首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) represent a major class of signal transduction proteins that modulate various biological functions. GPCRs are one of the most common targets for drug development-currently, 39 of the top 100 marketed drugs in use act directly or indirectly through activation or blockade of GPCR-mediated receptors. Nearly 160 GPCRs have been identified based on their gene sequence and their ability to interact with known endogenous ligands. However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs have proven to be such clinically useful drug targets, these oGPCRs represent a rich group of receptor targets for the development of novel and improved medicines. To develop ligands for these potential drug targets requires the ability to identify groups or pools of GPCRs that are likely to be involved in a specific disease process (obesity, schizophrenia, depression, etc.) and to dissect out the pharmacological and signal transduction differences between these GPCR subtypes. It also requires the development of assays to detect ligands of GPCRs even when the endogenous ligands are unidentified. This paper will review novel strategies to identify clinically interesting oGPCRs and to screen for small molecules that act as ligands without prior knowledge of endogenous ligands. This involves the use of constitutively activated GPCRs, a technology that provides a unique opportunity to identify several classes of pharmacological agents, including agonists, inverse agonists and allosteric modulators.  相似文献   

2.
孤儿G蛋白偶联受体及其作为新药靶点的重要意义   总被引:9,自引:3,他引:9  
作为膜受体最大的一个家族,G蛋白偶联受体(GPCRs)参与了广泛的生理与病理过程,因而一直是新药发现及研究的最重要靶点。孤儿GPCRs(oGPCRs)是一类内源性配基未定、功能未知的GPCRs,作为创新药物的靶点具有重要的地位和意义。  相似文献   

3.
4.
5.
Nearly all molecules known to signal cells via G proteins have been assigned a cloned G-protein-coupled-receptor (GPCR) gene. This has been the result of a decade-long genetic search that has also identified some receptors for which ligands are unknown; these receptors are described as orphans (oGPCRs). More than 80 of these novel receptor systems have been identified and the emphasis has shifted to searching for novel signalling molecules. Thus, multiple neurotransmitter systems have eluded pharmacological detection by conventional means and the tremendous physiological implications and potential for these novel systems as targets for drug discovery remains unexploited. The discovery of all the GPCR genes in the genome and the identification of the unsolved receptor-transmitter systems, by determining the endogenous ligands, represents one of the most important tasks in modern pharmacology.  相似文献   

6.
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.  相似文献   

7.
The rhodopsin family of G-protein-coupled receptors (GPCRs) is the largest known group of cell-surface mediators of signal transduction. The vast majority of these receptors were discovered by methods based upon shared sequence homologies found throughout this family. While such efforts identified a multitude of receptor subtypes for previously known ligands, numerous receptors have been discovered for which endogenous ligands were unknown. These receptors are commonly referred to as orphan receptors. One of the most important tasks of modern pharmacology lies in elucidating the functions of these receptors. Of particular interest are receptors with recognised expression in the central nervous system, given that many psychiatric and neurodegenerative disorders are mediated by unknown mechanisms. Hence, this collection of putative neurotransmitter and neuromodulator signal mediators represents a substantial and untapped resource for novel drug discovery. Recently, various methodologies have accelerated the discovery of novel ligands for these orphan receptors, identifying the basic components required for further physiological ligand/receptor system characterisation. Equipped with proven ligand identification strategies, the characterisation of all orphan GPCRs and the exploitation of their exciting potential as targets for the discovery of novel drugs is anticipated.  相似文献   

8.
The pharmaceutical industry has readily embraced genomics to provide it with new targets for drug discovery. Large scale DNA sequencing has allowed the identification of a plethora of DNA sequences distantly related to known G protein-coupled receptors (GPCRs), a superfamily of receptors that have a proven history of being excellent therapeutic targets. In most cases the extent of sequence homology is insufficient to assign these `orphan'' receptors to a particular receptor subfamily. Consequently, reverse molecular pharmacological and functional genomic strategies are being employed to identify the activating ligands of the cloned receptors. Briefly, the reverse molecular pharmacological methodology includes cloning and expression of orphan GPCRs in mammalian cells and screening these cells for a functional response to cognate or surrogate agonists present in biological extract preparations, peptide libraries, and complex compound collections. The functional genomics approach involves the use of `humanized yeast cells, where the yeast GPCR transduction system is engineered to permit functional expression and coupling of human GPCRs to the endogenous signalling machinery. Both systems provide an excellent platform for identifying novel receptor ligands. Once activating ligands are identified they can be used as pharmacological tools to explore receptor function and relationship to disease.  相似文献   

9.
The focus of this review is on G protein-coupled receptors (GPCRs) for which nonpeptidic ligands are known and have been evaluated for the treatment of inflammatory conditions. GPCRs are the most prevalent class of cell surface proteins in pharmaceutical research today, and GPCR-targeting drugs account for one tenth of worldwide pharmaceutical sales. Of over 800 human GPCRs identified to date, several hundred are activated by peptides/proteins and just over 30 of these have been identified so far as potential therapeutic targets for the treatment of inflammatory diseases. This review highlights those GPCRs and over 60 structurally diverse nonpeptidic compounds that interact with them and display pro- or anti- inflammatory properties. Among these GPCR targets are the receptors for peptides like bradykinin, chemokines, complement anaphylatoxins, corticotropin releasing factor, endothelins, melanocortins, tachykinins, urocortins, as well as the protease activated receptors (PARs). Other peptide activated GPCRs implicated in inflammation, like those that bind angiotensin II, N-formyl peptides, galanin, neuropeptide Y, opioids and oxytocin, are only briefly discussed because there is either less direct association with inflammation or few/no nonpeptidic antiinflammatory ligands known. While it is still very early in the development of antiinflammatory drugs that target GPCRs, there is already a wealth of information supporting their important roles as cellular sentries in inflammatory diseases. New opportunities are emerging to evaluate antiinflammatory activities of potent and selective GPCR-binding ligands, including those being developed for other disease indications. In summary, GPCRs deserve a great deal more attention as potential therapeutic targets in inflammatory diseases.  相似文献   

10.
Molecular evolution and chemical genetics have been applied to generate functional pairings of mutated G protein-coupled receptors (GPCRs) and nonendogenous ligands. These mutant receptors, referred to as receptors activated solely by synthetic ligands (RASSLs) or designer receptors exclusively activated by designer drugs (DREADDs), have huge potential to define physiological roles of GPCRs and to validate receptors in animal models as therapeutic targets to treat human disease. However, appreciation of ligand bias and functional selectivity of different ligands at the same receptor suggests that RASSLs may signal differently than wild-type receptors activated by endogenous agonists. We assessed this by generating forms of wild-type human M(3) muscarinic receptor and a RASSL variant that responds selectively to clozapine N-oxide. Although the RASSL receptor had reduced affinity for muscarinic antagonists, including atropine, stimulation with clozapine N-oxide produced effects very similar to those generated by acetylcholine at the wild-type M(3)-receptor. Such effects included the relative movement of the third intracellular loop and C-terminal tail of intramolecular fluorescence resonance energy transfer sensors and the ability of the wild type and evolved mutant to regulate extracellular signal-regulated kinase 1/2 phosphorylation. Each form interacted similarly with β-arrestin 2 and was internalized from the cell surface in response to the appropriate ligand. Furthermore, the pattern of phosphorylation of specific serine residues within the evolved receptor in response to clozapine N-oxide was very similar to that produced by acetylcholine at the wild type. Such results provide confidence that, at least for the M(3) muscarinic receptor, results obtained after transgenic expression of this RASSL are likely to mirror the actions of acetylcholine at the wild type receptor.  相似文献   

11.
Tramadol is an analgesic that is used worldwide, but its mechanisms of action have not been elucidated. It has been speculated that tramadol acts primarily through the activation of micro-opioid receptors and the inhibition of monoamine reuptake. The majority of studies to date have focused on ion channels in the central nervous system as targets of anesthetics and analgesics. During the past decade, major advances have been made in our understanding of the physiology and pharmacology of G-protein coupled receptor (GPCR) signaling. Several studies have shown that GPCRs and ion channels are targets for analgesics and anesthetics. In particular, tramadol has been shown to affect GPCRs, including muscarinic acetylcholine receptors and 5-hydroxytryptamine receptors. Here, the effects of tramadol on monoamine transporters, GPCRs, and ion channels are presented, and recent research on the pharmacology of tramadol is discussed.  相似文献   

12.
The G protein-coupled receptors (GPCRs) are the largest family of membrane proteins and represent some of the most important pharmaceutical targets. These receptors, encoded by several hundred genes, are activated by a wide variety of endogenous and synthetic ligands. The study of the signal transduction pathways activated by these receptors and the associated mechanisms controlling biological responses have been pivotal in identifying key intracellular molecules for regulating receptor responsiveness. The beta-arrestin proteins, which were initially discovered due to their role in GPCR desensitization, serve equally important roles in regulating internalization and alternative signaling events. This review focuses on the different functions of beta-arrestins to demonstrate how these proteins can help to identify new ligands for GPCRs and how they can serve as a platform for drug discovery.  相似文献   

13.
Trace amines (TAs) are endogenous compounds that are related to biogenic amine neurotransmitters and are present in the mammalian nervous system in trace amounts. Although their pronounced pharmacological effects and tight link to major human disorders such as depression and schizophrenia have been studied for decades, the understanding of their molecular mode of action remained incomplete because of the apparent absence of specialized receptors. However, the recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. The unique pharmacology and expression pattern of these receptors make them prime candidates for targets in drug development in the context of several neurological diseases. Current research focuses on dissecting their molecular pharmacology and on the identification of endogenous ligands for the apparently TA-insensitive members of this receptor family.  相似文献   

14.
The superfamily of G-protein coupled receptors (GPCRs) has more than 1000 members and is the largest family of proteins in the body. GPCRs mediate signalling of stimuli as diverse as light, ions, small molecules, peptides and proteins and are the targets for many pharmaceuticals. Most GPCR ligands are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites. In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands.  相似文献   

15.
G protein-coupled receptors (GPCRs) of Gi- or Gq-coupling specificity are effectively linked to activation of the c-Jun N-terminal kinase (JNK) cascade. However, little is known with regard to the regulation of JNK by Gs-coupled receptors. In this report, we used COS-7 cells transfected with the dopamine D1 receptor (D1R) to illustrate the signaling mechanism for Gs-mediated JNK activation. Stimulation of D1R triggered a weak but significant elevation of JNK activity in a time- and dose-dependent manner. This D1R-mediated JNK activation required the participation of Gbetagamma, Src-like kinases, and small GTPases, whereas disruptions of cAMP-, phosphoinositide-3-kinase-, and epidermal growth factor receptor-mediated signaling had no effect. Costimulation of D1R with GPCRs of other coupling specificities resulted in differential activation profiles of JNK. Activation of Gs-coupled D1R weakly potentiated the JNK activation induced by the Gi-coupled opioid receptor-like receptor, but it exhibited a significant inhibitory effect on the kinase activity triggered by the Gq-coupled gastrin-releasing peptide-preferring bombesin receptor (GRPR). Administration of Spadenosine-3',5'-cyclic monophosphorothioate triethylamine (a cAMP analog that mimics the Gs/cAMP signal) also suppressed the JNK activation mediated by Gq-coupled GRPR, as well as the Ca2+-induced kinase activation upon thapsigargin treatment. Moreover, the Ca2+ signal from GRPR synergistically potentiated the D1R-triggered cAMP elevation when the two receptors were stimulated simultaneously. Taken together, our results demonstrated that stimulation of Gs-coupled receptors in COS-7 cells not only enhanced the JNK activity, but also exhibited a "tuning" effect on the kinase activation mediated by GPCRs of other coupling specificities.  相似文献   

16.
Alternative drug discovery approaches for orphan GPCRs   总被引:1,自引:1,他引:0  
G protein-coupled receptors (GPCRs) are well-known drug targets. However, a question mark remains for the more than 100 orphan GPCRs as current deorphanisation strategies failed to identify specific ligands for these receptors. Recent advances have shown that orphan GPCRs may have important functions that are ligand-independent. Orphan GPCRs can modulate the function of well-defined drug targets such as GPCRs with identified ligands and neurotransmitter transporters though physical association with those molecules. Thus, compounds that bind to orphan GPCRs and allosterically regulate the function of the interacting partner or even disrupt the interaction with the latter could become new drugs.  相似文献   

17.
G protein-coupled receptors (GPCRs) constitute the largest receptor superfamily in the human genome and represent the most common targets of drug action. Classic agonist and antagonist ligands that act at GPCRs tend to bind to the receptor's orthosteric site, that is, the site recognized by the endogenous agonist for that receptor. However, it is now evident that GPCRs possess additional, extracellular, allosteric binding sites that can be recognized by a variety of small molecule modulator ligands. Allosteric modulators offer many advantages over classic orthosteric ligands as therapeutic agents, including the potential for greater GPCR-subtype selectivity and safety. However, the manifestations of allosterism at GPCRs are many and varied and, in the past, traditional screening methods have generally failed to detect many allosteric modulators. More recently, there have been a number of major advances in high throughput screening, including the advent of cell-based functional assays, which have led to the discovery of more allosteric modulator ligands than previously appreciated. In addition, a number of powerful analytical techniques have also been developed exclusively for detecting and quantifying allosteric effects, based on an increased awareness of various mechanisms underlying allosteric modulator actions at GPCRs. Together, these advances promise to change the current paucity of GPCR allosteric modulators in the clinical setting and yield novel therapeutic entities for the treatment of numerous disorders.  相似文献   

18.
The melanocortin system consists of five seven-transmembrane spanning G-protein coupled receptors (MC1-5) that are stimulated by endogenous agonists and antagonized by the only two known endogenous antagonists of GPCRs, agouti and agouti-related protein (AGRP). These receptors have been associated with many physiological functions, including the involvement of the MC4R in feeding behavior and energy homeostasis, making this system an attractive target for the treatment of obesity. Small-molecule mimetics of endogenous ligands may result in the development of compounds with properties more suitable for use as therapeutic agents. The research presented herein involves the synthesis and analysis of 12 melanocortin receptor agonists using the 1,4-benzodiazepine-2,5-dione template and is the first report of these derivatives as melanocortin receptor agonists. Structure-activity relationship studies using this privileged structure template has resulted in molecules with molecular weights around 400 that possess nanomolar agonist potency at the melanocortin receptors examined in this study.  相似文献   

19.
The field of gut nutrient chemosensing is evolving rapidly. Recent advances have uncovered the mechanism by which specific nutrient components evoke multiple metabolic responses. Deorphanization of G protein-coupled receptors (GPCRs) in the gut has helped identify previously unliganded receptors and their cognate ligands. In this review, we discuss nutrient receptors, their ligand preferences, and the evoked neurohormonal responses. Family A GPCRs includes receptor GPR93, which senses protein and proteolytic degradation products, and free fatty acid-sensing receptors. Short-chain free fatty acids are ligands for FFA2, previously GPR43, and FFA3, previously GPR41. FFA1, previously GPR40, is activated by long-chain fatty acids with GPR120 activated by medium- and long-chain fatty acids. The GPR119 agonist ethanolamide oleoylethanolamide (OEA) and bile acid GPR131 agonists have also been identified. Family C receptors ligand preferences include L-amino acids, carbohydrate, and tastants. The metabotropic glutamate receptor (mGluR), calcium-sensing receptor (CaR), and GPCR family C, group 6, subtype A receptor (GPRC6A) mediate L-amino acid-sensing. Taste receptors have a proposed role in intestinal chemosensing; sweet, bitter, and umami evoke responses in the gut via GPCRs. The mechanism of carbohydrate-sensing remains controversial: the heterodimeric taste receptor T1R2/T1R3 and sodium glucose cotransporter 1 (SGLT-1) expressed in L cells are the two leading candidates. Identification of specific nutrient receptors and their respective ligands can provide novel therapeutic targets for the treatment of diabetes, acid reflux, foregut mucosal injury, and obesity.  相似文献   

20.
Despite current drug therapies, including those that target enzymes, channels and known G-protein-coupled receptors (GPCRs), cardiovascular disease remains the major cause of ill health, which suggests that other transmitter systems might be involved in this disease. In humans, approximately 175 genes have been predicted to encode 'orphan' GPCRs, where the endogenous ligand is not yet known. As a result of intensive screening using 'reverse pharmacology', an increasing number of orphan receptors are being paired with their cognate ligands, many of which are peptides. The existence of some of these peptides such as urotensin-II and relaxin had been known for some time but others, including ghrelin and apelin, represent novel sequences. The pharmacological characterization of these emerging peptide-receptor systems is a tantalising area of cardiovascular research, with the prospect of identifying new therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号