首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Araki  H Kato  K Kogure 《Brain research》1990,528(1):114-122
We investigated the distribution of neuronal damage following brief cerebral transient ischemia and repeated ischemia at 1-h intervals in the gerbil, using light microscopy and 45Ca autoradiography as a marker for detection of ischemic damage. The animals were allowed to survive for 7 days after ischemia induced by bilateral carotid artery occlusion. Following 2-min ischemia, neuronal damage determined by abnormal calcium accumulation was not observed in the forebrain regions. Following 3-min ischemia, however, abnormal calcium accumulation was recognized only in the hippocampal CA1 sector and part of the striatum. Two 2-min ischemic insults caused extensive abnormal calcium accumulation in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the substantia nigra and the inferior colliculus. The ischemic insults were more severe than that of a single 3-min ischemia. However, three 1-min ischemic insults caused abnormal calcium accumulation only in the striatum. On the other hand, three 2-min ischemic insults caused severe abnormal calcium accumulation in the brain. The abnormal calcium accumulation was found in the dorsolateral part of striatum, the hippocampal CA1 sector, the thalamus, the medial geniculate body, the substantia nigra and the inferior colliculus. Gerbils subjected to three 3-min ischemic insults revealed most severe abnormal calcium accumulation. Marked calcium accumulation was seen not only in the above sites, but also spread in the neocortex, the septum and the hippocampal CA3 sector. Morphological study after transient or repeated ischemia indicated that the distribution and frequency of the neuronal damage was found in the sites corresponding to most of the regions of abnormal calcium accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We investigated the long-term changes in the gerbil brain following three episodes of 2-min forebrain ischemia at 1-h intervals in comparison with a 6-min period of ischemia. The animals were sacrificed after 1 month and 6 months. Following either ischemic insult, the hippocampal CA1 region showed a loss of pyramidal neurons together with a diffuse calcium accumulation as shown by alizarin red S staining. Three 2-min ischemic insults additionally produced neuronal damage in the striatum and thalamus. The thalamic damage was accompanied by an accumulation of small calcium granules after 1 month and large calcium concretions after 6 months. Calcium staining in the striatum was weak. Thus, the thalamic neuronal damage was accompanied by an active process of calcification, which has not been described in experimental cerebral ischemia models. The observations show that repeated ischemic insults produce different long-term effects in different brain regions.  相似文献   

3.
Summary Brief, non-lethal transient forebrain ischemia in the gerbil can injure selectively vulnerable neurons when such ischemia is induced repeatedly. The influence of the number and interval of the ischemic insults on neuronal damage, as well as the time course of damage, following repeated 2-min forebrain ischemia were examined. A single 2-min forebrain ischemia were examined. A single 2-min ischemic insult caused no morphological neuronal damage. A moderate number of hippocampal CA1 neurons were destroyed following two ischemic insults with a 1-h interval, and destruction of almost all CA1 neurons resulted from three or five insults at 1-h intervals. Three and five insults also resulted in moderate to severe damage to the striatum and thalamus, depending on the number of episodes. Although three ischemic insults at 1-h intervals caused severe neuronal damage, this number of insults at 5-min and 4-h intervals caused destruction of relatively few neurons, and non neurons were destroyed at 12-h intervals. Following three ischemic insults at 1-h intervals, damage to the striatum, neocortex, hippocampal CA4 subfield and thalamus was observed at 6–24 h of survival, whereas damage to the hippocampal CA1 subfield appeared at 2–4 days. The results indicate that even a brief non-lethal ischemic insult can produce severe neuronal damage in selectively vulnerable regions when it is induced repeatedly at a certain interval. The severity of neuronal damage was dependent on the number and interval of ischemic episodes.  相似文献   

4.
In rodents damage from repetitive transient cerebral ischemia is more severe than that seen with a single ischemic insult of similar duration. Mild hypothermia has been shown to be very effective in protecting the brain during single ischemic insults. We tested the protective effects of hypothermia in repetitive ischemic insults. We used the gerbil model of repetitive ischemia (three minutes ischemia repeated at one hourly intervals three times) and histological evaluation was done using the silver staining technique. Our study reveals that a decrease in body and scalp temperature by 1-2 degrees Celsius can significantly reduce neuronal damage in the cerebral cortex, CA1 region of the hippocampus and substantia nigra reticulata during repetitive ischemia. As the hypothermia was induced after the initial insult, we believe this offers an opportunity for intervention in the clinical settings.  相似文献   

5.
An important feature of ischemic brain damage is the selective vulnerability of specific neuronal populations. We studied the distribution and time course of neuronal damage following transient cerebral ischemia in the gerbil, using light microscopy and 45Ca autoradiography. Following 5 min of ischemia, selective neuronal damage determined by abnormal 45Ca accumulation was recognized only in the hippocampal CA1 subfield and part of the inferior colliculus. Ischemia for 10 to 15 min caused extensive neuronal injury in the 3rd and 5th layers of neocortex, the striatum, the septum, the whole hippocampus, the thalamus, the medial geniculate body, the substantia nigra, and the inferior colliculus. Progression of the damage was rapid in the medial geniculate body and the inferior colliculus, moderate in the neocortex, striatum, septum, thalamus, and the substantia nigra, and was delayed in the hippocampal CA1 sector. However, the delayed damage of the hippocampus occurred earlier when the ischemia period was prolonged. Histological observation revealed neuronal loss in the identical sites of the 45Ca accumulation. This study revealed that the distribution and time course of selective neuronal damage by ischemia proceeded with different order of susceptibility and different speed of progression.  相似文献   

6.
The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.  相似文献   

7.
H Kato  T Araki  K Kogure 《Brain research》1992,596(1-2):315-319
We induced repeated focal cerebral ischemia in gerbils. Single 5-min ischemia produced neuronal damage limited to the ipsilateral CA1 and CA4 hippocampus. Two 5-min ischemic insults spaced at a 1-h interval caused selective neuronal damage to the CA1, CA3 and CA4 hippocampus, striatum, neocortex, and thalamus. Three 5-min ischemic insults at 1-h intervals produced infarction. Thus, repeated focal ischemia produced cumulative brain damage by conversion of sublethal damage into selective neuronal damage and of the neuronal damage into infarction.  相似文献   

8.
Effects of normothermic versus mild hyperthermic forebrain ischemia in rats   总被引:17,自引:0,他引:17  
We compared the neuropathological consequences of global forebrain ischemia under normothermia versus mild hyperthermia. Twenty-one rats underwent 20 minutes of four-vessel occlusion during which brain temperature was maintained at either 37 degrees C (normothermia, n = 9) or 39 degrees C (hyperthermia, n = 12). Quantitative neuropathological assessment was conducted 1 or 3 days later. At 1 day following the ischemic insult, normothermic rats demonstrated neuronal injury mainly confined to the most dorsolateral striatum. By 3 days, ischemic cells were present throughout the striatum and CA1 hippocampus in normothermic animals. Compared with normothermic rats, intraischemic hyperthermia significantly increased the extent and severity of brain damage at 1 day after the ischemic insult. Areas of severe neuronal necrosis and frank infarction included the cerebral cortex, CA1 hippocampus, striatum, and thalamus. Morphologic damage was also detected in the cerebellum and pars reticulata of the substantia nigra. An overall mortality rate of 83% was demonstrated at 3 days in the hyperthermic ischemic group. We conclude that intraischemic hyperthermia 1) markedly augments ischemic brain damage and mortality compared with normothermia, 2) transforms ischemic cell injury into frank infarction, and 3) accelerates the morphological appearance of ischemic brain injury in regions usually demonstrating delayed neuronal necrosis. These observations on mild hyperthermia may have important implications for patients undergoing cardiac or cerebrovascular surgery as well as patients following cardiac arrest or those with stroke-in-evolution.  相似文献   

9.
The purpose of this study was to examine the distribution of neuronal damage following transient cerebral ischemia in the rat model of four-vessel occlusion utilizing light microscopy as well as45Ca-autoradiography. Transient ischemia was induced for 30 min. The animals were allowed to survive for 7 d after ischemia. In the animals subjected to ischemia, the most frequently and seriously damaged areas were the paramedian region of hippocampus, the hippocampal CA1 sector, and the dorsolateral part of striatum, followed by the inferior colliculus, the substantia nigra, the frontal cortex, and the thalamus, which were moderate damaged. Furthermore, the cerebellar Purkinje neurons, the hippocampal CA4 sector, the medial geniculate body, and the hippocampal CA3 sector were slightly affected.45Ca-autoradiographyic study also revealed calcium accumulation in the identical sites of ischemic neuronal damage, except for the frontal cortex. Regional cerebral blood flow during 10 min of ischemia was severely decreased in selectively vulnerable areas. The blood flow in the medial geniculate body, the substantia nigra, the inferior colliculus, and the cerebellum was less pronounced than that in the selectively vulnerable areas. The present study demonstrates that transient cerebral ischemia can produce significant neuronal damage not only in the selectively vulnerable regions, but also in the brainstem.  相似文献   

10.
反复性脑缺血神经元选择性易损性的实验研究   总被引:1,自引:0,他引:1  
目的 研究反复性脑缺血神经元选择性易损性。方法应用45Ca放射自显影及光镜对比观察大鼠反复性与单次性脑缺血神经元损害的密度和分布。结果 单次缺血易损部位主要为海马、新皮层、纹状体、丘脑、小脑、脑干等;反复缺血易损区的分布与单次缺血基本相似,但下丘和小脑对反复缺血抵抗,而丘脑腹侧和海马呈现显著的累积性损害。结论 反复性脑缺血神经元选择性易损性及其机制均有别于单次性脑缺血。  相似文献   

11.
The damaging effects from transient forebrain ischemia may be a result of excessive excitability or loss of inhibitory influences. In the brain, GABA acts as the major inhibitory neurotransmitter and its loss may be an important factor leading to delayed neuronal damage in the substantia nigra reticulata (SNr). In this study, we looked at the protective effects of muscimol, a GABA A agonist in a gerbil model of repetitive forebrain ischemia. For cerebral ischemia, we used three episodes of 2 min with a reperfusion period of 1 h between the insults. Histological evaluations were done 7 days after the insult using silver degeneration staining. Muscimol was infused into the third ventricle continuously for 7 days beginning just prior to the insult. There were a total of 20 animals, 12 treated with muscimol and the other 8 serving as controls. At 7 days, there was significant protection in the cortex (P = 0.007), hippocampus [CA1 (P = 0.01), CA4 (P = 0.015)], substantia nigra reticulata (P = 0.007), striatum (P = 0.049), and thalamus (P = 0.012). All statistical comparisons were done using nonparametric tests (Mann-Whitney U test). Our study shows that potentiation of inhibitory mechanisms may be important mechanisms of neuronal protection from the effects of repetitive ischemia and the effects are not limited to the SNr. Further studies are needed to better understand their mechanism of action.  相似文献   

12.
We investigated the regional changes in [3H]inositol 1,4,5-triphosphate (IP3) binding in the brain following ischemia using in vitro autoradiography. Three 2-min ischemic insults at 1-hr intervals and a 6-min period of ischemia were induced in gerbils and they were killed after 1, 4, and 28 days. Normal animals had high [3H]IP3 binding in the CA1 subfield of the hippocampus and the striatum. The binding in the CA1 decreased strikingly after both 6-min ischemia and three 2-min ischemic insults. The [3H]IP3 binding also decreased in the lateral striatum after three 2-min ischemic insults but not after 6 min of ischemia. Histological observations confirmed neuronal damage to these areas of reduced binding. By contrast, we found a marked increase in [3H]IP3 binding in the ventral thalamus 28 days after three 2-min ischemic insults. Histological observations with Nissl staining revealed an accumulation of fine granular deposits there. Thus, repeated ischemic insults produced more extensive neuronal damage and changes in [3H]IP3 binding than a single equivalent period of ischemia. The increased [3H]IP3 binding in the thalamus coincidentally with an accumulation of Nissl-positive granules at the chronic stage after repeated ischemia is of considerable interest.  相似文献   

13.
H Kato  Y Liu  T Araki  K Kogure 《Brain research》1991,553(2):238-242
We examined the response of the gerbil brain to secondary ischemic insult following pretreatment with brief ischemia at intervals of 5 min, 1 and 6 h, 1, 2, 4, 7 and 14 days. Two minutes of bilateral carotid artery occlusion produced no histopathological brain damage, whereas 3 min of occlusion caused a moderate to severe reduction in the number of hippocampal CA1 pyramidal cells. Two-minute occlusion followed by 3-min occlusion at 5-min, 1- and 6-h intervals resulted in almost complete destruction of CA1 neurons. Additional neuronal damage was observed in the striatum at a 1-h interval and in the thalamus and the neocortex at 1- and 6-h intervals. The neuronal damage was most severe at a 1-h interval. Two-minute ischemia followed by 3-min ischemia at intervals of 1, 2, 4 and 7 days, however, caused a marked protective effect, and the hippocampal CA1 neurons were preserved. The protective effect was not observed at a 14-day interval and following pretreatment with 1-min ischemia. Thus, pretreatment with brief ischemia leads to complex responses of the brain to secondary ischemic insult; cumulative damage at intervals of 1-6 h and protective effects at intervals of 1-7 days.  相似文献   

14.
We examined whether preconditioning with sublethal ischemia protects against neuronal damage following subsequent lethal ischemic insults. Forebrain ischemia for 3 min in Wistar rats increased heat shock protein-70 immunoreactivity in the hippocampal CA1 subfield but produced no neuronal damage. Preconditioning with 3 min of ischemia followed by 3 days of reperfusion protected against hippocampal CA1 neuronal damage following 6 and 8 min of ischemia but not damage after 10 min of ischemia. The result strongly suggests that stress response induced by sublethal ischemia protects against ischemic brain damage.  相似文献   

15.
Exo-focal postischemic neuronal death in the rat brain   总被引:15,自引:1,他引:14  
We describe delayed neuronal damage in ipsilateral areas remote from the ischemic area of rat brain after transient focal ischemia induced by embolization of the right middle cerebral artery (MCA). After 15, 30, 60 and 90 min of MCA occlusion, recirculation was achieved by removal of the embolus. Chronological changes in the distribution of the neuronal damage were determined by using the 45Ca autoradiographic technique and the histological method, and the mechanism involved was investigated by measuring local cerebral glucose metabolism. Depending on the duration of ischemia, 45Ca accumulation extended to the lateral segment of the caudate putamen and to the cerebral cortex, both supplied by the occluded MCA. Moreover, 3 days after ischemic insult, 45Ca had accumulated in the ipsilateral substantia nigra and ventral posterior nucleus of the thalamus. Histological examination revealed that the neurons in both areas suffered damage and were selectively reduced in number. Cerebral glucose utilization decreased in the thalamus, but increased approximately 30% (P less than 0.01) in the substantia nigra compared with the value in the corresponding contralateral area. Both areas lie outside the ischemic area, but have transsynaptic connections with the ischemic focus. Based on the present study, we suggest that the mechanisms of delayed neuronal death in these two remote areas may not be identical, but that this phenomenon may be caused by a transsynaptic process associated with the ischemic focus.  相似文献   

16.
Calbindin D-28K(CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei(Neu N) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia(39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults.  相似文献   

17.
We describe multi-focal delayed neuronal death of rat brain after transient regional ischemia induced by embolization of the right middle cerebral artery (MCA). After sixty minutes of MCA occlusion, recirculation was achieved by removal of the embolus. Chronological changes in the distribution of the neuronal damage were determined by using the 45Ca autoradiographic technique and the histological examination. Sixty minutes after MCA occlusion, 45Ca accumulation extended to the lateral segment of the caudate putamen and the cerebral cortex supplied by the occluded MCA. Moreover, three days after ischemic insult, 45Ca had accumulated in the ipsilateral thalamus and substantia nigra. Histological examination revealed that the neurons in both area suffered damage and were selectively reduced in number. Both areas lie outside the ischemic area, but have transsynaptic connections with the ischemic focus. We suggest that the postischemic delayed neuronal death in exo-focal remote areas may be caused by a transsynaptic process associated with the infarcted areas and that these delayed multi-focal brain damage may exacerbate clinical symptoms in the chronic stage of stroke.  相似文献   

18.
'Ischemic tolerance' phenomenon detected in various brain regions.   总被引:34,自引:0,他引:34  
We investigated the effects of mild and non-lethal ischemic insult on neuronal death following subsequent lethal ischemic stress in various brain regions, using a gerbil model of bilateral cerebral ischemia. Single 10-min ischemia consistently caused neuronal damage in the hippocampal CA1, CA2, CA3 and CA4, layer III/IV of the cerebral cortex, dorsolateral part of the caudoputamen and ventrolateral part of the thalamus. On the other hand, in double ischemia groups, 2-min ischemic insult 2 days before 10-min ischemia exhibited significant protection in the CA1 and CA3 of the hippocampus, the cerebral cortex, the caudoputamen and the thalamus. Five-min ischemic insult 2 days before 10-min ischemia also showed protective effect in the same areas as those of 2-min ischemia except for the CA1 region of the hippocampus, while 1-min ischemic insult exhibited no protective effect in any brain regions. In the immunoblot analysis, both 2- and 5-min ischemia caused increased synthesis of heat shock protein 72 (HSP 72) in the hippocampus, but 1-min ischemia did not. The present study demonstrated that the 'ischemic tolerance' phenomenon was widely found in the brain and also suggested that ischemic treatment severe enough to cause HSP 72 synthesis might be needed for induction of 'ischemic tolerance'.  相似文献   

19.
The effect of repetition of brief ischemia, which causes no morphological brain damage when given as a single insult, was studied. Two-minute forebrain ischmia was induced in gerbils singly and 3 or 5b times at 60-min intervals. Although 2-min ischemia induced no neuronal damage, 3 or 5 repeated ischemic insults caused neuronal damage in the selectively vulnerable regions, the severity being dependent on the number of episodes.  相似文献   

20.
We investigated the effects of mild and non-lethal ischemic insult on neuronal death following subsequent lethal ischemic stress in various brain regions, using a gerbil model of bilateral cerebral ischemia. Single 10-min ischemia consistently caused neuronal damage in the hippocampal CA1, CA2, CA3 and CA4, layer III/IV of the cerebral cortex, dorsolateral part of the caudoputamen and ventrolateral part of the thalamus. On the other hand, in double ischemia groups, 2-min ischemic insult 2 days before 10-min ischemia exhibited significant protection in the CA1 and CA3 of the hippocampus, the cerebral cortex, the caudoputamen and the thalamus. Five-min ischemic insult 2 days before 10-min ischemia also showed protective effect in the same areas as those of 2-min ischemia except for the CA1 region of the hippocampus, while 1-min ischemic insult exhibited no protective effect in any brain regions. In the immunoblot analysis, both 2- and 5-min ischemia caused increased synthesis of heat shock protein 72 (HSP 72) in the hippocampus, but 1-min ischemia did not. The present study demonstrated that the ‘ischemic tolerance’ phenomenon was widely found in the brain and also suggested that ischemic treatment severe enough to cause HSP 72 synthesis might be needed for induction of ‘ischemic tolerance’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号