首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
NCCLS document M38-P describes standard parameters for testing the fungistatic activities (MICs) of established agents against filamentous fungi (molds). This study evaluated the in vitro susceptibilities of 15 Aspergillus flavus isolates, 62 A. fumigatus isolates, and 10 isolates each of A. niger, A. nidulans, and A. terreus to voriconazole, posaconazole, itraconazole, and amphotericin B by the E-test and NCCLS M38-P microdilution methods. The agreement (within 3 dilutions) between methods for voriconazole was independent of the E-test incubation time (93.3 to 100% for four of five species at both incubation times). In contrast, with amphotericin B, itraconazole, and posaconazole, E-test results were more dependent on the incubation time for certain species. For A. fumigatus, posaconazole E-test MICs had better concordance with reference values after 48 h (95.2%) than after 24 h (90%), while the highest agreement for itraconazole MICs was after 24 h (90.3 versus 74.2%) of incubation. Better agreement between the methods was also obtained with 24-h E-test amphotericin B MICs for A. flavus (73.3 versus 26.7%) and A. fumigatus (96.7 versus 64.5%). E-test MICs of the four agents had the lowest percentages of agreement with reference values for A. nidulans (60 to 80%). For isolates for which high MICs were obtained for the four agents by the reference method, high MICs were also obtained by E-test at both 24 and 48 h. The utility of in vitro results of either the E-test or the NCCLS broth microdilution (M38-P) method for Aspergillus spp. needs to be established in clinical trials.  相似文献   

2.
3.
An interlaboratory evaluation (two centers) of the Etest method was conducted for testing the antifungal susceptibilities of yeasts. The MICs of amphotericin B, fluconazole, flucytosine, itraconazole, and ketoconazole were determined for 83 isolates of Candida spp., Cryptococcus neoformans, and Torulopsis glabrata. Two buffered (phosphate buffer) culture media were evaluated: solidified RPMI 1640 medium with 2% glucose and Casitone agar. MIC endpoints were determined after both 24 and 48 h of incubation at 35 degrees C. Analysis of 3,420 MICs demonstrated higher interlaboratory agreement (percentage of MIC pairs within a 2-dilution range) with Casitone medium than with RPMI 1640 medium when testing amphotericin B (84 to 90% versus 1 to 4%), itraconazole (87% versus 63 to 74%), and ketoconazole (94 to 96% versus 88 to 90%). In contrast, better interlaboratory reproducibility was determined between fluconazole MIC pairs when RPMI 1640 medium rather than Casitone medium was used (96 to 98% versus 77 to 90%). Comparison of the flucytosine MICs obtained with RPMI 1640 medium revealed greater than 80% reproducibility. The study suggests the potential value of the Etest as a convenient alternative method for testing the susceptibilities of yeasts. It also indicates the need for further optimization of medium formulations and MIC endpoint criteria to improve interlaboratory agreement.  相似文献   

4.
Two supplemented broths (Christensen's urea with 0.1% Tween 80 and 0.5% Tween 40 and RPMI 1640 with 1% glycerol, 1% peptone, 1.8% glucose, and 0.05% Tween 80) were evaluated to determine voriconazole, itraconazole, and ketoconazole MICs for 200 Malassezia sp. isolates. Malassezia globosa and M. restricta were the least susceptible species (MICs at which 90% of the isolates tested were inhibited, 1 to >or=8 microg/ml versus 0.25 to 1 microg/ml).  相似文献   

5.
To assess their utility for antifungal susceptibility testing in our clinical laboratory, the Etest and Sensititre methods were compared with the Clinical and Laboratory Standards Institute (CLSI) M27-A2 reference broth microdilution method. Fluconazole (FL), itraconazole (I), voriconazole (V), posaconazole (P), flucytosine (FC), caspofungin (C), and amphotericin B (A) were tested with 212 Candida isolates. Reference MICs were determined after 48 h of incubation, and Etest and Sensititre MICs were determined after 24 h and 48 h of incubation. Overall, excellent essential agreement (EA) between the reference and test methods was observed for Etest (95%) and Sensititre (91%). Etest showed an >or=92% EA for MICs for all drugs tested; Sensititre showed a >or=92% EA for MICs for I, FC, A, and C but 82% for FL and 85% for V. The overall categorical agreement (CA) was 90% for Etest and 88% for Sensititre; minor errors accounted for the majority of all categorical errors for both systems. Categorical agreement was lowest for Candida glabrata and Candida tropicalis with both test systems. Etest and Sensititre provided better CA at 24 h compared to 48 h for C. glabrata; however, CA for C. glabrata was <80% for FL with both test systems despite MIC determination at 24 h. Agreement between technologists for both methods was >or=98% for each agent against all organisms tested. Overall, Etest and Sensititre methods compared favorably with the CLSI reference method for determining the susceptibility of Candida. However, further evaluation of their performance for determining the MICs of azoles, particularly for C. glabrata, is warranted.  相似文献   

6.
The aim of this study was to compare MICs of fluconazole, itraconazole, posaconazole, and voriconazole obtained by the European Committee on Antibiotic Susceptibility Testing (EUCAST) and CLSI (formerly NCCLS) methods in each of six centers for 15 Candida albicans (5 fluconazole-resistant and 4 susceptible-dose-dependent [S-DD] isolates), 10 C. dubliniensis, 7 C. glabrata (2 fluconazole-resistant isolates), 5 C. guilliermondii (2 fluconazole-resistant isolates), 10 C. krusei, 9 C. lusitaniae, 10 C. parapsilosis, and 5 C. tropicalis (1 fluconazole-resistant isolate) isolates. CLSI MICs were obtained visually at 24 and 48 h and spectrophotometric EUCAST MICs at 24 h. The agreement (within a 3-dilution range) between the methods was species, drug, and incubation time dependent and due to lower EUCAST than CLSI MICs: overall, 94 to 95% with fluconazole and voriconazole and 90 to 91% with posaconazole and itraconazole when EUCAST MICs were compared against 24-h CLSI results. The agreement was lower (85 to 94%) against 48-h CLSI endpoints. The overall interlaboratory reproducibility by each method was > or =92%. When the comparison was based on CLSI breakpoint categorization, the agreement was 68 to 76% for three of the four species that included fluconazole-resistant and S-DD isolates; 9% very major discrepancies (< or =8 microg/ml versus > or =64 microg/ml) were observed among fluconazole-resistant isolates and 50% with voriconazole (< or =1 microg/ml versus > or =4 microg/ml). Similar results were observed with itraconazole for seven of the eight species evaluated (28 to 77% categorical agreement). Posaconazole EUCAST MICs were also substantially lower than CLSI MIC modes (0.008 to 1 microg/ml versus 1 to > or =8 microg/ml) for some of these isolates. Therefore, the CLSI breakpoints should not be used to interpret EUCAST MIC data.  相似文献   

7.
A multicenter (three centers) study compared MICs obtained by the Sensititre YeastOne Colorimetric Antifungal plate to reference microdilution broth (NCCLS M27-A2 document) MICs of three new triazoles (posaconazole, ravuconazole, and voriconazole) and the echinocandin caspofungin acetate for 100 isolates of Candida spp. In addition, amphotericin B and fluconazole were tested as control drugs. Colorimetric MICs of caspofungin and amphotericin B corresponded to the first blue well (no growth), and MICs of the other agents corresponded to the first slightly purple or blue well. Two comparisons of MIC pairs by the two methods were evaluated: 24-h colorimetric MICs were compared to NCCLS MICs at 24 and at 48 h. The interlaboratory reproducibility of YeastOne and reference MICs was also examined. The best performance of the YeastOne plate was with 24-h MICs (overall, 95 to 99% agreement) for all the species and antifungal agents. These results suggest the potential value of the YeastOne plate for use in the clinical laboratory for the four new antifungal agents evaluated.  相似文献   

8.
The Clinical and Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory Standards, or NCCLS) M38-A standard for the susceptibility testing of filamentous fungi does not specifically address the testing of dermatophytes. In 2003, a multicenter study investigated the reproducibility of the microdilution method developed at the Center for Medical Mycology, Cleveland, Ohio, for testing the susceptibility of dermatophytes. Data from that study supported the introduction of this method for testing dermatophytes in the future version of the CLSI M38-A standard. In order for the method to be accepted by CLSI, appropriate quality control isolates needed to be identified. To that end, an interlaboratory study, involving the original six laboratories plus two additional sites, was conducted to evaluate potential candidates for quality control isolates. These candidate strains included five Trichophyton rubrum strains known to have elevated MICs to terbinafine and five Trichophyton mentagrophytes strains. Antifungal agents tested included ciclopirox, fluconazole, griseofulvin, itraconazole, posaconazole, terbinafine, and voriconazole. Based on the data generated, two quality control isolates, one T. rubrum isolate and one T. mentagrophytes isolate, were identified and submitted to the American Type Culture Collection (ATCC) for inclusion as reference strains. Ranges encompassing 95.2 to 97.9% of all data points for all seven drugs were established.  相似文献   

9.
To evaluate the currently used Japanese Society for Medical Mycology (JSMM) method for testing the azole susceptibility of yeasts, the activities of fluconazole and itraconazole were tested against recently collected clinical isolates of Candida spp. (n=946) and compared with the National Committee for Clinical Laboratory Standards (NCCLS) M27-A2 microdilution reference method. Favorable correlation with the M27-A2 method was not seen for isolates of C. albicans, C. tropicalis or other Candida spp., particularly their trailing-growth isolates. However, the degree of correlation and agreement of MIC values were markedly improved when testing was performed by the modified JSMM method in which the end-point to be read was changed from IC80 (for the current JSMM method) to IC50. These results suggest that there is an urgent need to revise the current JSMM method.  相似文献   

10.
We compared the Neo-Sensitabs tablet assay to both reference M27-A2 broth microdilution and M44-A disk diffusion methods for testing susceptibilities of 110 isolates of Candida spp. and Cryptococcus neoformans to amphotericin B, caspofungin, fluconazole, itraconazole, and voriconazole. Neo-Sensitabs assay inhibition zone diameters in millimeters on three agars (Mueller-Hinton agar supplemented with 2% dextrose and 0.5 microg/ml methylene blue [MGM], Shadomy [SHA], and RPMI 1640 [RPMI, 2% dextrose]) were obtained at 24 to 72 h. The correlation coefficient of Neo-Sensitabs results with MICs was similar to that of the disk method for most of the five agents on MGM (R, 0.80 to 0.89 versus 0.76 to 0.89, respectively). Overall, superior correlation was observed at 24 h for most agents. The exception was amphotericin B (R values of 0.68 and 0.5 for disk and tablet, respectively, at 48 h versus 0.68 and 0.48, respectively, at 24 h). In general, Neo-Sensitabs results were less consistent on SHA and RPMI agars. Although agreement by breakpoint category of Neo-Sensitabs and disk results with CLSI method M27-A2 was also similar on MGM (92.7 to 98.2% versus 95.5 to 100%, respectively), the Neo-Sensitabs method failed to identify two of the six isolates with high amphotericin B MICs. These data suggest the potential value of the Neo-Sensitabs assay for testing at least four of the five agents against yeasts evaluated in the clinical laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号