inconsistent and are based on few cases. We examined the association between intake of flavonoids and pancreatic cancer risk in the large, prospective National Institutes of Health-AARP Diet and Health Study Cohort.

Methods:

During follow-up through 2006 (median follow-up 10.6 years), 2379 pancreatic cancer cases were identified. We used Cox proportional hazards modelling to estimate hazard ratios (HRs) and 95% confidence intervals (CIs).

Results:

We found no association between total flavonoid intake (Q5 vs Q1 HR=1.09, 95% CI: 0.96–1.24) or any flavonoid subtypes and pancreatic cancer risk. Significant interactions were not observed by age, sex, smoking status, BMI or diabetes.

Conclusion:

Our results do not support the hypothesis that flavonoids have a protective role in pancreatic cancer carcinogenesis.  相似文献   

8.

Background:

Some cancers have been shown to lack expression of argininosuccinate synthetase (ASS), an enzyme required for the synthesis of arginine and a possible biomarker of sensitivity to arginine deprivation. Arginine deiminase (ADI) is a microbial enzyme capable of efficiently depleting peripheral blood arginine.

Methods:

Argininosuccinate synthetase expression was assessed in human small cell lung cancer (SCLC) by immunohistochemistry (IHC), with expression also assessed in a panel of 10 human SCLC by qRT-PCR and western blot. Proliferation assays and analyses of apoptosis and autophagy assessed the effect of pegylated ADI (ADI-PEG20) in vitro. The in vivo efficacy of ADI-PEG20 was determined in mice bearing SCLC xenografts.

Results:

Approximately 45% of SCLC tumours and 50% of cell lines assessed were negative for ASS. Argininosuccinate synthetase-deficient SCLC cells demonstrated sensitivity to ADI-PEG20, which was associated with the induction of autophagy and caspase-independent cell death. Arginine deiminase-PEG20 treatment of ASS-negative SCLC xenografts caused significant, dose-dependent inhibition of tumour growth of both small and established tumours.

Conclusion:

These results suggest a role for ADI-PEG20 in the treatment of SCLC, and a clinical trial exploring this therapeutic approach in patients with ASS-negative SCLC by IHC has now been initiated.  相似文献   

9.
10.

Background:

The expression of SMAD4, the central component of the transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signalling pathways, is lost in 50% of pancreatic cancers and is associated with a poor survival. Although the TGF-β pathway has been extensively studied and characterised in pancreatic cancer, there is very limited data on BMP signalling, a well-known tumour-suppressor pathway. BMP signalling can be lost not only at the level of SMAD4 but also at the level of BMP receptors (BMPRs), as has been described in colorectal cancer.

Methods:

We performed immunohistochemical analysis of the expression levels of BMP signalling components in pancreatic cancer and correlated these with survival. We also manipulated the activity of BMP signalling in vitro.

Results:

Reduced expression of BMPRIA is associated with a significantly worse survival, primarily in a subset of SMAD4-positive cancers. In vitro inactivation of SMAD4-dependent BMP signalling increases proliferation and invasion of pancreatic cancer cells, whereas inactivation of BMP signalling in SMAD4-negative cells does not change the proliferation and invasion or leads to an opposite effect.

Conclusion:

Our data suggest that BMPRIA expression is a good prognostic marker and that the BMP pathway is a potential target for future therapeutic interventions in pancreatic cancer.  相似文献   

11.

Aims

To demonstrate the synergistic antiproliferative and proapoptotic activity of irinotecan and axitinib in vitro and the improvement of the in vivo effects on angiogenesis and pancreatic cancer.

Methods

Proliferation and apoptotic assays were performed on human dermal microvascular endothelial cells and pancreas cancer (MIAPaCa-2, Capan-1) cell lines exposed to SN-38, the active metabolite of irinotecan, axitinib, or their simultaneous combination for 72 hours. ERK1/2 and Akt phosphorylation, the vascular endothelial growth factor (VEGF), VEGF receptor-2, and thrombospondin-1 (TSP-1) concentration were measured by ELISAs. ATP7A and ABCG2 gene expression was performed with real-time polymerase chain reaction and SN-38 intracellular concentrations were measured by high-performance liquid chromatography. Capan-1 xenografts in nude mice were treated with irinotecan and axitinib alone or in simultaneous combination.

Results

A strong synergistic effect on antiproliferative and proapoptotic activity was found with the axitinib/SN-38 combination on endothelial and cancer cells. ERK1/2 and Akt phosphorylation were significantly inhibited by lower concentrations of the combined drugs in all the cell lines. Axitinib and SN-38 combined treatment greatly inhibited the expression of the ATP7A and ABCG2 genes in endothelial and cancer cells, increasing the SN-38 intracellular concentration. Moreover, TSP-1 secretion was increased in cells treated with both drugs, whereas VEGFR-2 levels significantly decreased. In vivo administration of the simultaneous combination determined an almost complete regression of tumors and tumor neovascularization.

Conclusions

In vitro results show the highly synergistic properties of simultaneous combination of irinotecan and axitinib on endothelial and pancreas cancer cells, suggesting a possible translation of this schedule into the clinics.  相似文献   

12.
13.

Background:

MEK is activated in ∼40% colorectal cancer (CRC) and 20–30% non-small cell lung cancer (NSCLC). Selumetinib is a selective inhibitor of MEK1/2, which is currently in clinical development.

Methods:

We evaluated the effects of selumetinib in vitro and in vivo in CRC and NSCLC cell lines to identify cancer cell characteristics correlating with sensitivity to MEK inhibition.

Results:

Five NSCLC and six CRC cell lines were treated with selumetinib and classified according to the median inhibitory concentration (IC50) values as sensitive (⩽1 μℳ) or resistant (>1 μℳ). In selumetinib-sensitive cancer cell lines, selumetinib treatment induced G1 cell-cycle arrest and apoptosis and suppression of tumour growth as xenografts in immunodeficient mice. Evaluation of intracellular effector proteins and analysis of gene mutations showed no correlation with selumetinib sensitivity. Microarray gene expression profiles revealed that the activation of cAMP-dependent protein kinase A (PKA) was associated with MEK inhibitor resistance. Combined targeting of both MEK and PKA resulted in cancer cell growth inhibition of MEK inhibitor-resistant cancer cell lines in vitro and in vivo.

Conclusion:

This study provides molecular insights to explain resistance to an MEK inhibitor in human cancer cell lines.  相似文献   

14.

Background:

High levels of S100A6 have been associated with poor outcome in pancreatic cancer patients. The functional role of S100A6 is, however, poorly understood.

Methods:

Immunoprecipitation followed by two-dimensional gel electrophoresis and mass spectrometry were undertaken to identify S100A6 interacting proteins in pancreatic cancer cells. Immunohistochemistry and coimmunofluorescence were performed to examine expression or colocalisation of proteins. siRNA was used to deplete specific proteins and effects on motility were measured using Boyden Chamber and wound healing assays.

Results:

Our proteomic screen to identify S100A6 interacting proteins revealed annexin 11, annexin 2, tropomyosin β and a candidate novel interactor lamin B1. Of these, annexin 2 was considered particularly interesting, as, like S100A6, it is expressed early in the development of pancreatic cancer and overexpression occurs with high frequency in invasive cancer. Reciprocal immunoprecipitation confirmed the interaction between annexin 2 and S100A6 and the proteins colocalised, particularly in the plasma membrane of cultured pancreatic cancer cells and primary pancreatic tumour tissue. Analysis of primary pancreatic cancer specimens (n=55) revealed a strong association between high levels of cytoplasmic S100A6 and the presence of annexin 2 in the plasma membrane of cancer cells (P=0.009). Depletion of S100A6 was accompanied by diminished levels of membrane annexin 2 and caused a pronounced reduction in the motility of pancreatic cancer cells.

Conclusion:

These findings point towards a functional role for S100A6 that may help explain the link between S100A6 expression in pancreatic cancer and aggressive disease.  相似文献   

15.

Background

Nectin-4 belongs to the nectin family that has diverse physiological and pathological functions in humans. Recent studies have also suggested some roles for Nectin-4 in several human cancers. However, the precise roles and clinical relevance of Nectin-4 in tumors are largely unknown.

Methods

Nectin-4 expression was investigated in 123 patients with pancreatic cancer by immunohistochemistry. Furthermore, we investigated the association of Nectin-4 in pancreatic cancer with tumor proliferation, angiogenesis and immunity by using immunohistochemistry and siRNA interference method.

Results

Patients with high Nectin-4 expression had poorer postoperative prognosis than those with low expression. Importantly, multivariate analysis indicated that Nectin-4 expression had a significant independent prognostic value in pancreatic cancer (HR = 1.721, 1.085-2.730; P = 0.021). Tumor Nectin-4 expression was significantly correlated with Ki67 expression. In addition, siRNA-mediated gene silencing of Nectin-4 significantly inhibited the cell proliferation in human pancreatic cancer cells, Capan-2 and BxPC-3. Furthermore, Nectin-4 expression was also positively correlated with VEGF expression and intratumoral microvessel density. However, there were no significant correlations of tumor Nectin-4 expression with tumor-infiltrating T cells.

Conclusion

Nectin-4 is a significant prognostic predictor, and may play a critical role in pancreatic cancer. Nectin-4 may be novel therapeutic target for pancreatic cancer.  相似文献   

16.

Background

MUC5AC is a secretory mucin normally expressed in the surface muconous cells of stomach and bronchial tract. It has been known that MUC5AC de novo expression occurred in the invasive ductal carcinoma and pancreatic intraepithelial neoplasm with no detectable expression in normal pancreas, however, its function remains uncertain. Here, we report the impact of MUC5AC on the adhesive and invasive ability of pancreatic cancer cells.

Methods

We used two MUC5AC expressing cell lines derived from human pancreatic cancer, SW1990 and BxPC3. Small-interfering (si) RNA directed against MUC5AC were used to assess the effects of MUC5AC on invasion and adhesion of pancreas cancer cells in vitro and in vivo. We compared parental cells (SW1990 and BxPC3) with MUC5AC suppressed cells by si RNA (si-SW1990 and si-BxPC3).

Results

MUC5AC was found to express in more than 80% of pancreatic ductal carcinoma specimens. Next we observed that both of si-SW1990 and si-BxPC3 showed significantly lower adhesion and invasion to extracellular matrix components compared with parental cell lines. Expression of genes associated with adhesion and invasion including several integerins, matrix metalloproteinase (MMP) -3 and vascular endothelial growth factor (VEGF) were down-regulated in both MUC5AC suppressed cells. Furthermore, production of VEGF and phosphorylation of VEGFR-1 were significantly reduced by MUC5AC down regulation. Both of si-SW1990 and si-BxPC3 attenuated activation of Erk1/2. In vivo, si-SW1990 did not establish subcutaneous tumor in nude mice.

Conclusions

Knockdown of MUC5AC reduced the ability of pancreatic cancer cells to adhesion and invasion, suggesting that MUC5AC might contribute to the invasive motility of pancreatic cancer cells by enhancing the expression of integrins, MMP-3, VEGF and activating Erk pathway.  相似文献   

17.

Objective

Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo.

Methods

Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly.

Results

iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field.

Conclusion

FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.KEYWORDS : Human induced pluripotent stem cell (human iPS cells), targeted imaging, hyperthermia therapy, fluorescent magnetic nanoparticles, gastric cancer, nude mice  相似文献   

18.

Background:

Established risk factors for pancreatic cancer include smoking, long-standing diabetes, high body fatness, and chronic pancreatitis, all of which can be characterised by aspects of inflammatory processes. However, prospective studies investigating the relation between inflammatory markers and pancreatic cancer risk are scarce.

Methods:

We conducted a nested case–control study within the European Prospective Investigation into Cancer and Nutrition, measuring prediagnostic blood levels of C-reactive protein (CRP), interleukin-6 (IL-6), and soluble receptors of tumour necrosis factor-α (sTNF-R1, R2) in 455 pancreatic cancer cases and 455 matched controls. Odds ratios (ORs) were estimated using conditional logistic regression models.

Results:

None of the inflammatory markers were significantly associated with risk of pancreatic cancer overall, although a borderline significant association was observed for higher circulating sTNF-R2 (crude OR=1.52 (95% confidence interval (CI) 0.97–2.39), highest vs lowest quartile). In women, however, higher sTNF-R1 levels were significantly associated with risk of pancreatic cancer (crude OR=1.97 (95% CI 1.02–3.79)). For sTNF-R2, risk associations seemed to be stronger for diabetic individuals and those with a higher BMI.

Conclusion:

Prospectively, CRP and IL-6 do not seem to have a role in our study with respect to risk of pancreatic cancer, whereas sTNF-R1 seemed to be a risk factor in women and sTNF-R2 might be a mediator in the risk relationship between overweight and diabetes with pancreatic cancer. Further large prospective studies are needed to clarify the role of proinflammatory proteins and cytokines in the pathogenesis of exocrine pancreatic cancer.  相似文献   

19.

Purpose:

Tumour hypoxia activates hypoxia-inducible factor-1 (HIF-1) and indluences angiogenesis, cell survival and invasion. Prolyl hydroxylase-3 (PHD3) regulates degradation of HIF-1α. The effects of PHD3 in tumour growth are largely unknown.

Experimental design:

PHD3 expression was analysed in human pancreatic cancer tissues and cancer cell lines by real-time quantitative PCR and immunohistochemistry. PHD3 overexpression was established by stable transfection and downregulation by short interfering RNA technology. VEGF was quantified by enzyme-linked immunosorbent assay. Matrigel invasion assays were performed to examine tumour cell invasion. Apoptosis was measured by annexin-V staining and caspase-3 assays. The effect of PHD3 on tumour growth in vivo was evaluated in an established orthotopic murine model.

Results:

PHD3 was upregulated in well-differentiated human tumours and cell lines, and regulated hypoxic VEGF secretion. PHD3 overexpression mediated tumour cell growth and invasion by induction of apoptosis in a nerve growth factor-dependent manner by the activation of caspase-3 and phosphorylation of focal adhesion kinase HIF-1 independently. In vivo, PHD3 inhibited tumour growth by abrogation of tumour angiogenesis.

Conclusion:

Our results indicate essential functions of PHD3 in tumour growth, apoptosis and angiogenesis and through HIF-1-dependent and HIF-1-independent pathways.  相似文献   

20.

Background:

The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention. For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells, we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts.

Methods:

Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts. Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal cell-specific gene expression.

Results:

5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in A375 melanoma xenografts.

Conclusion:

5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma. The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other tumour models and anti-cancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号