首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A distinctly different entity from the now well-delineated malignant fibrous histiocytoma (MFH) of bone is the MFH histopathologic subtype of osteogenic sarcoma. Although uncommon, recently the authors have encountered six cases of this neoplasm, in each of which the soft tissue component was devoid of bone elements and was microscopically indistinguishable from MFH of bone or soft tissue. Neoplastic osteoid and woven bone were present in the osseous component of each tumor, however. Radiologically, the lesions generally were osteoblastic but focally osteolytic with features typical of osteogenic sarcoma. Pain was the most common presenting symptom. There was no age or sex predilection. Immunocytochemical staining showed strong positivity with alpha-1-antichymotrypsin within malignant bizarre giant cells and occasional neoplastic osteoblasts in five cases. The biological behavior followed a very aggressive course. Four of the six patients developed pulmonary metastases 6 to 12 months after initial surgery; one patient presented initially with pulmonary metastases. Adequate tumor sampling as well as optimal correlation with clinical and radiographic information are required to distinguish the MFH subtype of osteogenic sarcoma from MFH of bone, both being high-grade neoplasms, however.  相似文献   

4.
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing''s sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing''s sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.  相似文献   

5.
Treatment of pediatric acute lymphoblastic leukemia (ALL) is based on the concept of tailoring the intensity of therapy to a patient's risk of relapse. To determine whether gene expression profiling could enhance risk assignment, we used oligonucleotide microarrays to analyze the pattern of genes expressed in leukemic blasts from 360 pediatric ALL patients. Distinct expression profiles identified each of the prognostically important leukemia subtypes, including T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL rearrangement, and hyperdiploid >50 chromosomes. In addition, another ALL subgroup was identified based on its unique expression profile. Examination of the genes comprising the expression signatures provided important insights into the biology of these leukemia subgroups. Further, within some genetic subgroups, expression profiles identified those patients that would eventually fail therapy. Thus, the single platform of expression profiling should enhance the accurate risk stratification of pediatric ALL patients.  相似文献   

6.
7.
Accumulating evidence demonstrates that defining molecular subtypes based on objective genetic alterations may permit a more rational, patient-specific approach to molecular targeted therapy across various cancers. The objective of this study was to subtype primary glioblastoma (pGBM) based on MicroRNA (miRNA) profiling in Chinese population. Here, miRNA expression profiles from 82 pGBM samples were analyzed and 78 independent pGBM samples were used for qRT-PCR validation. We found that two distinct subgroups with different prognosis and chemosensitivities to temozolomide (TMZ) in Chinese pGBM samples. One subtype is TMZ chemoresistant (termed the TCR subtype) and confers a poor prognosis. The other subtype is TMZ-chemosensitive (termed the TCS subtype) and confers a relatively better prognosis compared with the TCR subtype. A classifier consisting of seven miRNAs was then identified (miR-1280, miR-1238, miR-938 and miR-423-5p (overexpressed in the TCR subtype); and let-7i, miR-151-3p and miR-93 (downregulated in the TCR subtype)), which could be used to assign pGBM samples to the corresponding subtype. The classifier was validated using both internal and external samples. Meanwhile, the genetic alterations of the TCR and TCS subtypes were also analyzed. The TCR subtype was characterized by no IDH1 mutation, and EGFR and Ki-67 overexpression. The TCS subtype displayed the opposite situation. Taken together, the results indicate a distinct subgroup with poor prognosis and TMZ-chemoresistance.  相似文献   

8.
9.
10.
Integrative genomic analysis of aneuploidy in uveal melanoma.   总被引:1,自引:0,他引:1  
PURPOSE: Aneuploidy is a hallmark of cancer and is closely linked to metastasis and poor clinical outcome. Yet, the mechanisms leading to aneuploidy and its role in tumor progression remain poorly understood. The extensive and complex karyotypic abnormalities seen in many solid tumors could hinder the identification of pathogenetically relevant chromosomal alterations. Uveal melanoma is an attractive solid tumor for studying aneuploidy because it is a relatively homogeneous cancer that is highly metastatic and has low nonspecific chromosomal instability. EXPERIMENTAL DESIGN: Comparative genomic hybridization and gene expression profiling were used to analyze patterns of aneuploidy in 49 primary uveal melanomas. This analysis was supplemented by a review of cytogenetic findings in 336 published cases. RESULTS: Three prognostically significant tumor subgroups were identified based on the status of chromosomes 3 and 6p. Discrete patterns of chromosomal alterations accumulated in these three subgroups in a nonrandom temporal sequence. Poor clinical outcome was associated with early chromosomal alterations rather than overall aneuploidy. A gene expression signature associated with aneuploidy was enriched for genes involved in cell cycle regulation, centrosome function, and DNA damage repair. One of these genes was PTEN, a tumor suppressor and genomic integrity guardian, which was down-regulated in association with increasing aneuploidy (P = 0.003). CONCLUSIONS: The relationship between aneuploidy and poor prognosis may be determined by specific, pathogenetically relevant chromosomal alterations, rather than overall aneuploidy. Such alterations can be identified using integrative genomic methods and may provide insights for novel therapeutic approaches.  相似文献   

11.
Ewing's sarcoma (ES) is the second most common primary malignant bone tumor in children and adolescents. Currently accepted clinical prognostic factors fail to classify ES patients' risk to relapse at diagnosis. We aimed to find a new strategy to distinguish between poor and good prognosis ES patients already at diagnosis. We analysed the gene expression profiles of 14 primary tumor specimens and six metastases from ES patients, using oligonucleotide microarray analysis. The over-expression of two genes was validated by quantitative PCR using the LightCycler system. We identified two distinct gene expression signatures distinguishing high-risk ES patients that are likely to progress from low-risk ES patients with a favorable prognosis of long-term progression-free survival. The microarray-based classification was superior to currently used prognostic parameters. Over-expressed genes in the poor prognosis patients included genes regulating the cell cycle and genes associated with invasion and metastasis, while among the downregulated genes were tumor suppressor genes and inducers of apoptosis. Our results indicate the existence of a specific gene expression signature of outcome in ES already at diagnosis, and provide a strategy to select patients who would benefit from risk-adapted improved therapy.  相似文献   

12.
PURPOSE: Thyroid nodules are common, with a lifetime risk of developing a clinically significant thyroid nodule of 10% or higher. Preoperative diagnosis was greatly enhanced by the introduction of fine needle aspiration in the 1970s, but there has been little advancement since that time. Discrimination between benign and malignant follicular neoplasms is currently not possible by fine needle aspiration and can even be difficult after full pathologic review. The purpose of these studies is to identify genes expressed in follicular adenomas and carcinomas of the thyroid that will permit molecular differentiation of these neoplasms. Experimental Design: Gene expression patterns of 17 thyroid follicular tumors were analyzed by oligonucleotide array analysis. Gene profiles for follicular adenomas and carcinomas were identified, and the two groups were compared for differences in expression levels. The differentially expressed genes were used to perform a hierarchical clustering analysis training set. Five follicular tumors with diagnosis undisclosed to the investigators and 2 minimally invasive carcinomas were entered into the cluster analysis as a test set to determine whether diagnosis by gene profile correlated with that obtained by pathologic evaluation. RESULTS: Thyroid follicular adenomas and carcinomas showed strikingly distinct gene expression patterns. The expression patterns of 105 genes were found to be significantly different between follicular adenoma and carcinoma. Many uncharacterized genes contributed to the distinction between tumor types. For five follicular tumors for which the final diagnosis was undisclosed, the clustering algorithm gave the correct diagnosis in all 5 cases. CONCLUSIONS: Gene profiling is a useful tool to predict the molecular diagnosis of follicular thyroid tumors. Genes were identified that reliably differentiate follicular thyroid carcinoma from adenoma. This study provides insight into genes that may be important in the molecular pathogenesis of follicular thyroid tumors, as well candidates for preoperative diagnosis of follicular thyroid carcinoma.  相似文献   

13.
14.
15.
16.
Kabbarah O  Chin L 《Cancer cell》2005,8(6):439-441
The melanoma genome possesses numerous recurrent chromosomal rearrangements, and embedded within this complexity are clues critical to disease pathogenesis and response to therapy. High-resolution genome-wide DNA copy number approaches, in conjunction with gene-specific mutational analyses, appear poised to define keystone molecular events, provide more accurate classification schemes, and set the stage for the design of rational therapies that may finally have an impact on survival of this deadly disease.  相似文献   

17.
18.

Introduction  

Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas.  相似文献   

19.
Genetic alterations implicated in malignant melanoma are still poorly understood. Malignant melanomas present highly variable histologic and cytologic patterns. The aim of the present study is to define genomic imbalances associated with the development of 2 histologic types of swine hereditary cutaneous melanoma. We have investigated 11 swine tumors by comparative genomic hybridization (CGH), 4 superficial spreading melanomas (SSMs) and 7 nodular melanomas (NMs). Following laser capture microdissection and degenerate oligonucleotide primed-polymerase chain reaction, we were able to isolate and then amplify DNA from the 2 histologic subtypes. Consensus regions of chromosome gains were identified on both histologic subtypes, on swine chromosomes 3p13-p17 (75% of the SSMs and 71% of the NMs), 12q (100% of the SSMs and 57% of the NMs) and 14q11-q21 (75% of the SSMs and 42% of NMs). Chromosomal loss was restricted to NM lesions and the swine 13q36-49 region was lost in 100% of the NMs. Interphase fluorescence in situ hybridization with a probe mapping to the 13q41-q42 region indicates loss of the corresponding region on NM lesions. Taking into account this CGH analysis and the comparative genomic data between swine and human genomes, we suggest that a role for the human chromosomes 3p11-qter and chromosome 21 losses should be investigated in human nodular melanoma progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号