首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Aims/hypothesis

It is widely accepted that production of insulin, glucagon, somatostatin and pancreatic polypeptide in islet cells is specific to beta, alpha, delta and pancreatic polypeptide cells, respectively. We examined whether beta cells express other genes encoding islet hormones.

Methods

Nested RT-PCR was performed on single beta cells of transgenic mice with green fluorescent protein (GFP) driven by mouse insulin I promoter (MIP-GFP).

Results

Only 55% of adult beta cells expressed the insulin gene alone, while others expressed two or more islet hormone genes; 4% expressed all four hormone genes. In embryonic and neonatal cells, 60% to 80% of GFP+ cells co-expressed pancreatic polypeptide and insulin genes in contrast to 29% in adult. To clarify cell fate, we conducted lineage tracing using rat insulin II promoter-cre mice crossed with reporter mice Gt(ROSA)26Sor-loxP-flanked STOP-cassette-GFP. All GFP+ cells expressed insulin I and II genes, and showed similar heterogeneity of co-expression to that seen in MIP-GFP mice. Although we report expression of other hormone genes in a significant proportion of beta cells, our lineage tracing results demonstrate that after inducing InsII (also known as Ins2) expression, beta cell progenitors do not redifferentiate to non-beta cells.

Conclusions/interpretation

This study shows co-expression of multiple hormone genes in beta cells of adult mice as well as in embryos and neonates. This finding could: (1) represent residual expression from beta cell precursors; (2) result from alternative developmental pathways for beta cells; or (3) denote the differentiation potential of these cells. It may be linked to functional heterogeneity. This heterogeneity in gene expression may provide a means to characterise the functional, cellular and developmental heterogeneity seen in beta cells.  相似文献   

2.
Islet neogenesis associated protein (INGAP) is a protein factor that can stimulate new islet mass from adult pancreatic progenitor cells. In models of islet neogenesis, INGAP expression is elevated in pancreatic acinar cells. Using a transgenic model to drive a sustained expression of INGAP in pancreatic acinar cells, we have identified a protection to chemical-induced hyperglycemia. A sustained expression of INGAP during development did not perturb islet development or basal blood glucose homeostasis, although beta-cell mass and pancreatic insulin content were significantly increased in the INGAP transgenic mice. When challenged with a diabetogenic dose of streptozotocin (STZ), mice carrying the INGAP transgene did not become hyperglycemic. In contrast, wild-type mice became and remained hyperglycemic, blood glucose > 550 mg/dl. The serum insulin levels and islet morphology were preserved in the transgenic mice after STZ treatment. These data suggest that the sustained expression of INGAP in the acinar pancreas confers resistance to a diabetogenic insult. The INGAP transgenic mouse provides a new model to uncover factors that are protective to diabetes onset and biomarkers to track beta-cell pathology.  相似文献   

3.
Summary Type 2 (non-insulin-dependent) diabetes mellitus is characterised by hyperglycaemia, peripheral insulin resistance, impaired insulin secretion and pancreatic islet amyloid formation. The major constituent of islet amyloid is islet amyloid polypeptide (amylin). Islet amyloid polypeptide is synthesized by islet beta cells and co-secreted with insulin. The ability of islet amyloid polypeptide to form amyloid fibrils is related to its species-specific amino acid sequence. Islet amyloid associated with diabetes is only found in man, monkeys, cats and racoons. Pharmacological doses of islet amyloid polypeptide have been shown to inhibit insulin secretion as well as insulin action on peripheral tissues (insulin resistance). To examine the role of islet amyloid polypeptide in the pathogenesis of Type 2 diabetes, we have generated transgenic mice with the gene encoding either human islet amyloid polypeptide (which can form amyloid) or rat islet amyloid polypeptide, under control of an insulin promoter. Transgenic islet amyloid polypeptide mRNA was detected in the pancreas in all transgenic mice. Plasma islet amyloid polypeptide levels were significantly elevated (up to 15-fold) in three out of five transgenic lines, but elevated glucose levels, hyperinsulinaemia and obesity were not observed. This suggests that insulin resistance is not induced by chronic hypersecretion of islet amyloid polypeptide. Islet amyloid polypeptide immunoreactivity was localized to beta-cell secretory granules in all mice. Islet amyloid polypeptide immunoreactivity in beta-cell lysosomes was seen only in mice with the human islet amyloid polypeptide gene, as in human beta cells, and might represent an initial step in intracellular formation of amyloid fibrils. These transgenic mice provide a unique model with which to examine the physiological function of islet amyloid polypeptide and to study intracellular and extracellular handling of human islet amyloid polypeptide in pancreatic islets.  相似文献   

4.
The islet in non-insulin-dependent diabetes mellitus (NIDDM) is characterized by loss of beta cells and large local deposits of amyloid derived from the 37-amino acid protein, islet amyloid polypeptide (IAPP). We have hypothesized that IAPP amyloid forms intracellularly causing beta-cell destruction under conditions of high rates of expression. To test this we developed a homozygous transgenic mouse model with high rates of expression of human IAPP. Male transgenic mice spontaneously developed diabetes mellitus by 8 weeks of age, which was associated with selective beta-cell death and impaired insulin secretion. Small intra- and extracellular amorphous IAPP aggregates were present in islets of transgenic mice during the development of diabetes mellitus. However, IAPP derived amyloid deposits were found in only a minority of islets at approximately 20 weeks of age, notably after development of diabetes mellitus in male transgenic mice. Approximately 20% of female transgenic mice spontaneously developed diabetes mellitus at 30+ weeks of age, when beta-cell degeneration and both amorphous and amyloid deposits of IAPP were present. We conclude that overexpression of human IAPP causes beta-cell death, impaired insulin secretion, and diabetes mellitus. Large deposits of IAPP derived amyloid do not appear to be important in this cytotoxicity, but early, small amorphous intra- and extracellular aggregates of human IAPP were consistently present at the time of beta-cell death and therefore may be the most cytotoxic form of IAPP.  相似文献   

5.
Several recent studies have utilized transgenic technology to explore basic questions in the pathophysiology of diabetes mellitus. The ultimate expression of altered glucose homeostasis is a theme common to them. The experimental models have been diverse, however, and, in some instances, resulted in unexpected biologic effects. Many of the studies have examined the autoimmune etiology of insulin-dependent diabetes mellitus by expressing regulatory molecules of the immune system as transgenes in islet beta cells. The molecules have included products of the major histocompatibility complex (MHC), cytokines, and other cell surface antigens. Ectopic expression of these transgenes resulted in altered immune responses directed against islets, and these transgenic mice now serve as important models to study mechanisms of immunologic tolerance. Transgenic technology is also being used to explore basic aspects of islet beta-cell physiology and insulin metabolism. beta-cell function is disrupted by transgenic beta-cell expression of molecules such as calmodulin and H-ras. Hyperexpression of insulin as a transgene can result in a syndrome resembling features of non-insulin-dependent diabetes.  相似文献   

6.
Ontogenic relationships between the different endocrine cell types of the islets of Langerhans were explored by generating transgenic mice, in which cells transcribing the glucagon, insulin, or pancreatic polypeptide genes were destroyed through the promoter-targeted expression of the diphtheria toxin A chain. In an alternate approach, to assess whether insulin cells are derived from precursors producing glucagon or PP, transgenic mice were generated bearing an insulin promoter-driven, and loxP-containing (‘floxed’) reporter transgene that can be irreversibly ‘tagged’ by recombination. They were crossed with mice expressing another transgene (‘tagger’) encoding Cre (cyclization recombination) recombinase in either glucagon or PP cells. The results obtained using both approaches indicate that neither glucagon nor insulin gene-expressing cells are the precursors to the other islet cells; also, they suggest that PP gene-expressing cells are necessary for the differentiation of islet insulin and somatostatin cells, through a cell lineage or a paracrine relationship.  相似文献   

7.
Aims/hypothesis It has previously been hypothesised that highly differentiated endocrine cells do not proliferate or regenerate. However, recent studies have revealed that cyclin-dependent kinase 4 (CDK4) is necessary for the proliferation of pancreatic islet beta cells. The aim of this study was to determine whether activation of CDK4 can potentially be used as a radical treatment for diabetes without malignant transformation.Methods We generated transgenic mice expressing mutant CDK4 under the control of the insulin promoter to examine the effect of activated CDK4 overexpression in the postnatal development of pancreatic islets.Results In the transgenic mice, total CDK4 protein expression was increased by up to 5-fold, with a concomitant increase in CDK4 activity indicated by the detection of phosphorylated Rb protein in pancreatic islets. Histopathologically, many cells tested positive for proliferating cell nuclear antigen, and pancreatic islets displayed hyperplasia due to the extreme proliferation of beta cells containing a large number of insulin granules. Pancreatic islet alpha, delta and PP cells did not increase. Over an 18-month observation period, the transgenic mice did not develop insulinoma. Levels of expression of GLUT1 and c-myc were comparable to those in the littermates of the transgenic mice. GLUT2 expression was identified in the pancreatic islets of transgenic mice. No significant differences in telomerase activities were detected between transgenic mice and their littermates. Transgenic mice were superior to their littermates in terms of glucose tolerance and insulin secretion in response to the intraperitoneal injection of glucose, and hypoglycaemia was not observed.Conclusions/interpretation Activated CDK4 stimulates postnatal pancreatic beta cell proliferation, during which the highly differentiated phenotypes of pancreatic islet beta cells are preserved without malignant transformation.  相似文献   

8.
9.
10.
11.
Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus.  相似文献   

12.
Whereas NF-kappaB has potent antiapoptotic function in most cell types, it was reported that in pancreatic beta cells it serves a proapoptotic function and may contribute to the pathogenesis of autoimmune type 1 diabetes. To investigate the role of beta cell NF-kappaB in autoimmune diabetes, we produced transgenic mice expressing a nondegradable form of IkappaBalpha in pancreatic beta cells (RIP-mIkappaBalpha mice). beta cells of these mice were more susceptible to killing by TNF-alpha plus IFN-gamma but more resistant to IL-1beta plus IFN-gamma than normal beta cells. Similar results were obtained with beta cells lacking IkappaB kinase beta, a protein kinase required for NF-kappaB activation. Inhibition of beta cell NF-kappaB accelerated the development of autoimmune diabetes in nonobese diabetic mice but had no effect on glucose tolerance or serum insulin in C57BL/6 mice, precluding a nonphysiological effect of transgene expression. Development of diabetes after transfer of diabetogenic CD4(+) T cells was accelerated in RIP-mIkappaBalpha/nonobese diabetic mice and was abrogated by anti-TNF therapy. These results suggest that under conditions that resemble autoimmune type 1 diabetes, the dominant effect of NF-kappaB is prevention of TNF-induced apoptosis. This differs from the proapoptotic function of NF-kappaB in IL-1beta-stimulated beta cells.  相似文献   

13.
It has been proposed that endogenous hexokinases of the pancreatic beta cell control the rate of glucose-stimulated insulin secretion and that genetic defects that reduce beta-cell hexokinase activity may lead to diabetes. To test these hypotheses, we have produced transgenic mice that have a 2-fold increase in hexokinase activity specific to the pancreatic beta cell. This increase was sufficient to significantly augment glucose-stimulated insulin secretion of isolated pancreatic islets, increase serum insulin levels in vivo, and lower the blood glucose levels of transgenic mice by 20-50% below control levels. Elevation of hexokinase activity also significantly reduced blood glucose levels of diabetic mice. These results confirm the role of beta-cell hexokinase activity in the regulation of insulin secretion and glucose homeostasis. They also provide strong support for the proposal that reductions in beta-cell hexokinase activity can produce diabetes.  相似文献   

14.
AIMS/HYPOTHESIS: Recovery from diabetes requires restoration of beta cell mass. Igf1 expression in beta cells of transgenic mice regenerates the endocrine pancreas during type 1 diabetes. However, the IGF-I-mediated mechanism(s) restoring beta cell mass are not fully understood. Here, we examined the contribution of pre-existing beta cell proliferation and transdifferentiation of progenitor cells from bone marrow in IGF-I-induced islet regeneration. METHODS: Streptozotocin (STZ)-treated Igf1-expressing transgenic mice transplanted with green fluorescent protein (GFP)-expressing bone marrow cells were used. Bone marrow cell transdifferentiation and beta cell replication were measured by GFP/insulin and by the antigen identified by monoclonal antibody Ki67/insulin immunostaining of pancreatic sections respectively. Key cell cycle proteins were measured by western blot, quantitative RT-PCR and immunohistochemistry. RESULTS: Despite elevated IGF-I production, recruitment and differentiation of bone marrow cells to beta cells was not increased either in healthy or STZ-treated transgenic mice. In contrast, after STZ treatment, IGF-I overproduction decreased beta cell apoptosis and increased beta cell replication by modulating key cell cycle proteins. Decreased nuclear levels of cyclin-dependent kinase inhibitor 1B (p27) and increased nuclear localisation of cyclin-dependent kinase (CDK)-4 were consistent with increased beta cell proliferation. However, islet expression of cyclin D1 increased only after STZ treatment. In contrast, higher levels of cyclin-dependent kinase inhibitor 1A (p21) were detected in islets from non-STZ-treated transgenic mice. CONCLUSIONS/INTERPRETATION: These findings indicate that IGF-I modulates cell cycle proteins and increases replication of pre-existing beta cells after damage. Therefore, our study suggests that local production of IGF-I may be a safe approach to regenerate endocrine pancreas to reverse diabetes.  相似文献   

15.

Aims/hypothesis

Endoplasmic reticulum (ER) stress has been detected in pancreatic beta cells and in insulin-sensitive tissues, such as adipose and liver, in obesity-linked rodent models of type 2 diabetes. The contribution of ER stress to pancreatic beta cell dysfunction in type 2 diabetes is unclear. We hypothesised that increased chaperone capacity protects beta cells from ER stress and dysfunction caused by obesity and improves overall glucose homeostasis.

Methods

We generated a mouse model that overproduces the resident ER chaperone GRP78 (glucose-regulated protein 78 kDa) in pancreatic beta cells under the control of a rat insulin promoter. These mice were subjected to high-fat diet (HFD) feeding for 20 weeks and metabolic variables and markers of ER stress in islets were measured.

Results

As expected, control mice on the HFD developed obesity, glucose intolerance and insulin resistance. In contrast, GRP78 transgenic mice tended to be leaner than their non-transgenic littermates and were protected against development of glucose intolerance, insulin resistance and ER stress in islets. Furthermore, islets from transgenic mice had a normal insulin content and normal levels of cell-surface GLUT2 (glucose transporter 2) and the transgenic mice were less hyperinsulinaemic than control mice on the HFD.

Conclusions/interpretation

These data show that increased chaperone capacity in beta cells provides protection against the pathogenesis of obesity-induced type 2 diabetes by maintaining pancreatic beta cell function, which ultimately improves whole-body glucose homeostasis.  相似文献   

16.
We describe unexpected alterations in the non-obese diabetic (NOD/Lt) mouse model of type 1 diabetes (T1D) following forced beta-cell expression of non-mammalian genes ligated to an insulin promoter sequence. These include the jellyfish green fluorescent protein (GFP), useful for beta-cell identification, and the bacteriophage P1 Cre recombinase, necessary for beta cell-specific ablation of a gene using a Cre-loxP system. Homozygous expression of GFP, driven by the mouse insulin 1 gene promoter (MIP-GFP) in a single transgenic line of NOD mice, produced T1D in postnatal mice that was not associated with insulitis, but rather beta cell-depleted islets. Hemizygous transgene expression suppressed spontaneous autoimmune T1D in females, and produced a male glucose intolerance syndrome associated with age-dependent declines in plasma insulin content. Among lines of transgenic NOD/Lt mice expressing Cre recombinase driven by the rat insulin 2 promoter (RIP-Cre), high, non-mosaic expression correlated with suppressed T1D development. These findings emphasize the need for careful characterization of genetically manipulated NOD mouse stocks to insure that model characteristics have not been compromised.  相似文献   

17.
Clark A  Nilsson MR 《Diabetologia》2004,47(2):157-169
The role of islet amyloidosis in the onset and progression of Type 2 diabetes remains obscure. Islet amyloid polypeptide is a 37 amino-acid, beta-cell peptide which is co-stored and co-released with insulin. Human islet amyloid polypeptide refolds to a -conformation and oligomerises to form insoluble fibrils; proline substitutions in rodent islet amyloid polypeptide prevent this molecular transition. Pro-islet amyloid polypeptide (67 amino acids in man) is processed in secretory granules. Refolding of islet amyloid polypeptide may be prevented by intragranular heterodimer formation with insulin (but not proinsulin). Diabetes-associated abnormal proinsulin processing could contribute to de-stabilisation of granular islet amyloid polypeptide. Increased pro-islet amyloid polypeptide secretion as a consequence of islet dysfunction could promote fibrillogenesis; the propeptide forms fibrils and binds to basement membrane glycosamino-glycans. Islet amyloid polypeptide gene polymorphisms are not universally associated with Type 2 diabetes. Transgenic mice expressing human islet amyloid polypeptide gene have increased islet amyloid polypeptide concentrations but develop islet amyloid only against a background of obesity and/or high fat diet. In transgenic mice, obese monkeys and cats, initially small perivascular deposits progressively increase to occupy 80% islet mass; the severity of amyloidosis in animal models is related to the onset of hyperglycaemia, suggesting that islet amyloid and the associated destruction of islet cells cause diabetes. In human diabetes, islet amyloid can affect less than 1% or up to 80% of islets indicating that islet amyloidosis largely results from diabetes-related pathologies and is not an aetiological factor for hyperglycaemia. However, the associated progressive beta-cell destruction leads to severe islet dysfunction and insulin requirement.Abbreviations IAPP islet amyloid polypeptide - hIAPP human islet amyloid polypeptide - T2DM Type 2 diabetes - TM transgenic mice expressing the human IAPP gene - UKPDS United Kingdom Prospective Diabetes Study - GAGs glycosamino glycans  相似文献   

18.
19.
Aims/hypothesis. A mechanism implicated in pancreatic islet beta-cell destruction in autoimmune diabetes is the binding of the Fas ligand (FasL) on T cells to Fas receptors on beta cells, causing their destruction. Evidence for this mechanism is, however, controversial. The aim of this study was to find whether the Fas ligand contributes to beta-cell death in autoimmune diabetes. Methods. We transplanted syngeneic islets under the renal capsule in non-obese diabetic (NOD) mice and treated the mice with a neutralizing monoclonal antibody to the Fas ligand. Survival of beta cells in islet grafts and phenotypes of graft-infiltrating cells were investigated. Results. We found 58 % (7 of 12) of mice treated with anti-Fas ligand antibody were normoglycaemic at 30 days after islet transplantation compared with none (0 of 9) of the mice treated with control antibody. Immunohistochemical analysis of islet grafts showed that infiltration of leucocytes (CD4+ T cells, CD8+ T cells, macrophages and neutrophils) and apoptosis of beta cells in the grafts was significantly decreased in mice treated with anti-Fas ligand antibody. Expression of proinflammatory cytokines (interleukin 1 alpha, tumour necrosis factor alpha and interferon gamma) was not different in islet grafts of mice treated with anti-Fas ligand and control antibodies. Conclusion/interpretation. These findings indicate that Fas ligand-mediated mechanisms play a major part in promoting leucocytic infiltration of islets and beta-cell destruction in autoimmune diabetes. [Diabetologia (2000) 43: 1149–1156] Received: 31 March 2000 and in revised form: 5 June 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号