首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The introduction of aquatic species in resting life stages by the release of ballast water is a less well-known but potentially important invasive species vector. Best-management practices designed to minimize transport of ballast water cannot eliminate this threat, because residual water and sediment are retained in ballast tanks after draining. To evaluate the potential efficacy of chemical treatment of residual material in ship ballast tanks, the present study examined the acute toxicity of the proposed biocide SeaKleen (menadione; Garnett, Watkinsville, GA, USA) on resting eggs of Brachionus plicatilis (a marine rotifer), a freshwater copepod, Daphnia mendotae (a freshwater cladoceran), and Artemia sp. (a marine brine shrimp). SeaKleen was toxic to resting eggs of all taxa. Daphnia mendotae resting eggs encased in protective ephippia were the least sensitive, as indicated by a 24-h lethal concentration of toxicant to 90% of organisms of 8.7 mg/L (95% confidence interval, +/- 0.1 mg/L). SeaKleen induced teratogenic effects in D. mendotae and Artemia sp. Exposure to sunlight quickly degraded SeaKleen, which lost all toxicity after 72 h outdoors. SeaKleen increased in toxicity slightly after 72 h in darkness. Burial of D. mendotae ephippia in natural lake sediment reduced SeaKleen toxicity by a factor of 20. Reduced toxicity in the presence of sediment raises serious doubts as to the potential for this, or any, chemical biocide to kill aquatic invertebrate resting stages buried in sediment retained in ship ballast tanks.  相似文献   

2.
Metribuzin is a triazinone herbicide that is widely used for the control of grasses and broad-leaved weeds in soybeans, sugarcane, and numerous other crops. Metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions (median plant EC50 = 31 μg/L; n = 11 species) but has not been studied under controlled outdoor conditions. We conducted a 6-week study to examine the aquatic fate and effects of metribuzin in 0.1-ha outdoor aquatic mesocosms. Mesocosms (n = 2 per treatment) were treated with metribuzin at one of five concentrations: 0, 9, 19, 38, or 75 μg/L. Concentrations were selected to bracket known laboratory effect concentrations and to reflect calculated edge-of-field concentrations. The dissipation half-life of metribuzin in water was 5 days. Metribuzin had no statistically significant effects on water quality, periphyton biomass, macrophyte biomass, macrophyte species composition, fish survival, or fish growth at treatment levels ranging up to and including 75 μg/L. Although metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions, it poses little risk to nontarget aquatic plants due to the short aqueous dissipation half-life. The findings also demonstrate that current herbicide risk assessment procedures used in the registration process could benefit from empirical assessments of the fate of chemicals under realistic environmental conditions. Received: 16 October 2001/Accepted: 6 March 2002  相似文献   

3.
Ballast tank treatment technologies are currently in development to reduce the risk of acquiring or transporting viable aquatic organisms that could be introduced to ecosystems and become invasive. Aquatic invertebrate resting eggs represent a challenge to such technologies because of morphological and biochemical adaptations to stress that also protect eggs from artificial stressors. To evaluate the potential efficacy of chemical biocides for ballast tank treatment, the present study examined the acute toxicity of glutaraldehyde and sodium hypochlorite on resting eggs of the freshwater cladoceran Daphnia mendotae and marine brine shrimp (Artemia sp.). Glutaraldehyde was toxic to resting eggs of Artemia sp., as indicated by a lethal concentration to 90% of organisms (LC90) of 95% confidence interval (226 +/- 10 mg/L). Daphnia mendotae, in contrast, displayed erratic responses to glutaraldehyde. Sodium hypochlorite was similarly toxic to resting eggs of Artemia sp. and D. mendotae, which displayed LC90s of 86.5 +/- 3.0 and 78.3 +/- 1.6 mg/L, respectively. Burial in sediment protected resting eggs from toxicants. The present results corroborate those from previous investigations of resting egg sensitivity to artificial stressors, supporting the conclusions that resting eggs are less sensitive than other life stages to artificial stressors and that chemical biocide concentrations effective against other life stages may be ineffective against resting stages.  相似文献   

4.
In recent years much work has been done to develop methods to assess the aquatic toxicity of chemicals, effluents, and products. In seeking a more relevant ecological approach to aquatic toxicity evaluation, emphasis has moved toward the use of chronic studies to supplement short-term acute studies. This paper describes a multigeneration fish breeding study, used as appropriate, in a flexible hazard evaluation scheme, to assess the effects of potential aquatic pollutants upon all the life stages of fish and upon fish fecundity. The convict cichlid (Cichlasoma nigrofasciatum) was chosen as a suitable species because of its small size, lack of exacting water quality requirements, and ease of laboratory breeding. Results from such a study using trisodium carboxymethyloxysuccinate (NaCMOS), a new sequestering agent being evaluated as a builder in detergents, have shown that 100 mg/liter has no effect on fish fecundity, survival of eggs and fry, or adult breeding behaviour. This concentration is two orders of magnitude greater than the predicted aquatic environmental concentration under the most unfavorable conditions of its use, sewage treatment and discharge. Data from such studies may then form part of an assessment of the environmental acceptability of products and chemicals which may be legally required before manufacture or marketing.  相似文献   

5.
Cadmium, by virtue of its toxicity, persistence, and bioaccumulation appears on the “black list” of all the international conventions aimed at protecting the aquatic environment from pollution. Although there is no doubt that cadmium is both persistent and toxic to aquatic life at relatively low concentrations, its bioaccumulation potential appears to have been somewhat exaggerated. Median concentration factors for both marine and freshwater organisms are <100 times and for vertebrate (fish) species concentration factors are <20 times. There is no evidence in the literature for biomagnification of cadmium and bioconcentration is only likely to be of significance in a restricted range of gastropod mollusks and some crustacea.  相似文献   

6.
Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC50–96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC50 values ranging from 2900 to 7270 μg/L for fish and from 0.3 to 319 μg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems.  相似文献   

7.
Material balance studies of glutaraldehyde in a river water–sediment system demonstrate that glutaraldehyde preferred to remain in the water phase. Glutaraldehyde was metabolized rapidly under both aerobic and anaerobic conditions. The pseudo-first-order half-life of catabolism, based on the loss of glutaraldehyde from the water phase, was 10.6 h aerobically and 7.7 h anaerobically. In contrast, under sterile conditions at pH 5 or 7, no appreciable degradation of glutaraldehyde was observed over a 31-day period. At pH 9, about 30% of the glutaraldehyde degraded over the same period. The major degradate was identified as 3-formyl-6-hydroxy-2-cyclohexene-1-propanal, a cyclicized dimer of glutaraldehyde. The extrapolated half-life of abiotic degradation was 508 days at pH 5, 102 days at pH 7, and 46 days at pH 9. Under aerobic conditions, glutaraldehyde was first biotransformed into the intermediate glutaric acid, which then underwent further metabolism ultimately to carbon dioxide. Metabolism of glutaraldehyde under anaerobic conditions did not proceed ultimately to methane, but terminated with the formation of 1,5-pentanediol via 5-hydroxypentanal as an intermediate. Received: 20 August 2000/Accepted: 3 April 2001  相似文献   

8.
The detection of methyl tertiary-butyl ether (MTBE) in groundwater and surface water in recent years has drawn attention to its potential effects in aquatic ecosystems. To address concerns regarding MTBE environmental effects and to establish safe concentrations in surface waters, a collaborative effort was initiated in 1997 to develop aquatic toxicity databases sufficient to derive ambient water quality criteria for MTBE consistent with United States Environmental Protection Agency (U.S. EPA) requirements. Acute toxicity data for six species, chronic toxicity data for a fish and an invertebrate, and plant toxicity data were developed in order to complete the freshwater database. The toxicity tests followed U.S. EPA and American Society for Testing and Materials (ASTM, Philadelphia, PA, USA) procedures and were conducted in accordance with U.S. EPA Good Laboratory Practice guidelines. Based on measured exposure concentrations, acute toxicity endpoints ranged from 472 to 1742 mg MTBE/L, while chronic endpoints (IC25) were 57 to 308 mg MTBE/L. Aquatic invertebrates were generally more sensitive than fish to MTBE in both acute and chronic exposures. Acute-to-chronic ratios for fathead minnows and Daphnia magna were 3.4 and 11.3, respectively. The measured acute and chronic toxicity were within a 10-fold factor of toxicity predicted from quantitative structure-activity relationships for baseline toxicity or nonpolar narcosis typical of ether compounds. The data developed in this study were consistent with existing data and showed that MTBE has low acute and chronic toxicity to freshwater organisms. Reported environmental concentrations of MTBE are several orders of magnitude lower than concentrations observed to cause effects in freshwater organisms.  相似文献   

9.
The potential of oxygen free radicals and other reactive oxygen species (ROS) to damage tissues and cellular components, called oxidative stress, in biological systems has become a topic of significant interest for environmental toxicology studies. The balance between prooxidant endogenous and exogenous factors (i.e., environmental pollutants) and antioxidant defenses (enzymatic and nonenzymatic) in biological systems can be used to assess toxic effects under stressful environmental conditions, especially oxidative damage induced by different classes of chemical pollutants. The role of these antioxidant systems and their sensitivity can be of great importance in environmental toxicology studies. In the past decade, numerous studies on the effects of oxidative stress caused by some environmental pollutants in terrestrial and aquatic species were published. Increased numbers of agricultural and industrial chemicals are entering the aquatic environment and being taken up into tissues of aquatic organisms. Transition metals, polycyclic aromatic hydrocarbons, organochlorine and organophosphate pesticides, polychlorinated biphenyls, dioxins, and other xenobiotics play important roles in the mechanistic aspects of oxidative damage. Such a diverse array of pollutants stimulate a variety of toxicity mechanisms, such as oxidative damage to membrane lipids, DNA, and proteins and changes to antioxidant enzymes. Although there are considerable gaps in our knowledge of cellular damage, response mechanisms, repair processes, and disease etiology in biological systems, free radical reactions and the production of toxic ROS are known to be responsible for a variety of oxidative damages leading to adverse health effects and diseases. In the past decade, mammalian species were used as models for the study of molecular biomarkers of oxidative stress caused by environmental pollutants to elucidate the mechanisms underlying cellular oxidative damage and to study the adverse effects of some environmental pollutants with oxidative potential in chronic exposure and/or sublethal concentrations. This review summarizes current knowledge and advances in the understanding of such oxidative processes in biological systems. This knowledge is extended to specific applications in aquatic organisms because of their sensitivity to oxidative pollutants, their filtration capacity, and their potential for environmental toxicology studies.  相似文献   

10.
Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil–gas condensates and other proprietary compounds. The proportion of diluent and the chemical composition of dilbit vary to meet seasonal transport requirements. While the toxic effects of a variety of crude and refined oils are well-studied, the toxicity of dilbit to aquatic species is less well known. This focused review summarizes dilbit production, chemistry, and the few data on toxicity to aquatic species. These data suggest that un-weathered dilbit would cause effects on fish equivalent to those of conventional oils, but its toxicity may be lower, depending on interactions among test conditions, the behavior of dilbit added to water and the species tested.  相似文献   

11.
Phthalate esters (PEs) are an important class of industrial chemicals for which an extensive aquatic toxicity database is available. The objectives of this study were to use these data to develop quantitative structure-activity relationships (QSARs) that describe aquatic toxicity for different freshwater and marine species, gain insights into toxicity mechanisms, and calculate PE water quality criteria using statistical extrapolation procedures. Results for low-molecular-weight PEs with log Kow<6 indicate that toxicity data conform to a simple log Kow-dependent QSAR. Fish were found to be more sensitive than algae while invertebrates spanned a wide range in toxicological response. Freshwater and marine species demonstrated a similar distribution of sensitivities. Comparison of species-dependent QSARs supports the hypothesis that biotransformation plays an important role in explaining toxicity differences observed between species. Estimated critical body residues (CBRs) for parent PE in fish were in the range reported for other polar organic chemicals while CBRs for parent PE plus associated metabolites were in the range reported for nonpolar narcotics (i.e., baseline toxicity) suggesting a possible putative role of PE metabolites. Depending on extrapolation procedure and assumptions, predicted no-effect concentrations (PNECs) for dimethyl, diethyl, dibutyl, and butybenzyl phthalate ranged from 3109 to 4780, 865 to 1173, 43 to 62, and 38 to 60 microg l(-1), respectively. PNECs derived using this approach provide a transparent technical basis to support aquatic risk assessment for low-molecular-weight PEs. Results for high-molecular-weight PEs (log Kow>6) indicate that these chemicals are not acutely or chronically toxic to freshwater or marine organisms due to the combined role of low water solubility and limited bioconcentration potential which precludes attainment of internal concentrations that are required to elicit adverse effects. It is concluded that attempts to establish aquatic PNECs for high-molecular-weight PEs are not scientifically defensible.  相似文献   

12.
The toxicity of water pollutants to aquatic animals is reviewed, with particular emphasis on methods for measuring lethal toxicity, factors influencing toxicity, the measurement of chronic and sublethal toxicity, and the role of toxicological data in formulating water quality standards. Methods for measuring lethal toxicity are well established and have been applied to a wide range of fish and invertebrate species. Their applications and limitations are discussed. The measurement of sublethal toxicity employs very diverse techniques ranging from biochemical to the use of experimental ecosystems. Profitable techniques are those which possess one or more of the characteristics: sensitivity, specificity, ecological relevance. A large data base now exists on the toxicity of pollutants to aquatic species, singly and in combination, and on the effects of environmental conditions, and interspecific and intraspecific biotic factors. Toxicological data and information from field studies are complementary, and their use in formulating water quality standards for the preservation of aquatic life is discussed.  相似文献   

13.
Recent concerns have been raised concerning the widespread distribution of perfluorinated compounds in environmental matrices and biota. The compounds of interest include ammonium perfluorooctanoate (APFO, the ammonium salt of perfluorooctanoic acid, PFOA). APFO is used primarily as a processing aid in the production of fluoropolymers and fluoroelastomers. The environmental presence of perfluorooctanoate (PFO, the anion of APFO) and its entry into the environment as APFO make quality aquatic toxicity data necessary to assess the aquatic hazard and risk of APFO. We conducted acute and chronic freshwater aquatic toxicity studies with algae, Pseudokirchneriella subcapitata, the water flea, Daphnia magna, and embryo-larval rainbow trout, Oncorhynchus mykiss, using OECD test guidelines and a single, well-characterized sample of APFO. Acute 48–96 h LC/EC50 values were greater than 400 mg/l APFO and the lowest chronic NOEC was 12.5 mg/l for inhibition of the growth rate and biomass of the freshwater alga. Un-ionized ammonia was calculated to be a potential significant contributor to the observed toxicity of APFO. Based on environmental concentrations of PFO from various aquatic ecosystems, the PNEC value from this study, and unionized ammonia contributions to observed toxicity, APFO demonstrates little or no risk for acute or chronic toxicity to freshwater and marine aquatic organisms at relevant environmental concentrations.  相似文献   

14.
Inorganic fluorides were declared toxic under the Canadian Environmental Protection Act in 1993 based on their potential to cause long-term harmful effects in aquatic and terrestrial ecosystems, but information on the toxicity of sediment-associated fluoride to freshwater benthic organisms was considered incomplete. The purpose of this study was to determine the toxicity of aqueous and sediment-associated fluoride to several species of freshwater organisms and to determine if toxic effects could be expected under environmentally realistic exposures. Toxicity of fluoride (as NaF) in short-term (48-96-h) lethality tests was greatest for the amphipod Hyalella azteca (median lethal concentration [LC50] = 14.6 mg F-/L), followed by the mayfly Hexagenia limbata (32.3), the midge Chironomus tentans (124.1), the fathead minnow Pimephales promelas (262.4), and the cladoceran Daphnia magna (282.8). Relative toxicity in long-term (10-28-d) growth and survival tests in spiked sediment was similar. Hyalella azteca was the most sensitive species for growth (25% inhibitory concentration [IC25] = 290.2 microg F-/g), followed by C. tentans (661.4), H. limbata (1,221.3), and P. promelas (>5,600); H. azteca was also the most sensitive species for survival (LC50 = 1,114.6 microg F-/g), followed by H. limbata (1,652.2) and P. promelas and C. tentans (>5,600 for both). Concentrations of fluoride measured in sediments near some industrial point sources exceed some of these toxicity thresholds. Fluoride is highly mobile in aquatic systems and could potentially reach toxic levels in the water column during dredging to remove fluoride-contaminated sediment.  相似文献   

15.
Estuarine ecosystems are being rapidly degraded by environmental toxicants from municipal and industrial wastes, agricultural runoff, recreational boating, shipping, and coastal development, ranking them as the most anthropogenically degraded habitat types on earth. Toxicity tests are used to establish links between adverse ecological effects and the toxicity of environmental chemicals. However, most toxicity tests used for regulating the release of chemicals into the environment have used animals as test species, with the erroneous assumption that toxicant levels protective of fish or invertebrates are also protective of plants. Most plant toxicity tests have used terrestrial crop plants, whereas the few aquatic test species used have been primarily freshwater algae. Even though estuarine and marine vascular plants are highly vulnerable to environmental chemicals, phytotoxicity studies using native coastal plants have been limited, and no such studies are required for testing by regulating agencies. The relevance of toxicity tests of estuarine sediments and of wastes entering the estuary should depend on the use of estuarine and marine plant species. This review summarizes toxicity testing of marine plants used in biomonitoring, phytotoxicity, biotransformations of toxicants, bioaccumulation, and phytoremediation. Challenges to marine plant testing are discussed and include developing standard test protocols, identifying species with minimal salinity and toxicant interaction, defining and choosing a suitable sediment for sediment-bound toxicant testing, selecting endpoints with low variability, producing viable seeds, and culturing test plants. Progress in acquiring a suitable database is being made, but at a rate that is inadequate to create the sound, scientific foundation needed for safeguarding our estuarine ecosystems in the near future.  相似文献   

16.
Boron enters the aquatic environment from various sources, including weathering of borates, sewage effluents, coal combustion, use of cleaning compounds, and agrochemicals. The present study was designed to generate data on acute and chronic boron toxicity in support of an update of water quality standards in Illinois, USA. We examined the acute toxicity of boron to eight different freshwater organisms including a fish, an insect, two crustaceans, and four bivalve mollusks. To our knowledge, this is the first study to present data on the toxicity of boron to freshwater mollusks. We also sought to clarify whether hardness or pH affect boron toxicity to aquatic life, and to quantify chronic effect levels in two freshwater species. Sensitivity among the various species ranged widely, with the fathead minnow (Pimephales promelas) being the most sensitive. Neither pH nor hardness had a consistent effect on acute boron toxicity to two crustaceans (Ceriodaphnia dubia and Hyalella azteca), but we observed evidence that chloride reduces boron toxicity to H. azteca. The fathead minnow, while more acutely sensitive than the other species, had a lower acute to chronic ratio than did H. azteca, which had reduced reproduction at 13?mg/L. While we do not know the extent to which the eight tested species represent the range of sensitivities of native but untested species in Illinois, the current water quality standard for Illinois (1?mg/L) is conservative with regard to the native species tested thus far.  相似文献   

17.
The disruptive sublethal effects of heavy metals on behavioral parameters of fish as biomarkers of aquatic toxicity have been scarcely studied. We investigated the impact of exposure to sublethal waterborne cadmium on locomotory parameters of three freshwater teleosts: Cyprinus carpio as reference species, and Australoheros facetum (sin. Cichlasoma facetum) and Astyanax fasciatus, native to Pampean ecosystems in Argentina, using a noninvasive bioassay under laboratory conditions. Fish were successively transferred to media containing freshwater (control period), Cd2+ solutions (exposure period), and freshwater (recovery period). The behavioral biomarkers evaluated were swimming activity and swimming speed of fish. The metal provoked different responses of both parameters after 4–7 days of exposure; the reversibility of changes was also assessed. It was concluded that: (a) locomotion parameters are sensitive endpoints and useful biomarkers in behavioral studies of freshwater toxicity, (b) the applied bioassay could be a valuable tool in water quality monitoring, and (c) the studied species differed in their susceptibility to the toxicant as well as in their capacity to return to basal values.  相似文献   

18.
Deltamethrin is a pyrethroid insecticide used extensively to control invertebrate pests on cotton and other crops. It is acutely toxic to nontarget aquatic organisms, but existing toxicity data are mostly from toxicity tests using purified laboratory water that differs greatly from the turbid, high-conductivity rivers in the cotton-growing regions of Australia. The aim of this study was to determine whether the water quality variables conductivity, suspended particles, and dissolved organic matter alter the toxicity of deltamethrin to freshwater crustaceans and a fish. We tested three Australian native species: a cladoceran (Ceriodaphnia cf. dubia), a freshwater shrimp (Paratya australiensis), and larvae of the eastern rainbow fish (Melanotaenia duboulayi). Conductivity of the test solutions ranged from 200 to 750 μS/cm, but such changes did not modify the toxicity of deltamethrin to any of the test species. However, the toxicity of deltamethrin to C. cf. dubia and P. australiensis in river water was significantly decreased (1.8-fold to 6.3-fold reduction) compared to that in laboratory water. Variability in the toxicity data limited our ability to detect differences between laboratory and river water for M. duboulayi. Despite reductions in toxicity in natural waters, deltamethrin remained highly toxic [all L(E)C50 values <0.26 μg/L] to all organisms tested; thus, further investigation of the hazard of deltamethrin is warranted.  相似文献   

19.
The acute and chronic toxicity of fluoranthene was determined for a diverse group of freshwater and saltwater species under both standard laboratory fluorescent light and ultraviolet (UV) light test conditions. Acute tests with 21 species demonstrated that fluoranthene was not lethal within its water solubility limit to most species tested under fluorescent light, but was lethal well below this limit to nearly all of the species tested under UV light. In general, the acute sensitivity of freshwater and saltwater species from the same class was similar, although UV light exposure changed the relative sensitivity of some species. Crustaceans were the most sensitive to fluoranthene, but in the presence of UV light, an oligochaete and a fish were the most sensitive. Overall, UV light increased acute fluoranthene toxicity approximately one to three orders of magnitude. In chronic tests, sublethal concentrations of fluoranthene were toxic under both fluorescent and UV light, but as in most acute tests, UV light increased chronic toxicity approximately an order of magnitude. Comparison of data from tests conducted in the laboratory and outdoors demonstrated that acute toxicity increased with increased UV light intensity. Received: 5 January 1999/Accepted: 22 May 1999  相似文献   

20.
Assessing the toxicity of chemicals in treated laboratory water may not accurately represent the toxicity of chemicals in natural aquatic systems. In natural water, dissolved organic matter, suspended particulate matter, and sediment play key roles in the sorption of contaminants from the water. Our previously published series of papers illustrated that the presence of sediment in aquatic toxicity testing systems significantly (p < 0.05) reduced the bioavailability of the herbicides atrazine and molinate to five Australian freshwater organisms. It is not clear whether the reduced bioavailability means that the trigger values (TVs) in the current Australian and New Zealand water quality guidelines, which are calculated using toxicity data from water-only toxicity tests, provide appropriate environmental protection. Several new sets of TVs were derived in the present study and were compared to each other and to the current Australian and New Zealand TVs for atrazine and molinate. The current Australian and New Zealand TVs for atrazine and molinate provided appropriate protection to Australian freshwater species. Australian freshwater species have a sensitivity distribution similar to those of overseas species to atrazine and molinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号