首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
Midazolam (MDZ) oxidation by recombinant CYP3A4 purified from Escherichia coli and 30 mutants generated at 15 different substrate recognition site positions has been studied to determine the role of individual residues in regioselectivity and to investigate the possible existence of multiple binding sites. Initial results showed that oxidation of MDZ by CYP3A4 causes time- and concentration-dependent enzyme inactivation with K(I) and k(inact) values of 5.8 microM and 0.15 min(-1), respectively. The different time courses of MDZ hydroxylation by mutants that predominantly formed 1'-OH MDZ as opposed to 4-OH MDZ provided strong evidence that the 1'-OH MDZ pathway leads to CYP3A4 inactivation. Correlational analysis of 1'-OH formation versus 4-OH formation by the mutants supports the inference that the two metabolites result from the binding of MDZ at two separate sites. Thus, substitution of residues Phe-108, Ile-120, Ile-301, Phe-304, and Thr-309 with a larger amino acid caused an increase in the ratio of 1'-OH/4-OH MDZ formation, whereas substitution of residues Ser-119, Ile-120, Leu-210, Phe-304, Ala-305, Tyr-307, and Thr-309 with a smaller amino acid decreased this ratio. Kinetic analyses of nine key mutants revealed that the alteration in regioselectivity is caused by a change in kinetic parameters (V(max) and K(M)) for the formation of both metabolites in most cases. The study revealed the role of various active-site residues in the regioselectivity of MDZ oxidation, identified the metabolic pathway that leads to enzyme inactivation, and provided an indication that the two proposed MDZ binding sites in CYP3A4 may be partially overlapping.  相似文献   

2.
We evaluated the effects of increasing concentrations of the flavonoids salvigenin, diosmetin and luteolin on the in vitro metabolism of midazolam (MDZ), a probe substrate for cytochrome P450 (CYP) 3A enzymes, which is converted into 1'-hydroxy-midazolam (1'-OH-MDZ) and 4-hydroxy-midazolam (4-OH-MDZ) by human liver microsomes. Salvigenin had only a modest effect on MDZ metabolism, whereas diosmetin and luteolin inhibited in a concentration-dependent manner the formation of both 1'-OH-MDZ and 4-OH-MDZ, with apparent K(i) values in the 30-50mumol range. Both diosmetin and luteolin decreased 1'-OH-MDZ formation by human recombinant CYP3A4, but not CYP3A5, whereas they decreased 4-OH-MDZ formation by both recombinant enzymes. To assess whether any relationship exists between the physico-chemical characteristics of flavones and their effects on MDZ metabolism, we tested the effects of three other flavones (flavone, tangeretin, chrysin) on MDZ metabolism by human liver microsomes. Whereas flavones possessing more than two hydroxyl groups (luteolin, diosmetin) inhibited MDZ biotransformation, flavones lacking hydroxyl groups in their A and B rings (flavone, tangeretin) stimulated MDZ metabolism. We also found close relationships between the maximum stimulatory or inhibitory effects of flavones on 1'-OH-MDZ and 4-OH-MDZ formation rates and their log of octanol/water partition coefficients (logP) or their total number of hydroxyl groups. The results of the study may be of clinical relevance since they suggest that luteolin and diosmetin may cause pharmacokinetic interactions with co-administered drugs metabolized via CYP3A.  相似文献   

3.
1. The effects of several CYP3A substrates (alpha-naphthoflavone (alphaNF), terfenadine, midazolam, erythromycin) on nifedipine oxidation and testosterone 6beta-hydroxylation activities were investigated in hepatic and intestinal microsomes from mouse and human. 2. alphaNF (10 microM) and terfenadine (100 microM) inhibited nifedipine oxidation activities (at substrate concentration of 100 microM) in mouse hepatic microsomes to approximately 50%, but not in mouse intestinal microsomes. alphaNF (30 microM) stimulated nifedipine oxidation activities in mouse and human intestinal microsomes and in human hepatic microsomes to approximately 1.3-1.8-fold. Inhibitory potencies (50% inhibition concentration, IC50) of midazolam and erythromycin for nifedipine oxidations were calculated to be approximately 90 microM in human intestinal microsomes. In contrast, testosterone (100 microM) stimulated the nifedipine oxidation activities approximately 1.5-fold in hepatic and intestinal microsomes from mouse and human. 3. alphaNF showed different effects on the kinetic parameters including the Hill coefficients of nifedipine oxidation and testosterone 6beta-hydroxylation catalysed by hepatic and intestinal microsomes from mouse and human. Cooperativity in nifedipine oxidation was increased by the addition of alphaNF to pooled human hepatic microsomes, but little effects of alphaNF could be observed in individual human intestinal microsomes. 4. These results suggest that CYP3A enzymes in liver and intestine might have different characteristics and that observations from hepatic microsomes should not be directly applicable to intestine metabolism in some cases. Studies of drug-drug interactions of CYP3A substrates are recommended to be performed using intestinal samples.  相似文献   

4.
1. The aim was to compare the metabolic activity of human CYP3A4 expressed in bacteria (E. coli), yeast (S. cerevisiae) and human lymphoblastoid cells (hBl), with the native CYP3A4 activity observed in a panel of human livers. 2. Three CYP3A4 substrates were selected for study: dextromethorphan (DEM), midazolam (MDZ) and diazepam (DZ). The substrate metabolism in each of the four systems was characterized by deriving the kinetic parameters K(m) or S(50), V(max) and intrinsic clearance (CL(int)) or maximum clearance (CL(max)) from the kinetic profiles; the latter differing by 100-fold across the three substrates. 3. The K(m) or S(50) for the formation of metabolites 3-methoxymorphinan (MEM), 1'-hydroxymidazolam (1'-OH MDZ) and 3-hydroxydiazepam (3HDZ) compared well in all systems. For CYP3A4-mediated metabolism of DEM, MDZ and DZ, the V(max) for hBl microsomes were generally 2-9-fold higher than the respective yeast and human liver microsomes and E. coli membrane preparations, resulting in greater CL(int) or CL(max). In the case of 3HDZ formation, non-linear kinetics were observed for E. coli, hBl microsomes and human liver microsomes, whereas the kinetics observed for S. cerevisiae were linear. 4. The use of native human liver microsomes for drug metabolic studies will always be preferable. However, owing to the limited availability of human tissues, we find it is reasonable to use any of the recombinant systems described herein, since all three recombinant systems gave good predictions of the native human liver enzyme activities.  相似文献   

5.
1. Although multiple cytochrome P450s (CYP) contribute to hepatic phase I metabolism, CYP3A is the principal subfamily present in human and mouse small intestine. 2. Differences in phase I metabolism were investigated using midazolam (MDZ) hydroxylation in mouse liver and intestinal microsomes. The net MDZ metabolite formation rate in intestinal microsomes was approximately 30% that of liver microsomes (at 250 micro M MDZ). 3. Quantitative Western blotting with anti-CYP3A1 antibody detected two bands of immunoreactive protein in both liver and intestinal samples, 2.24 +/- 0.27 (mean +/- SD, n = 3) and 0.64 +/- 0.08 pmol mg(-1) protein, respectively. Qualitative Western blotting with anti-CYP2C11 antibody detected a single band of immunoreactive protein in liver microsomes and no signal in intestinal samples (1 micro g sample). 4. Ketoconazole potently inhibited formation of both alpha- and 4-OH-MDZ metabolites in intestinal microsomes (IC(50)' of 0.126 +/- 0.010 and 0.0955 +/- 0.014 micro M, respectively) and of 4-OH-MDZ formation in mouse liver microsomes (IC(50) of 0.041 +/- 0.003 micro M). However, ketoconazole (5 micro M) did not produce 50% inhibition of alpha-OH-MDZ formation in mouse liver microsomes. Inhibition by ritonavir (5 micro M) produced similar results. 5. MDZ hydroxylation is predominately CYP3A dependent in mouse intestine (compared with mouse liver) since CYP2C is not expressed in the intestine. The importance of CYP3A in the mouse intestine appears to mirror that in humans.  相似文献   

6.
Gefitinib (Iressa) is an anticancer drug that selectively inhibits tyrosine kinases of epidermal growth factor receptor. Gefitinib might affect CYP3A4-mediated metabolism, since the drug is a substrate of human CYP3A. In this study, we evaluated the effects of gefitinib on drug metabolism catalyzed by human CYP3A4. The effects of gefitinib on the CYP3A4-mediated formation of NPC (7-ethyl-10-(4-amino-1-piperidino)carbonyloxycamptothecin) and that of APC (7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin) from irinotecan were examined with the use of human liver and small intestinal microsomes. Gefitinib inhibited the formation of NPC in liver and small intestinal microsomes. The apparent intrinsic metabolic clearance (CL(int)) in the presence of 40 microM gefitinib was equivalent to about 26% of control in liver microsomes and 45% of control in small intestinal microsomes. Gefitinib stimulated the formation of APC by CYP3A4. CL(int) in the presence of 20 microM gefitinib with human liver microsomes was about 1.9 times higher than control. In human small intestinal microsomes, APC formation was enhanced by the addition of gefitinib at concentrations 20 microM or higher. CL(int) in the presence of 40 microM gefitinib was 2.8 times higher than control. Thus, we discovered that gefitinib inhibited the formation of NPC but stimulated the formation of APC from irinotecan.  相似文献   

7.
P-Glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) share common substrates and expression properties, but the relationship of mdrl deficiency to CYP3A-mediated metabolism and protein expression is not established. The in vitro kinetic parameters of CYP3A-mediated metabolism of midazolam (MDZ), triazolam (TRZ), and dexamethasone (DEX) were studied in liver microsomes from three mrdrla(-/-) mice, one mdrla/b(-/-) mouse, and mdrla/b(+/+) controls. The kinetic profiles of CYP3A-mediated MDZ 4-hydroxylation were not significantly different between mdrl-deficient animals and controls. Overall mean (+/- SEM, N = 8) values were: Vmax, 0.74+/-0.05 nmol/min/mg protein; Km, 28.2+/-2.7 microM; and estimated intrinsic clearance, 0.026+/-0.003 mL/min/mg protein. Likewise, rates of formation of alpha-OH- and 4-OH-TRZ (from 500 microM TRZ), and of DEX metabolites sensitive to ketoconazole inhibition, M1 and M5 (from 20 microM DEX), did not differ between mdrl-deficient and control animals. Immunoquantified microsomal CYP3A protein levels in mdrla(-/-), mdrla/b(-/-), and mdrla/b(+/+) mice were not different, with overall mean immunoreactive protein levels of 2.68+/-0.09 pmol/microg protein. Although CYP3A and P-gp share aspects of activity and expression, disruption of the mdrl genes does not affect CYP3A-mediated metabolism or protein expression in the mouse.  相似文献   

8.
AIMS: The aims of the present study were to investigate the metabolism of astemizole in human liver microsomes, to assess possible pharmacokinetic drug-interactions with astemizole and to compare its metabolism with terfenadine, a typical H1 receptor antagonist known to be metabolized predominantly by CYP3A4. METHODS: Astemizole or terfenadine were incubated with human liver microsomes or recombinant cytochromes P450 in the absence or presence of chemical inhibitors and antibodies. RESULTS: Troleandomycin, a CYP3A4 inhibitor, markedly reduced the oxidation of terfenadine (26% of controls) in human liver microsomes, but showed only a marginal inhibition on the oxidation of astemizole (81% of controls). Three metabolites of astemizole were detected in a liver microsomal system, i.e. desmethylastemizole (DES-AST), 6-hydroxyastemizole (6OH-AST) and norastemizole (NOR-AST) at the ratio of 7.4 : 2.8 : 1. Experiments with recombinant P450s and antibodies indicate a negligible role for CYP3A4 on the main metabolic route of astemizole, i.e. formation of DES-AST, although CYP3A4 may mediate the relatively minor metabolic routes to 6OH-AST and NOR-AST. Recombinant CYP2D6 catalysed the formation of 6OH-AST and DES-AST. Studies with human liver microsomes, however, suggest a major role for a mono P450 in DES-AST formation. CONCLUSIONS: In contrast to terfenadine, a minor role for CYP3A4 and involvement of multiple P450 isozymes are suggested in the metabolism of astemizole. These differences in P450 isozymes involved in the metabolism of astemizole and terfenadine may associate with distinct pharmacokinetic influences observed with coadministration of drugs metabolized by CYP3A4.  相似文献   

9.
The kinetics of flunitrazepam (FNTZ) N-demethylation to desmethylflunitrazepam (DM FNTZ), and 3-hydroxylation to 3-hydroxyflunitrazepam (3-OH FNTZ), were studied in human liver microsomes and in microsomes containing heterologously expressed individual human CYPs. FNTZ was N-demethylated by cDNA-expressed CYP2A6 (K(m) = 1921 microM), CYP2B6 (K(m) = 101 microM), CYP2C9 (K(m) = 50 microM), CYP2C19 (K(m) = 60 microM), and CYP3A4 (K(m) = 155 microM), and 3-hydroxylated by cDNA-expressed CYP2A6 (K(m) = 298 microM) and CYP3A4 (K(m) = 286 microM). The 3-hydroxylation pathway was predominant in liver microsomes, accounting for more than 80% of intrinsic clearance compared with the N-demethylation pathway. After adjusting for estimated relative abundance, CYP3A accounted for the majority of intrinsic clearance via both pathways. This finding was supported by chemical inhibition studies in human liver microsomes. Formation of 3-OH FNTZ was reduced to 10% or less of control values by ketoconazole (IC(50) = 0.11 microM) and ritonavir (IC(50) = 0.041 microM). Formation of DM FNTZ was inhibited to 40% of control velocity by 2.5 microM ketoconazole and to 30% of control by 2.5 microM ritonavir. Neither 3-OH FNTZ nor DM FNTZ formation was inhibited to less than 85% of control activity by alpha-naphthoflavone (CYP1A2), sulfaphenazole (CYP2C9), omeprazole (CYP2C19), or quinidine (CYP2D6). Thus, CYP-dependent FNTZ biotransformation, like that of many benzodiazepine derivatives, is mediated mainly by CYP3A. Clinical interactions of FNTZ with CYP3A inhibitors can be anticipated.  相似文献   

10.
1. The aim was to compare the metabolic activity of human CYP3A4 expressed in bacteria (E. coli), yeast (S. cerevisiae) and human lymphoblastoid cells (hBl), with the native CYP3A4 activity observed in a panel of human livers. 2. Three CYP3A4 substrates were selected for study: dextromethorphan (DEM), midazolam (MDZ) and diazepam (DZ). The substrate metabolism in each of the four systems was characterized by deriving the kinetic parameters Km or S50, Vmax and intrinsic clearance (CLint) or maximum clearance (CLmax) from the kinetic profiles; the latter differing by 100-fold across the three substrates. 3. The Km or S50 for the formation of metabolites 3-methoxymorphinan (MEM), 1'-hydroxymidazolam (1'-OH MDZ) and 3-hydroxydiazepam (3HDZ) compared well in all systems. For CYP3A4-mediated metabolism of DEM, MDZ and DZ, the Vmax for hBl microsomes were generally 2-9-fold higher than the respective yeast and human liver microsomes and E. coli membrane preparations, resulting in greater CLint or CLmax. In the case of 3HDZ formation, non-linear kinetics were observed for E. coli, hBl microsomes and human liver microsomes, whereas the kinetics observed for S. cerevisiae were linear. 4. The use of native human liver microsomes for drug metabolic studies will always be preferable. However, owing to the limited availability of human tissues, we find it is reasonable to use any of the recombinant systems described herein, since all three recombinant systems gave good predictions of the native human liver enzyme activities.  相似文献   

11.
1. The metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin (BFBFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomes and in cDNA-expressed human liver CYP isoforms. For purposes of comparison, some limited studies were also performed with 7-benzyloxyquinoline (7BQ). 2. Initial interactive docking studies with a homology model of human CYP3A4 indicated that BFBFC was likely to be a selective substrate for CYP3A4 with a relatively high binding affinity, due to the presence of several key hydrogen bonds with active site amino acid residues. 3. Kinetic analysis of NADPH-dependent BFBFC metabolism to HFC in three preparations of pooled human liver microsomes revealed mean (+/- TSEM) Km and Vmax = 4.6 +/- 0.3 microM and 20.0 +/- 3.8 pmol/min/mg protein, respectively. 4. The metabolism of BFBFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing a BFBFC substrate concentration of lO microM (i.e. around twice Km). Good correlations (r2 = 0.736-0.904) were observed between BFBFC metabolism and markers of CYP3A isoforms. 5. While 10O microM BFBFC was metabolized to HFC by cDNA-expressed CYP3A4, little or no metabolism was observed with cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. The metabolism of 10 microM BFBFC in human liver microsomes was markedly inhibited by 5-50 microM troleandomycin and 0.2-5 microM ketoconazole, but stimulated by 0.2-10 microM alpha-naphthoflavone. The metabolism of 10 microM BFBFC in human liver microsomes was also markedly inhibited by an antibody to CYP3A4. 7. Kinetic analysis of NADPH-dependent 7BQ metabolism to 7-hydroxyquinoline (7HQ) in human liver microsomes revealed Km and Vmax = 70 microM and 3.39 nmol/min/mg protein, respectively. 8. While 80 microM 7BQ was metabolized to 7HQ by cDNA-expressed CYP3A4, only low rates of metabolism were observed with cDNA-expressed CYPIA2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 9. In summary, by correlation analysis, the use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFBFC metabolism in human liver microsomes appears to be primarily catalysed by CYP3A4. BFBFC may be a useful fluorescent probe substrate for human hepatic CYP3A4, but compared with 7BQ has only a low rate of metabolism in human liver microsomes.  相似文献   

12.
Valsartan is known to be excreted largely as unchanged compound and is minimally metabolized in man. Although the only notable metabolite is 4-hydroxyvaleryl metabolite (4-OH valsartan), the responsible enzyme has not been clarified at present. The current in vitro studies were conducted to identify the cytochrome P450 (CYP) enzymes involved in the formation of 4-OH valsartan. Valsartan was metabolized to 4-OH valsartan by human liver microsomes and the Eadie-Hofstee plots were linear. The apparent Km and Vmax values for the formation of 4-OH valsartan were 41.9-55.8 microM and 27.2-216.9 pmol min(-1) mg(-1) protein, respectively. There was good correlation between the formation rates of 4-OH valsartan and diclofenac 4'-hydroxylase activities (representative CYP2C9 activity) of 11 individual microsomes (r = 0.889). No good correlation was observed between any of the other CYP enzyme marker activities (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP4A). Among the recombinant CYP enzymes examined (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5 and 4A11), CYP2C9 notably catalysed 4-hydroxylation of valsartan. For the specific CYP inhibitors or substrates examined (furafylline, diclofenac, S(+)-mephenytoin, quinidine and troleandomycin), only diclofenac inhibited the formation of 4-OH valsartan. These results showed that CYP2C9 is the only form responsible for 4-hydroxylation of valsartan in human liver microsomes. Although CYP2C9 is involved in valsartan metabolism, CYP-mediated drug-drug interaction between valsartan and other co-administered drugs would be negligible.  相似文献   

13.
An in-vitro study was conducted to investigate the metabolism of nefiracetam in human liver microsomes and to identify the enzymes responsible for the metabolism. Nefiracetam was hydroxylated by human liver microsomes to 5-hydroxynefiracetam (5-OHN). Eadie-Hofstee plots for the formation of 5-OHN suggested substrate activation. The kinetic parameters, apparent Km, Vmax, and Hill coefficient, for the formation of 5-OHN by pooled human liver microsomes were 4012 microM, 2.66 nmol min(-1) (mg protein)(-1), and 1.65, respectively. The formation of 5-OHN was significantly correlated with cytochrome P450 (CYP)3A4-mediated testosterone 6beta-hydroxylase activity and dextromethorphan N-demethylase activity. The 5-OHN formation was inhibited (94%) by antibody to human CYP3A4/5. The 5-OHN formation was also inhibited by the CYP3A4 inhibitors ketoconazole and troleandomycin, but not significantly inhibited by several other P450 inhibitors. The microsomes containing cDNA-expressed CYP3A4 formed 5-OHN with sigmoidal kinetics. CYP3A5-containing microsomes did not form 5-OHN. These results indicated that CYP3A, most likely CYP3A4, was the major isozyme responsible for the formation of 5-OHN in human liver microsomes. CYP1A2 and CYP2C19 microsomes were also capable of forming 5-OHN. However, the contribution of CYP1A2 was considered to be relatively minor compared with that of CYP3A4, and the contribution of CYP2C19 was assumed to be negligible, based on the result of the immunoinhibition study and taking into account both the turnover rate by each isozyme and the relative abundance of each isozyme in human liver. We conclude that on average the formation of 5-OHN, the major metabolite of nefiracetam, is principally mediated by CYP3A4 with a relatively minor contribution by CYP1A2.  相似文献   

14.
K11777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl) is a potent, irreversible cysteine protease inhibitor. Its therapeutic targets are cruzain, a cysteine protease of the protozoan parasite Trypanosoma cruzi, and cathepsins B and L, which are associated with cancer progression. We evaluated the metabolism of K11777 by human liver microsomes, isolated cytochrome P450 (CYP) enzymes, and flavin-containing monooxygenase 3 (FMO3) in vitro. K11777 was metabolized by human liver microsomes to three major metabolites: N-oxide K11777 (apparent K(m) = 14.0 +/- 4.5 microM and apparent V(max) = 3460 +/- 3190 pmol. mg(-1). min(-1), n = 4), beta-hydroxy-homoPhe K11777 (K(m) = 16.8 +/- 3.5 microM and V(max) = 1260 +/- 1090 pmol. mg(-1). min(-1), n = 4), and N-desmethyl K11777 (K(m) = 18.3 +/- 7.0 microM and V(max) = 2070 +/- 1830 pmol. mg(-1). min(-1), n = 4). All three K11777 metabolites were formed by isolated CYP3A and their formation by human liver microsomes was inhibited by the CYP3A inhibitor cyclosporine (50 microM, 54-62% inhibition) and antibodies against human CYP3A4/5 (100 microg of antibodies/100 microg microsomal protein, 55-68% inhibition). CYP2D6 metabolized K11777 to its N-desmethyl metabolite with an apparent K(m) (9.2 +/- 1.4 microM) lower than for CYP3A4 (25.0 +/- 4.0 microM) and human liver microsomes. The apparent K(m) for N-oxide K11777 formation by cDNA-expressed FMO3 was 109 +/- 11 microM. Based on the intrinsic formation clearances and the results of inhibition experiments (CYP2D6, 50 microM bufuralol; FMO3 mediated, 100 mM methionine) using human liver microsomes, it was estimated that CYP3A contributes to >80% of K11777 metabolite formation. K11777 was a potent (IC(50) = 0.06 microM) and efficacious (maximum inhibition 85%) NADPH-dependent inhibitor of human CYP3A4 mediated 6'beta-hydroxy lovastatin formation, suggesting that K11777 is not only a substrate but also a mechanism-based inhibitor of CYP3A4.  相似文献   

15.
The roles of cytochrome P-450 (CYP) enzymes in the N-deethylation, i.e., formation of monoethylglycinexylidide (MEGX), and 3-hydroxylation of lidocaine were studied with human liver microsomes and recombinant human CYP isoforms. Both CYP1A2 and CYP3A4 were found to be capable of catalyzing the formation of MEGX and 3-OH-lidocaine. Lidocaine N-deethylation by liver microsomes was strongly inhibited by furafylline (by about 60%) and anti-CYP1A1/2 antibodies (>75%) at 5 microM lidocaine, suggesting that CYP1A2 was the major isoform catalyzing lidocaine N-deethylation at low (therapeutically relevant) lidocaine concentrations. Troleandomycin inhibited the N-deethylation of lidocaine by about 50% at 800 microM lidocaine, suggesting that the role of CYP3A4 may be more important than that of CYP1A2 at high lidocaine concentrations. Chemical inhibition and immunoinhibition studies also indicated that 3-OH-lidocaine formation was catalyzed almost exclusively by CYP1A2, CYP3A4 playing only a minor role. Although the CYP2C9 inhibitor sulfaphenazole (100 microM) inhibited MEGX formation by about 30%, recombinant human CYP2C9 showed very low catalytic activity, suggesting a negligible role for this enzyme in lidocaine N-deethylation. Chemical inhibition studies indicated that CYP2C19, CYP2D6, and CYP2E1 did not play significant roles in the metabolism of lidocaine in vitro. Taken together, these results demonstrate that CYP1A2 and CYP3A4 enzymes are the major CYP isoforms involved in lidocaine N-deethylation. Therefore, the MEGX test (formation of MEGX from lidocaine) is not a suitable marker of hepatic CYP3A4 activity in vivo.  相似文献   

16.
To investigate whether the free-drug theory is accurate in that only unbound drug is available for drug metabolism or enzyme inhibition. The effect of addition of rat liver cytosol to an in vitro system using human liver microsomes was examined by measuring the catalytic activities of CYP2C9 (tolbutamide and diclofenac) and CYP3A4 (terfenadine). And, the results were compared with those obtained when human serum albumin (HSA) was added to microsomes as far as unbound drug concentrations were concerned. After addition of rat liver cytosol, the unbound Km value (Km,u) for terfenadine metabolism by CYP3A4, and the unbound Ki value of miconazole (Ki,u) for CYP2C9 were smaller than for the controls. Addition of HSA resulted in smaller Km,u values for diclofenac and terfenadine metabolism by CYP2C9 and CYP3A4, respectively, and the Ki,u value for ketoconazole inhibition of CYP3A4 was also reduced. These results suggest protein-facilitated effects on drug metabolism and enzyme inhibition for both CYP2C9 and CYP3A4. However, no protein-facilitated drug metabolism was observed for tolbutamide in the presence of HSA or cytosol, or for diclofenac in the presence of cytosol. Protein-facilitated enzyme inhibition did not occur with miconazole in the presence of HSA or with ketoconazole in the presence of rat liver cytosol. Protein-facilitated metabolism and enzyme inhibition were observed for CYP2C9 and CYP3A4 in five cases but there was no obvious pattern of enzyme, substrate, or binding protein specificity. Further investigations are necessary to clarify the relevance of these results to in vivo observations.  相似文献   

17.
1. Amiodarone (AMI) is a potent anti-arrhythmic drug and mono-N-desethylamiodarone (MDEA) is its only known metabolite. It was found recently that in rabbit liver microsomes MDEA was biotransformed to n-3-hydroxybutyl-MDEA (3OH-MDEA). 2. In liver microsomes isolated from the untreated rabbit, the formation of 3OH-MDEA obeyed Michaelis-Menten enzyme kinetics with Km = 6.39 +/- 1.07 microM and Vmax = 0.56 +/- 0.21 nmolmin(-1) mg(-1) protein. 3. Furthermore, (1) among chemicals usually used as inhibitors of cytochrome P450, only midazolam (MDZ), cyclosporin A and ketoconazole inhibited the MDEA hydroxylase activity significantly (>60% inhibition), (2) MDZ, a substrate of CYP3A, inhibited the 30OH-MDEA formation competitively (Ki = 10 +/- 5 microM), (3) the formation rates of 3OH-MDEA correlated positively with those of 1'OH-MDZ (r = 0.81; n = 6), and (4) MDEA hydroxylase activity of microsomes isolated from rabbit rifampicin-induced cultured hepatocytes was 4-fold more active than the control. 4. Since CYP3A6 is mainly induced by rifampicin in rabbit-cultured hepatocytes, the data suggest that this isoform is involved in the biotransformation of MDEA to 3OH-MDEA. 5. Since alpha-naphthoflavone, cimetidine and quinidine also partially inhibited the MDEA hydroxylase activity, it is possible that other CYPs, such as 1A, 2C and 2D, may also be active in the metabolism of amiodarone.  相似文献   

18.
Data from in vitro drug metabolism studies with recombinant enzyme systems are frequently used to predict human drug metabolism in vivo. However, for the CYP3A probe substrate midazolam (MDZ), considerable variability in enzyme kinetic parameters has been observed in different in vitro studies. The aim of this study was to explore the effect of varying activities of the electron donor NADPH-cytochrome P450 reductase (CPR) on CYP3A5-mediated metabolism of MDZ. Microsomes with similar levels of CYP3A5 but 12-fold difference in CPR activity showed a 30-fold difference in intrinsic clearance for the formation of 1'-OH-MDZ. Significantly higher K(m) and lower V(max) for the formation of 1'-OH-MDZ were found in microsomes with low CPR activity compared with microsomes with higher CPR activity (P?=?0.024 and 0.001). In the microsomes with lowest CPR activity, the formation of 1'-OH-MDZ displayed Michaelis-Menten kinetics, whereas substrate inhibition was observed in the two preparations with higher CPR activity. The present study shows that the CPR activity in different recombinant enzyme preparations is crucial for in vitro CYP3A5-mediated clearance of MDZ. This suggests that the CPR activity of enzyme preparations could be an important factor for the ability of in vitro data to predict human drug metabolism in vivo.  相似文献   

19.
五味子甲素对大鼠肝微粒体CYP3A活性的影响   总被引:1,自引:0,他引:1  
目的:通过体外药物代谢实验探讨五味子甲素对CYP3A活性的影响。方法:以大鼠肝微粒体为载体,选取咪达唑仑(MDZ)作为药物“探针”,建立高效液相色谱(HPLC)检测方法,体外给药测定五味子甲素对MDZ的IC50值以及相关酶动力学参数。结果:孵育体系内源性物质不干扰测定,方法快捷、稳定、灵敏度高。在肝微粒中,五味子甲素对MDZ的IC50浓度为6.26μmol/mL,相关酶动力学参数:Km=15.77μmol/L,Ki=5.50μmol/mL。结论:五味子甲素对大鼠肝微粒体CYP3A活性具有抑制作用,其抑制作用为混合型,即:非竞争与反竞争抑制。  相似文献   

20.
In vitro metabolism of cyclosporine A by human kidney CYP3A5   总被引:7,自引:0,他引:7  
The objectives of this study were to characterize and compare the metabolic profile of cyclosporine A (CsA) catalyzed by CYP3A4, CYP3A5 and human kidney and liver microsomes, and to evaluate the impact of the CYP3A5 polymorphism on product formation from parent drug and its primary metabolites. Three primary CsA metabolites (AM1, AM9 and AM4N) were produced by heterologously expressed CYP3A4. In contrast, only AM9 was formed by CYP3A5. Substrate inhibition was observed for the formation of AM1 and AM9 by CYP3A4, and for the formation of AM9 by CYP3A5. Microsomes isolated from human kidney produced only AM9 and the rate of product formation (2 and 20 microM CsA) was positively associated with the detection of CYP3A5 protein and presence of the CYP3A5*1 allele in 4 of the 20 kidneys tested. A kinetic experiment with the most active CYP3A5*1-positive renal microsomal preparation yielded an apparent Km (15.5 microM) similar to that of CYP3A5 (11.3 microM). Ketoconazole (200 nM) inhibited renal AM9 formation by 22-55% over a CsA concentration range of 2-45 microM. Using liver microsomes paired with similar CYP3A4 content and different CYP3A5 genotypes, the formation of AM9 was two-fold higher in CYP3A5*1/*3 livers, compared to CYP3A5*3/*3 livers. AM19 and AM1c9, two of the major secondary metabolites of CsA, were produced by CsA, AM1 and AM1c when incubated with CYP3A4, CYP3A5, kidney microsomes from CYP3A5*1/*3 donors and all liver microsomes. Also, the formation of AM19 and AM1c9 was higher from incubations with liver and kidney microsomes with a CYP3A5*1/*3 genotype, compared to those with a CYP3A5*3/*3 genotype. Together, the data demonstrate that CYP3A5 may contribute to the formation of primary and secondary metabolites of CsA, particularly in kidneys carrying the wild-type CYP3A5*1 allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号