共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of natural interferon-producing cells and T lymphocytes in porcine monocyte-derived dendritic cell maturation 总被引:2,自引:0,他引:2
Maturation of dendritic cells (DC) is a key immunological process regulating immune responses to pathogens and vaccines, as well as tolerance and autoimmune processes. Consequently, the regulation of DC maturation should reflect these multifaceted immunological processes. In the present study, we have defined the role of particular cytokines, Toll-like receptor (TLR) ligands and T lymphocytes in the porcine monocyte-derived DC (MoDC). Interferon-alpha (IFN-alpha) alone was a poor inducer of MoDC maturation, but in association with tumour necrosis factor-alpha (TNF-alpha), or TLR ligands such as lipopolysaccharide and polyinosinic-polycytidylic acid I:C, an up-regulation of major histocompatibility complex II and CD80/86 expression was noted, along with reduced endocytic activity. In contrast, TNF-alpha alone or in combination with the TLR ligands was a poor inducer of DC maturation, but co-operated with T-lymphocytes in the presence of antigen to induce DC maturation. Natural interferon producing cells (NIPC, or plasmacytoid DCs) represent a danger-recognition system of the immune defences, and can respond to viruses not otherwise recognized as posing a danger. Indeed, MoDC did not respond to transmissible gastroenteritis virus (TGEV), whereas NIPC produced high levels of IFN-alpha and TNF-alpha after TGEV stimulation. Moreover, supernatants from the stimulated NIPC induced maturation in MoDCs. These matured MoDCs displayed an enhanced ability to present antigen to and thus stimulate T cells. Taken together, the present work demonstrates that maturation of MoDC not only results from TLR signalling, but can require co-operation with various cell types--principally NIPC and activated T cells--which would reflect the particular immunological situation. 相似文献
2.
Dendritic cells (DCs) are required for the initiation of primary immune responses. The pattern of Toll-like receptor (TLR) expression on various subsets of these cells has been shown to differ, suggestive of distinct roles in influencing immune responses. We have examined here the responses of immature DCs derived from murine bone marrow (BMDCs) to a range of TLR ligands. BMDCs cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor were stimulated for 24 hr with ligands to TLR1-2 [Pam(3)Cys-Ser-(Lys)(4) (PAM)], TLR2-6 (macrophage-activating lipopeptide-2 (MALP-2); zymosan or peptidoglycan (PG)], TLR3 (polyinosinic-polycytidylic acid), TLR4 [lipopolysaccharide R515 (LPS)], TLR5 (flagellin), TLR7 (polyuridylic acid) and TLR9 [CpG ODN2395 (CpG)]. DC activation was monitored using membrane marker expression and analysis of culture supernatants for cytokine/chemokine release. Ligands to TLR3 and TLR7 failed to activate BMDCs. All other TLR ligands caused elevated expression of membrane markers. PAM, MALP-2 and LPS induced high-level expression of proinflammatory cytokines and chemokines. Treatment with CpG was associated with a preferential type 1 cytokine and chemokine profile. Zymosan and PG were proinflammatory but also skewed towards a type 2 pattern of cytokines and chemokines. In contrast, flagellin did not cause marked secretion by BMDCs of cytokines or chemokines. These data for BMDCs are largely consistent with the reported TLR repertoire of freshly isolated murine Langerhans cells. In addition, murine BMDCs show selective responses to TLR ligands with respect to general activation, with differentiated cytokine patterns suggestive of potential priming for divergent immune responses. 相似文献
3.
Aminoacyl tRNA synthetase-interacting protein 1 (AIMP1) is a novel pleiotropic cytokine that was identified initially from Meth A-induced fibrosarcoma. It is expressed in the salivary glands, small intestine and large intestine, and is associated with the innate immune system. Previously, we demonstrated that AIMP1 might function as a regulator of innate immune responses by inducing the maturation and activation of bone-marrow-derived dendritic cells (BM-DCs). Toll-like receptors (TLRs) are major pathogen-recognition receptors that are constitutively expressed on DCs. In this study, we attempted to determine whether AIMP1 is capable of regulating the expression of TLRs, and also capable of affecting the TLR-mediated activation of DCs. Expression of TLR1, -2, -3 and -7 was highly induced by AIMP1 treatment in BM-DCs, whereas the expression of other TLRs was either down-regulated or remained unchanged. In particular, the expression of the TLR2 protein was up-regulated by AIMP1 in a time-dependent and dose-dependent manner, and was suppressed upon the addition of BAY11-7082, an inhibitor of nuclear factor-κB. AIMP1 was also shown to increase nuclear factor-κB binding activity. Importantly, AIMP1 enhanced the production of interleukin-6 and interleukin-12, and the expression of co-stimulatory molecules on BM-DCs when combined with lipoteichoic acid or Pam3Cys, two well-known TLR2 agonists. Collectively, these results demonstrate that the AIMP1 protein enhances TLR2-mediated immune responses via the up-regulation of TLR2 expression. 相似文献
4.
CD45 is known to regulate signalling through many different surface receptors in diverse haemopoietic cell types. Here we report for the first time that CD45-/- bone marrow dendritic cells (BMDC) are more activated than CD45+/+ cells and that tumour necrosis factor (TNF) and interleukin-6 (IL-6) production by BMDC and splenic dendritic cells (sDC), is increased following stimulation via Toll-like receptor (TLR)3 and TLR9. Nuclear factor-kappaB activation, an important downstream consequence of TLR3 and TLR9 signalling, is also increased in CD45-/- BMDC. BMDC of CD45-/- mice also produce more TNF and IL-6 following stimulation with the cytokines TNF and interferon-alpha. These results show that TLR signalling is increased in CD45-/- dendritic cells and imply that CD45 is a negative regulator of TLR and cytokine receptor signalling in dendritic cells. 相似文献
5.
6.
Murine thymic plasmacytoid dendritic cells 总被引:4,自引:0,他引:4
Okada T Lian ZX Naiki M Ansari AA Ikehara S Gershwin ME 《European journal of immunology》2003,33(4):1012-1019
We report herein heterogeneous murine thymic cell subsets expressing CD11c and B220 (CD45R). The CD11c(+)B220(+) subset expresses Ly6C(high) and MHC class II(low) in contrast with previously described thymic DC (CD11c(+)B220(-) cells). Freshly isolated thymic CD11c(+)B220(+) cells show typical plasmacytoid morphology which differentiates to mature DC, in vitro with CpG oligodeoxynucleotides (ODN) 2216; we term this subset thymic plasmacytoid DC (pDC). These thymic pDC are highly sensitive to spontaneous apoptosis in vitro and induce low T cell allo-proliferation activity. Thymic pDC express low TLR2, TLR3 and TLR4 mRNA, normally found on human immature DC, and high TLR7 and TLR9 mRNA, normally found on human pDC. Thymic pDC also produce high amounts of IFN-alpha following culture with CpG ODN 2216 (TLR9 ligands) as compared with the previously defined thymic DC lineage which expresses low TLR9 mRNA and produce high IL-12 (p40) with CpG ODN 2216. These results indicate that thymic pDC are similar to IFN-producing cells as well as human pDC. The TLR and cytokine production profiles are consistent with a nomenclature of pDC. The repertoire of this cell lineage to TLR9 ligands demonstrate that such responses are determined not only by the quantity of expression, but also cell lineage. 相似文献
7.
8.
Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components 总被引:10,自引:0,他引:10
下载免费PDF全文

Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-kappaB translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. 相似文献
9.
Dendritic cells (DCs) operate as the link between innate and adaptive immunity. Their expression of pattern recognition receptors (PRRs), such as Toll‐like receptors (TLRs) and C‐type lectin receptors (CLRs), enables antigen recognition and mediates appropriate immune responses. Distinct subsets of human DCs have been identified; however their expression of PRRs is not fully clarified. Expressions of CLRs by DC subpopulations, in particular, remain elusive. This study aimed to identify and compare PRR expressions on human blood DC subsets, including CD1c+, CD141+ and CD16+ myeloid DCs and CD123+ plasmacytoid DCs, in order to understand their capacity to recognize different antigens as well as their responsiveness to PRR‐directed targeting. Whole blood was obtained from 13 allergic and six non‐allergic individuals. Mononuclear cells were purified and multi‐colour flow cytometry was used to assess the expression of 10 CLRs and two TLRs on distinct DC subsets. PRR expression levels were shown to differ between DC subsets for each PRR assessed. Furthermore, principal component analysis and random forest test demonstrated that the PRR profiles were discriminative between DC subsets. Interestingly, CLEC9A was expressed at lower levels by CD141+ DCs from allergic compared with non‐allergic donors. The subset‐specific PRR expression profiles suggests individual responsiveness to PRR‐targeting and supports functional specialization. 相似文献
10.
Giancarlo Ramelli Silvia Fuertes Sharmal Narayan Nathalie Busso Hans Acha‐Orbea Alexander So 《Immunology》2010,129(1):20-27
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11chigh DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44+ CD62−) CD4+ and CD8+ T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC+ DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0·95% versus 0·47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation. 相似文献
11.
P. P. C. Boor H. J. Metselaar S. Mancham L. J. W. van der Laan J. Kwekkeboom 《Clinical and experimental immunology》2013,174(3):389-401
Plasmacytoid dendritic cells (PDC) are involved in innate immunity by interferon (IFN)-α production, and in adaptive immunity by stimulating T cells and inducing generation of regulatory T cells (Treg). In this study we studied the effects of mammalian target of rapamycin (mTOR) inhibition by rapamycin, a commonly used immunosuppressive and anti-cancer drug, on innate and adaptive immune functions of human PDC. A clinically relevant concentration of rapamycin inhibited Toll-like receptor (TLR)-7-induced IFN-α secretion potently (−64%) but TLR-9-induced IFN-α secretion only slightly (−20%), while the same concentration suppressed proinflammatory cytokine production by TLR-7-activated and TLR-9-activated PDC with similar efficacy. Rapamycin inhibited the ability of both TLR-7-activated and TLR-9-activated PDC to stimulate production of IFN-γ and interleukin (IL)-10 by allogeneic T cells. Surprisingly, mTOR-inhibition enhanced the capacity of TLR-7-activated PDC to stimulate naive and memory T helper cell proliferation, which was caused by rapamycin-induced up-regulation of CD80 expression on PDC. Finally, rapamycin treatment of TLR-7-activated PDC enhanced their capacity to induce CD4+forkhead box protein 3 (FoxP3)+ regulatory T cells, but did not affect the generation of suppressive CD8+CD38+lymphocyte activation gene (LAG)-3+ Treg. In general, rapamycin inhibits innate and adaptive immune functions of TLR-stimulated human PDC, but enhances the ability of TLR-7-stimulated PDC to stimulate CD4+ T cell proliferation and induce CD4+FoxP3+ regulatory T cell generation. 相似文献
12.
Gr‐1+ CD11b+ myeloid‐derived suppressor cells (MDSCs) accumulate in tumor‐bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti‐cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin‐6 (IL‐6), IL‐12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr‐1+ CD11b+ monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll‐like receptor 2 (TLR2) signal of Gr‐1+ CD11b+ MDSCs and increased their M1‐type macrophage characteristics, such as producing IL‐12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr‐1+ CD11b+ MDSCs by pAbM treatment had less ability to convert the CD4+ CD25? cells into CD4+ CD25+ phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti‐tumour effect of pAbM was dependent on Gr‐1+ CD11b+ monocytes, nether CD8+ T cells nor CD4+ T cells. In addition to, pAbM did not inhibit tumour growth in TLR2–/– mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti‐tumour effects through the opposite of the suppressive function of Gr‐1+ CD11b+ MDSCs. 相似文献
13.
Uptake of the yeast Malassezia furfur and its allergenic components by human immature CD1a+ dendritic cells 总被引:3,自引:0,他引:3
E. Buentke A. Zargari L. C. Heffler J. Avila-Cariño J. Savolainen A. Scheynius 《Clinical and experimental allergy》2000,30(12):1759-1770
Atopic dermatitis (AD) is a chronic inflammatory skin disease with increasing prevalence, though still little is known of the pathomechanisms and the causes of the disease. Patients with AD often have specific IgE reactivity to the yeast Malassezia furfur (M. furfur), present in the normal microflora on human skin. To investigate the possible interaction of immature and mature antigen-presenting dendritic cells with the yeast M. furfur and its allergenic components. Monocyte-derived dendritic cells (MDDCs) generated from human peripheral blood were allowed to interact with FITC-labelled whole M. furfur yeast cells, M. furfur extract, a recombinant allergen from M. furfur designated rMal f 5 and M. furfur mannan, in the absence of IgE antibodies. Interaction and uptake were detected using flow cytometry and confocal laser scanning microscopy. Internalization of M. furfur yeast cells and yeast components by immature MDDCs was found using confocal laser scanning microscopy. Results from flow cytometric studies showed that a median of 94% (range, 65-98%) of the immature CD1a+ MDDCs were M. furfur extract positive, 81% (75-97%) rMal f 5 positive and 93% (62-98%) mannan positive. Mature CD1a+ MDDCs were significantly less efficient in this respect, with the corresponding figures only 26% (6-37%, P < 0.01), 6% (2-15%, P < 0.05) and 32% (9-50%, P < 0.01), respectively. Uptake of the non-glycosylated rMal f 5 by immature CD1a+ MDDCs was decreased to 27% (15-38%) by inhibition of pinocytosis. The binding of M. furfur extract and mannan was inhibited in a dose-dependent manner by methyl-alpha-D-mannopyranoside, suggesting uptake via the mannose receptor. Human immature CD1a+ MDDCs can efficiently take up M. furfur and allergenic components from the yeast in the absence of IgE antibodies, implying that sensitization of AD patients to M. furfur can be mediated by immature dendritic cells in the skin. 相似文献
14.
Interferon-α (IFN-α) produced at high levels by human plasmacytoid dendritic cells (pDCs) can specifically regulate B-cell activation to Toll-like receptor (TLR) 7/8 stimulation. To explore the influence of IFN-α and pDCs on B-cell functions in vivo, studies in non-human primates that closely resemble humans in terms of TLR expression on different subsets of immune cells are valuable. Here, we performed a side-by side comparison of the response pattern between human and rhesus macaque B cells and pDCs in vitro to well-defined TLR ligands and tested whether IFN-α enhanced B-cell function comparably. We found that both human and rhesus B cells proliferated while pDCs from both species produced high levels of IFN-α in response to ligands targeting TLR7/8 and TLR9. Both human and rhesus B-cell proliferation to TLR7/8 ligand and CpG class C was significantly increased in the presence of IFN-α. Although both human and rhesus B cells produced IgM upon stimulation, only human B cells acquired high expression of CD27 associated with plasmablast formation. Instead, rhesus B-cell differentiation and IgM levels correlated to down-regulation of CD20. These data suggest that the response pattern of human and rhesus B cells and pDCs to TLR7/8 and TLR9 is similar, although some differences in the cell surface phenotype of the differentiating cells exist. A more thorough understanding of potential similarities and differences between human and rhesus cells and their response to potential vaccine components will provide important information for translating non-human primate studies into human trials. 相似文献
15.
Dendritic cells (DC) play a key role in anti-viral immunity. Direct interactions between DC and hepatitis B virus (HBV) may explain the impaired DC function and the ineffective anti-viral response of chronic HBV patients resulting in HBV persistence. Here, the interaction between HBV surface antigens (HBsAg) and DC and the receptor involved were examined by flow cytometry in blood and liver tissue of HBV patients. The in vitro data showed that the mannose receptor (MR) is involved in HBsAg recognition and uptake by DC. The presence of HBsAg-positive DC was demonstrated sporadically in blood, but frequently in the liver of HBV patients. Interestingly, a positive correlation was found between HBsAg positivity and MR expression level in both liver- and blood-derived DC. These data suggest that in HBV infected patients, MR-mediated interaction between HBsAg and DC and subsequent impairment of DC predominantly occurs at the main site of infection, the liver. 相似文献
16.
Dendritic cells (DC) are mediators of the adaptive immune response responsible for antigen presentation to naive T cells in secondary lymph organs. Human immunodeficiency virus (HIV-1) has been reported to inhibit the maturation of DC, but a clear link between maturation and function has not been elucidated. To understand further the effects of HIV-1 on DC maturation and function, we expanded upon previous investigations and assessed the effects of HIV-1 infection on the expression of surface molecules, carbohydrate endocytosis, antigen presentation and lipopolysaccharide (LPS) responsiveness over the course of maturation. In vitro infection with HIV-1 resulted in an increase in the expression of DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as well as decreases in maturation-induced CCR7 and major histocompatibility complex (MHC)-II expression. Retention of endocytosis that normally occurs with DC maturation as well as inhibition of antigen presentation to CD8(+) T cells was also observed. Mitogen-activated protein kinase (MAPK) responsiveness to LPS as measured by phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK)1/2 was not affected by HIV-1 infection. In summary, in-vitro HIV-1 impairs DC maturation, as defined by cell surface protein expression, with selective alterations in mature DC function. Understanding the mechanisms of DC dysfunction in HIV infection will provide further insight into HIV immune pathogenesis. 相似文献
17.
Single‐stranded versus multimeric phosphorothioate‐modified CpG oligodeoxynucleotides (ODNs) undergo differential endosomal trafficking upon uptake into plasmacytoid dendritic cells (pDCs), correlating with Toll‐like receptor‐9‐dependent pDC maturation/activation (single‐stranded B‐type CpG ODN) or interferon‐α (IFN‐α) induction (multimeric A‐type CpG ODN), respectively. As was recently shown, IFN‐α production, other than by CpG ODNs, can also be induced in a sequence‐independent manner by phosphodiester (PD) ODNs multimerized by 3′ poly‐guanosine (poly‐G) tails. We investigate here the type of endosomal trafficking responsible for IFN‐α induction by natural PD ODN ligands. We show that 3′ extension with poly‐G tails leads to multimerization of single‐stranded PD ODNs and to enhanced cellular uptake into pDCs. While monomeric PD ODNs, which induce CpG‐dependent Toll‐like receptor‐9 stimulation and pDC maturation/activation, localized to late endosomal/lysosomal compartments, the poly‐G multimerized PD ODNs, which induce CpG‐independent IFN‐α production, located to vesicles with a distinct, ‘early’ endosomal phenotype. We conclude that poly‐G‐mediated multimerization of natural PD ODNs allows for sequence‐independent, Toll‐like receptor‐9‐dependent IFN‐α induction in pDCs by combining three distinct effects: relative protection of sensitive PD ODNs from extracellular and intracellular DNase degradation, enhanced cellular uptake and preferential early endosomal compartmentation. 相似文献
18.
Layer T Steele A Goeken JA Fleenor S Lenert P 《Clinical and experimental immunology》2011,163(3):392-403
Nucleic acid sensors of the Toll-like receptor (TLR) family play a well-established role in the pathogenesis of lupus. This is particularly true for a single-stranded RNA-sensing TLR-7 receptor, as lupus mice lacking TLR-7 show ameliorated disease. Cytosine-guanosine dinucleotide (CpG)-DNA-sensing TLR-9, conversely, has a complex regulatory role in systemic lupus erythematosus (SLE). Much less is known about whether signals through the B cell receptor for antigen (BCR) may affect the ability of B cells to respond to suboptimal TLR-7 agonists and antagonists. We studied this question in prediseased BXSB male and female B cells. We found that male B cells responded more vigorously to numerous TLR-7 ligands and this responsiveness was enhanced further upon co-engagement of the BCR. This synergy was seen primarily with the interleukin (IL)-6 secretion. A number of 32-mer inhibitory oligonucleotides (INH-ODNs) with a nuclease-resistant phosphorothioate backbone were capable of blocking TLR-7, but not BCR-induced B cell activation, with an inhibitory concentration (IC)(50) of approximately 100 nm. Surprisingly, while the presence of a single TGC motif at the 5' end of an ODN did not increase its inhibitory capacity, INH-ODNs containing multiple TGC motifs had greater inhibitory potency. When BCR and TLR-7 were co-engaged, INH-ODNs showed a differential effect on B cell activation. Whereas apoptosis protection and G1-M entry completely escaped suppression, IL-6 secretion remained sensitive to inhibition, although with a 10-fold lower potency. Our results suggest that while TLR-7 antagonists may be considered as lupus therapeutics, simultaneous co-engagement of the TLR-7 and BCR might favour autoreactive B cell survival. This hypothesis needs further experimental validation. 相似文献
19.
IL-3-dependent mucosal-like mast cells undergo apoptosis upon withdrawal of IL-3. Generally, the apoptosis is mediated by the activation of caspases and inhibited by addition of the pan-caspase inhibitors z-VAD-FMK or BOC-D-FMK. However, DNA fragmentation, a typical characteristic of apoptosis, is not inhibited by z-VAD-FMK or BOC-D-FMK in mast cell apoptosis. In this study, we demonstrate that the apoptosis of mast cells is mediated by both caspase-dependent and -independent mechanisms. The caspase-independent apoptosis is mediated by the translocation of endonuclease G from mitochondria into nuclei. Withdrawal of IL-3 caused down-regulation of Bcl-xL, resulting in a drop in mitochondrial membrane transition potential followed by the release of cytochrome c and endonuclease G from mitochondria. However, stimulation of mast cells through Toll-like receptor 4 (TLR4) by lipopolysaccharide prevented mast cell apoptosis by inducing expression of Bcl-xL. Moreover, the activation of mast cells by LPS is enhanced in the presence of IFN-gamma, which up-regulates the expression of cell surface TLR4. Taken together, these observations provide evidence that mast cells play important roles not only in allergic reactions but also in innate immunity recognizing enterobacteria through TLR4, and are regulated differently from allergic inflammation by Th1 cytokines. 相似文献
20.
The peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in macrophages and plays an important role in suppressing the inflammatory response. Lipopolysaccharides (LPS), which activate Toll-like receptor 4 (TLR4), reduced PPARgamma expression and function in peritoneal macrophages and macrophage cell lines. Moreover, pretreatment with the synthetic PPARgamma ligand, rosiglitazone did not prevent LPS-mediated downregulation of PPARgamma. Inhibition of PPARgamma expression was not blocked by cycloheximide, indicating that de novo protein synthesis is not required for LPS-mediated suppression of PPARgamma. Destabilization of PPARgamma messenger RNA (mRNA) was not observed in LPS-stimulated macrophages, suggesting that LPS regulates the synthesis of PPARgamma mRNA. LPS had no effect on PPARgamma expression in macrophages from TLR4 knockout mice, whereas LPS inhibited PPARgamma expression in cells that had been reconstituted to express functional TLR4. Targeting the TLR4 pathway with inhibitors of MEK1/2, p38, JNK and AP-1 had no effect on PPARgamma downregulation by LPS. However, inhibitors that target NEMO, IkappaB and NF-kappaB abolished LPS-mediated downregulation of PPARgamma in LPS-stimulated macrophages. Our data indicate that activation of TLR4 inhibits PPARgamma mRNA synthesis by an NF-kappaB-dependent mechanism. Low-density genomic profiling of macrophage-specific PPARgamma knockout cells indicated that PPARgamma suppresses inflammation under basal conditions, and that loss of PPARgamma expression is sufficient to induce a proinflammatory state. Our data reveal a regulatory feedback loop in which PPARgamma represses NF-kappaB-mediated inflammatory signalling in unstimulated macrophages; however, upon activation of TLR4, NF-kappaB drives down PPARgamma expression and thereby obviates any potential anti-inflammatory effects of PPARgamma in LPS-stimulated macrophages. 相似文献