首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Precision-cut liver slices are an accepted in vitro system for toxicological investigations. However, cryopreservation of slices would make a more efficient utilisation, particularly of human liver tissue possible. In the present study sections of cryopreserved male rat liver slices were examined immunohistochemically for cytochrome P450 (CYP) isoforms expression after prolonged incubation and after exposure to typical inducers. Morphologically, with just thawed slices no major alterations were seen, but remarkable cell damage was observed even after 2 h of incubation mainly in the middle of the slices and in the periportal and intermediate regions of the lobules. After 24 h of incubation, viable cells were only observed at the edges of the slices or around bigger vessels. In the viable cells of the cryopreserved liver slices after 2 h of incubation CYP expression pattern was similar to that in normal liver specimens: a low CYP1A1, but a strong CYP2B1 and 3A2 expression predominantly in the central and intermediate lobular zones. After 24 h, the immunostaining for CYP2B1 and 3A2 in the viable cells was reduced, but that for CYP1A1 was increased. Incubation with beta-naphthoflavone further elevated CYP1A1 and 2B1 expression. Phenobarbital caused an enhanced CYP2B1 and 3A2 and dexamethasone and pregnenolone 16 alpha-carbonitrile an increased CYP3A2 immunostaining. These results show that also in cryopreserved liver slices and after a prolonged incubation, a distinct expression pattern and an in vitro induction of phase I enzymes can be demonstrated immunohistochemically.  相似文献   

2.
Lupp A  Danz M  Müller D 《Toxicology》2005,206(3):427-438
Precision-cut rat liver slices are a widely accepted in vitro tool for the examination of drug metabolism, enzyme induction or hepatotoxic effects of xenobiotics. After prolonged incubation, however, distinct histopathological changes and increasing losses in function are seen with liver slices from adult animals. Since tissue from neonatal animals is expected to be less vulnerable, in the present study liver slices from 1-day-old rats were examined for morphological changes and for the expression of different cytochrome P450 (CYP) isoforms after incubation for up to 24 h and after a 24 h in vitro exposure to beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or pregnenolone 16alpha-carbonitrile (PCN). In parallel, CYP activities were assessed by different model reactions in slice homogenates and in intact slices. Histopathological changes were less pronounced in liver slices from 1-day-old rats than in those from adult animals. During the 24 h of incubation even a maturation of the tissue occurred, since the proportion of haemopoietic stem cells declined and the glycogen content of the hepatocytes increased. The CYP expression pattern after 2 and 24 h of incubation was similar to that of normal liver specimens from neonatal rats showing a moderate CYP1A1, 2B1 and 3A2 expression. The immunostaining for CYP1A1 and 2B1 was elevated after incubation with BNF. PB enhanced CYP2B1 and 3A2 expression, and DEX and PCN increased CYP3A2 immunostaining. This induction pattern was paralleled by respective effects on the corresponding model reactions. Thus, besides increased viability, slices from neonatal rats are excellently suited for the evaluation of an in vitro induction of CYP enzymes as well.  相似文献   

3.
In a previous 24-h study, precision-cut rat liver slices were validated as a useful in vitro model for assessing the dose-related induction of CYP1A1 and CYP1A2 in rat liver following exposure to 2, 3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further assessment of the utility of this model was accomplished by initially exposing rat liver slices to medium containing TCDD (0.01 nM) for 24 h and incubating the slices up to an additional 72 h in TCDD-free medium. The slices remained viable throughout the incubation period with an intracellular potassium content varying from 45.2 +/- 2.3 micromol/g at 48 h to 50.0 +/- 1.6 micromol/g at 72 h. In TCDD-exposed slices, CYP1A1 protein and its respective enzymatic activity, the O-deethylation of ethoxyresorufin (EROD), significantly increased with time over the 96-h incubation period, with EROD activity increasing from 63.6 +/- 14.2 at 24 h to 905 +/- 291 pmol/mg/min at 96 h. Under identical incubation conditions, but in the absence of TCDD, the EROD activity for the control liver slices ranged from 14. 3 +/- 4.3 to 44.9 +/- 11.9 pmol/min/mg. Conversely, the level of CYP1A2 protein and its respective activity (acetanilide hydroxylation) transiently decreased from 24 to 96 h with no significant differences observed between the control (0 nM TCDD) and treatment group (0.01 nM TCDD). The concentration-effect relationship at 96 h was characterized by incubating rat liver slices for the initial 24 h in medium containing TCDD at concentrations ranging from 0.1 pM to 10 nM. Induction of CYP1A1 protein and EROD activity was observed for all treatment groups with the 10 nM TCDD treatment group displaying greater than 100-fold induction compared to control (0 nM TCDD). Immunohistochemical localization of CYP1A1 protein within liver slices supported the time- and concentration-dependent induction of EROD activity by TCDD. The induction of CYP1A1 was initially observed to be centrilobular, with increased expression due to both elevated CYP1A1 within cells and the recruitment of additional cells expressing CYP1A1 throughout the entire liver slice. Additionally, the immunohistochemical analysis of the liver slices demonstrated the conservation of tissue architecture following up to 96 h of incubation in dynamic organ culture and provided further evidence for maintenance of tissue viability. In comparison to CYP1A1, the induction of CYP1A2 at 96 h was a less sensitive response, with significant induction of CYP1A2 protein and its respective activity occurring at a medium concentration of 0.1 nM TCDD (686 pg/g liver). In general, increasing the incubation period from 24 to 96 h markedly increased TCDD-induced expression of CYP1A1 and minimally enhanced CYP1A2 expression. Moreover, extending the incubation period to 96 h resulted in in vitro induction profiles for CYP1A1 and CYP1A2 that were qualitatively and quantitatively similar to that previously observed following in vivo exposure to TCDD (Drahushuk et al., Toxicol. Appl. Pharmacol. 140, 393-403, 1996).  相似文献   

4.
With the exception of cytochrome P450 (CYP) 1A1 and its mRNA, in vitro induction of other CYP forms has not been demonstrated in cryopreserved liver slices until now. Therefore precision-cut rat liver slices were cultured after cryopreservation and thawing in William's medium E for up to 24 h in the presence of inducers to demonstrate CYP2B1- and CYP3A1-mRNA induction. CYP-mRNA expression was determined by competitive RT-PCR. Exposure to 100 microM phenobarbital caused a more than 20-fold increase in CYP2B1-mRNA expression within 24 h, reaching concentrations comparable with those of PB-exposed fresh rat liver slices. Exposure to 1 microM pregnenolone 16 alpha-carbonitrile enhanced CYP3A1-mRNA expression by more than 30-fold within 24 h. This is in the same range, although with higher variability, as detected with fresh liver slices. In spite of considerable variability among the thawed slices, the induction factors are high enough for a sensitive detection of an induction at mRNA level. Additionally, immunostaining of respective CYP-forms was performed in sections of few samples, indicating CYP increase in viable cells of cryopreserved slices.  相似文献   

5.
The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.  相似文献   

6.
7.
8.
9.
10.
11.
Exposure of precision-cut rat liver slices to six structurally diverse polycyclic aromatic hydrocarbons, namely benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, dibenzo[a,l]pyrene, fluoranthene and 1-methylphenanthrene, led to induction of ethoxyresorufin O-deethylase, CYP1A apoprotein and CYP1A1 mRNA levels, but to a markedly different extent. In liver slices, constitutive CYP1A1 mRNA levels were higher, as well as being markedly more inducible by PAHs, compared with CYP1B1, a similar profile to that observed in human liver slices following exposure to the PAHs. Increase in ethoxyresorufin O-deethylase and in CYP1A1 apoprotein levels was also observed when precision-cut rat lung slices were incubated with the same PAHs, the order of induction potency being similar to that observed in liver slices. Under the same conditions of exposure, CYP1B1 apoprotein levels were elevated in the lung. Up-regulation of CYP1A1 by the six PAHs correlated with their affinity for the Ah receptor, determined using the chemical-activated luciferase expression (CALUX) assay. It may be concluded that (a) precision-cut liver and lung slices may be used to assess the CYP1 induction potential of chemicals at the activity, apoprotein and mRNA levels; (b) rat is a promising surrogate animal for human in studies to evaluate CYP1 induction potential; (c) CYP1A1 is far more inducible than CYP1B1 in both rat liver and lung; (d) CYP1 up-regulation by PAHs is related to their affinity for the Ah receptor, and finally (e) computer analysis revealed that the ratio of molecular length/width is an important determinant of CYP1 induction potency among equiplanar PAHs.  相似文献   

12.
The aim of this study was to evaluate drug metabolism in rat small intestinal and colon precision-cut slices during 24 h of incubation and the applicability of these slices for enzyme induction studies. Various parameters were evaluated: intracellular levels of ATP (general viability marker), alkaline phosphatase activity (specific epithelial marker), villin expression (specific epithelial marker), and metabolic rates of 7-ethoxycoumarin (CYP1A), testosterone (CYP3A and CYP2B), and 7-hydroxycoumarin (glucuronide and sulfate conjugation) conversions. ATP and villin remained constant up to, respectively, 5 and 8 h in small intestine and up to 24 h in colon. The metabolic rate remained constant in small intestinal slices up to 8 h and decreased afterward to 24 to 92%, depending on the substrate studied. The inducibility of metabolism in small intestinal and colon slices was tested with several inducers at various concentrations and incubation times. The following inducers were used: 3-methylcholanthrene, beta-naphthoflavone, indirubin, and tert-butylhydroquinone (aryl hydrocarbon receptor ligands), dexamethasone (glucocorticoid receptor/pregnane X receptor ligand) and phenobarbital (constitutive androstane receptor ligand). After incubation with inducers, metabolic rates were evaluated with 7-ethoxycoumarin and testosterone (phase I) and 7-hydroxycoumarin (phase II) as substrate. All inducers elevated the metabolic rates consistent with the available published in vivo induction data. Induction of enzyme activity was already detectable after 5 h (small intestine) and after 8 h (colon) for 3-methylcholanthrene and beta-naphthoflavone and was clearly detectable for all tested inducers after 24 h (up to 20-fold compared with noninduced controls). In conclusion, small intestinal and colon precision-cut slices are useful for metabolism and enzyme induction studies.  相似文献   

13.
Purpose. To examine the potential of cultured human liver slices to predict cytochrome P450 (CYP) inducibility, regarding global and zonal CYP expression, together with drug-induced histologic changes. Methods. We first assessed whether CYP2B6, 3A4, and 2C9 expression was maintained in cultured liver slices. Cultured hepatocytes were used as the reference culture system. Then we tested the effects of phenobarbital and cyclophosphamide on CYP expression in both models. Results. Morphologic features are preserved in slices. Basal CYP expression declines with time in culture in both models. Slices display the same region specificity of CYP2B6, 2C9, and 3A4 expression as intact liver. CYP2B6 and 3A4 mRNA, apoprotein, and enzyme-related activities were induced by phenobarbital and cyclophosphamide, whereas CYP2C9 apoprotein was not. Their immunoreactivities were also increased, while their zonal distribution was preserved on slice tissue sections. Microsomal enzyme induction was confirmed by histology. Conclusions. Cultured human liver slices are an attractive alternative to hepatocyte culture for the prediction of human CYP isoenzyme induction by xenobiotics.  相似文献   

14.
Although regulation of phase I drug metabolism in human liver is relatively well studied, the regulation of phase II enzymes and of drug transporters is incompletely characterized. Therefore, we used human liver slices to investigate the PXR, CAR and AhR-mediated induction of drug transporters and phase I and II metabolic enzymes. Precision-cut human liver slices were incubated for 5 or 24 h with prototypical inducers: phenobarbital (PB) (50 μM) for CAR, β-naphthoflavone (BNF) (25 μM) for AhR, and rifampicin (RIF) (10 μM) for PXR, and gene expression of the phase I enzymes CYP1A1, 1A2, 3A4, 3A5, 2B6, 2A6, the phase II enzymes UGT1A1 and 1A6, and the transporters MRP2, MDR1, BSEP, NTCP and OATP8 was measured. BNF induced CYP1A1, UGT1A1 and UGT1A6 and MRP2, NTCP and MDR1. RIF induced CYP3A4, 3A5, 2B6, 2A6, UGT1A1, UGT1A6 and BSEP, MRP2 and MDR1 and slightly downregulated OATP8. PB induced CYP3A4, 3A5, 2B6 and 2A6, UGT1A1 and all transporters.

Large interindividual differences were found with respect to the level of induction.

Enzyme activity of CYP3A4, measured by testosterone metabolism, was increased after 24 h by RIF. 7-Ethoxycoumarin O-deethylation activity, mediated predominantly by CYP 1A1/1A2 but also by other CYPs, was increased after 24 h with PB.

We have shown that regulation of all phases of the (in)activation of a drug via the CAR, AhR and the PXR pathways can be studied in human liver slices. The concomitant induction of metabolic enzymes and transporters shows that also in the human liver transporters and metabolic enzymes are regulated coordinately.  相似文献   


15.
Precision-cut rat liver slices were prepared from male Wistar rats with a Krumdieck slicer and cultured in William's medium E for up to 24 h. In untreated control slices, CYP2B1-mRNA concentration, which was quantified by competitive RT-PCR, did not decrease during this time. After exposure of the slices to 100 microM phenobarbital, CYP2B1-mRNA increased by about 10- or 60-fold after 6 or 24 h, respectively. The extent of this in vitro induction was similar to that after in vivo administration of 60 mg/kg phenobarbital. Pentoxyresorufin O-depentylation (PROD) was also inducible in vitro after 24 h, but to a lesser extent than the corresponding CYP-mRNA. Precision-cut liver slices proved to be a simple and reliable in vitro system for the sensitive detection of an induction by phenobarbital.  相似文献   

16.
Fresh human hepatocytes are still considered as the "gold standard" to screen in vitro for cytochrome P450 (P450) induction. However, sparse availability of good quality human liver tissue for research purposes and the demand for standardized cell populations, together with the need for proper storage of the cells not immediately required, have resulted in the development of cryopreservation techniques that provide adequate viability and plateability of hepatocytes after thawing. This study aimed at validating cryopreserved human hepatocytes as a model to investigate P450 induction. Cryopreserved cells from four different donors were plated and cultured for 48 h, followed by incubation in the presence of typical P450 inducers. During the experiments, quality of the cultured cells was monitored both physiologically and morphologically. Concomitantly, the activity of CYP1A2, 2B6, 2C9, 2E1, and 3A4 was measured together with their mRNA and protein expression. Determination of CYP1A2, 2B6, 2C9, 2E1, and 3A4 activity in control versus prototypical inducer-treated hepatocytes revealed a maximal significant mean 11.6-, 2.8-, 1.9-, 1.5-, and 9.0-fold induction over their basal expression, respectively. Protein expression analysis of these P450s confirmed these results. Moreover, a mean 44.9-, 3.5-, 3.2-, and 13.8-fold induction of CYP1A2, 2B6, 2C9, and 3A4 mRNA was observed. Our data demonstrate that cryopreserved human hepatocytes are a valuable tool to study the induction of CYP1A2, 2B6, 2C9, 2E1, and 3A4.  相似文献   

17.
In this study the effect of some indole derivatives on xenobiotic metabolizing enzymes and xenobiotic-induced toxicity has been examined in cultured precision-cut liver slices from male Sprague-Dawley rats. While treatment of rat liver slices for 72 hours with 2-200 microM of either indole-3-carbinol (I3C) or indole-3-acetonitrile (3-ICN) had little effect on cytochrome P-450 (CYP)-dependent enzyme activities, enzyme induction was observed after in vivo administration of I3C. The treatment of rat liver slices with 50 microM 3,3'-diindolylmethane (DIM; a dimer derived from I3C under acidic conditions) for 72 hours resulted in a marked induction of CYP-dependent enzyme activities. DIM appears to be a mixed inducer of CYP in rat liver slices having effects on CYP1A, CYP2B and CYP3A subfamily isoforms. Small increases in liver slice reduced glutathione levels and glutathione S-transferase activity were also observed after DIM treatment. While aflatoxin B1 and monocrotaline produced a concentration-dependent inhibition of protein synthesis in 72-hour-cultured rat liver slices, cytotoxicity was markedly reduced in liver slices cultured with 50 microM DIM. These results demonstrate that cultured rat liver slices may be employed to evaluate the effects of chemicals derived from cruciferous and other vegetables on CYP isoforms. In addition, liver slices can also be utilized to examine the ability of such chemicals to modulate xenobiotic-induced toxicity.  相似文献   

18.
Cytochrome P-450s (CYPs) detoxify a wide variety of xenobiotics and environmental contaminants, but can also bioactivate carcinogenic polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), to DNA-reactive species. The primary CYPs involved in the metabolism and bioactivation of BaP are CYP1A1 and CYP1B1. Furthermore, BaP can induce expression of CYP1A1 and CYP1B1 via the aryl hydrocarbon receptor. Induction of CYP1A1 and CYP1B1 by BaP in target (lung) and non-target (liver) tissues was investigated utilizing precision-cut rat liver and lung slices exposed to BaP in vitro. Tissue slices were also prepared from rats pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to induce expression of CYP1A1 and CYP1B1. In addition, in vivo exposure studies were performed with BaP to characterize and validate the use of the in vitro tissue slice model. In vitro exposure of liver and lung slices to BaP resulted in a concentration-dependent increase in CYP1A1 and CYP1B1 mRNA and protein levels, which correlated directly with the exposure-related increase in BaP-DNA adduct levels observed previously in the tissue slices [Harrigan, J.A., Vezina, C.M., McGarrigle, B.P., Ersing, N., Box, H.C., Maccubbin, A.E., Olson, J.R., 2004. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo(a)pyrene. Toxicological Sciences 77, 307-314]. Pretreatment of animals in vivo with TCDD produced a marked induction of CYP1A1 and CYP1B1 expression in the tissue slices, which was similar to the levels of CYP1A1 and CYP1B1 mRNA achieved in liver and lung following in vivo treatment with BaP. Following in vitro exposure to BaP, the levels of CYP1A1 were greater in the lung than the liver, while following all exposures (in vitro and in vivo), the levels of CYP1B1 mRNA were greater in lung tissue compared to liver. The higher expression of CYP1A1 and CYP1B1 in the lung was associated with higher levels of BaP-DNA adducts in the lung slices (Harrigan et al.'s work) and together, these results may contribute to the tissue specificity of BaP-mediated carcinogenesis.  相似文献   

19.
We have previously reported the expression of CYP genes in human myeloblastic and lymphoid cell lines, and the induction of the CYP3A4 and GSTP1 genes by oxidative stress in the human erythroleukemia cell line, K562. To further elucidate the role of drug metabolizing enzymes in hematogenesis, we have characterized the expression of CYP genes in hemin-induced differentiated K562 cells. After incubation with 50 microM hemin for 3 d, the expression of CYP1A1 and CYP3A4 genes was induced by 2.5- and 3.5-fold, respectively. In contrast, the CYP1B1 and CYP2E1 genes were downregulated in these cells to below 10% of the control levels. Moreover, these changes correlated with the hemin dose and culture time. Metabolism of midazolam, a probe substrate for CYP3A4, in the differentiated K562 cells increased by 2-folds, suggesting that the induction of CYP3A4 activity is consistent with the mRNA level. If these changes in the CYP expression profile in hematopoietic cells occurred, the susceptibility to xenobiotics and/or the therapeutic drugs of the cells might be influenced, and it also affects the metabolism of endogenous substrates, such as steroids and prostaglandins.  相似文献   

20.
Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized precision-cut rat liver slices in dynamic organ culture to assess the effects of various media on the viability of rat liver slices and the expression of CYP2B and CYP2E1 when the slices are exposed to phenobarbital and isoniazid, which are drugs capable of inducing these respective CYPs. Liver slices were maintained in serum supplemented Waymouths medium and two different serum-free media, Hepatozyme (Life Technologies) and a new defined medium, which is named BPM. While Hepatozyme is considered a suitable medium to support primary hepatocyte cultures, this product did not maintain viable liver slices, even for 24 h. The serum containing and new defined media maintained viable liver slices for up to 96 h in culture. Phenobarbital (0.5 mM) and isoniazid (0.1 or 0.6 mM) did not affect viability in this model. In the absence of phenobarbital or isoniazid, liver slices maintained for 96 h in the new BPM medium maintained the respective levels of CYP2B and 2E1 protein at 1.8 and 1.9-fold higher than in slices maintained in the serum-containing medium. Phenobarbital exposure (0.5 mM) for 96 h induced CYP2B protein 5.2-fold in the BPM medium and 2.5-fold in the serum-containing medium. Isoniazid exposure (0.1 and 0.5 mM) for 96 h induced CYP2E1 protein 1.9 and 2.1-fold (respectively) in the BPM medium and 2.1 and 2.0-fold in the serum-containing medium. The respective CYP enzymatic activities were also increased by these drugs in a similar manner. Thus, the new defined BPM medium provides suitable conditions for maintaining CYP2B and 2E1 in liver slices and supports the investigation of drug-induced modulation of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号