首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies against citrullinated proteins are specific and predictive markers for rheumatoid arthritis although the pathologic relevance of these antibodies remains unclear. To investigate the significance of these autoantibodies, collagen-induced arthritis (CIA) in mice was used to establish an animal model of antibody reactivity to citrullinated proteins. DBA/1J mice were immunized with bovine type II collagen (CII) at days 0 and 21, and serum was collected every 7 days for analysis. Antibodies against both CII and cyclic citrullinated peptide, one such citrullinated antigen, appeared early after immunization, before joint swelling was observed. Further, these antibodies demonstrated specific binding to citrullinated filaggrin in rat esophagus by indirect immunofluorescence and citrullinated fibrinogen by Western blot. To evaluate the role of immune responses to citrullinated proteins in CIA, mice were tolerized with a citrulline-containing peptide, followed by antigen challenge with CII. Tolerized mice demonstrated significantly reduced disease severity and incidence compared with controls. We also identified novel murine monoclonal antibodies specific to citrullinated fibrinogen that enhanced arthritis when coadministered with a submaximal dose of anti-CII antibodies and bound targets within the inflamed synovium of mice with CIA. These results demonstrate that antibodies against citrullinated proteins are centrally involved in the pathogenesis of autoimmune arthritis.  相似文献   

2.
Elevated concentrations of interleukin-18 (IL-18) are found in both serum and synovial fluid of patients suffering from rheumatoid arthritis (RA) and this cytokine has recently been implicated in the development of experimental arthritis. In this present study, we developed an IL-18 neutralizing intervention and examined its efficacy for local intra-articular treatment of experimental arthritis. To this end we constructed an adenoviral vector containing the murine IL-18 binding protein isoform c gene (AdCMVIL-18BPc). The constructed adenoviral vector was validated on replication deficiency, transfection efficacy and ability to express biological functional IL-18BPc. Intra-articular overexpression of IL-18BPc significantly reduced incidence of collagen-induced arthritis (CIA) in treated kneejoints. Affected kneejoints of IL-18BPc-treated mice showed less severe arthritis, characterized by reduction of inflammation and destruction of bone and cartilage. Local intra-articular IL-1BPc treatment in both knees provided additional protection against CIA incidence and severity in distal paws. Measurement of serum levels of specific collagen type (CII) Abs revealed a moderate reduction of circulating IgG2a anti-CII Abs, while IgG1 anti-CII Abs remained at similar level. The present study underlines the involvement of IL-18 as an important proinflammatory cytokine in onset of experimental arthritis. Furthermore, it shows that endogenous IL-18 can be blocked efficiently through local adenoviral overexpression of IL-18BPc, indicating that treatment with IL-18BPc might contribute to joint protection in RA.  相似文献   

3.
Immunization of mice with type II collagen (CII), a cartilage-restricted protein, leads to collagen-induced arthritis (CIA), a model for rheumatoid arthritis (RA). CIA symptoms consist of an erosive joint inflammation caused by an autoimmune attack, mediated by both T and B lymphocytes. CD4+ alphabeta T cells play a central role in CIA, both by helping B cells to produce anti-CII antibodies, and by interacting with other cells in the joints, eg macrophages. In H-2q mice, most CII-specific CD4+ T cells recognize the CII(256-270) peptide presented on the major histocompatibility complex (MHC) class II Aq molecule. Post-translational modifications (hydroxylation and variable glycosylation) of the lysine residue at position 264 of CII generate at least four different T-cell determinants that are specifically recognized by distinct T-cell subsets. Most T cells recognize CII(256-270) glycosylated with the monosaccharide galactose, which is consequently immunodominant in CIA. Recent studies indicate that the arthritogenic T cells in CIA are glycopeptide-specific, suggesting that induction of self-tolerance may be rendered more difficult by glycosylation of CII. These data open the possibility that outoimmune disease may be caused by the creation of new epitopes by posttranslational modification of proteins under circumstances such as trauma, inflammation or ageing.  相似文献   

4.
5.
The aim of this study was to investigate the effect of oleuropein aglycone, an olive oil compound, on the modulation of the inflammatory response in mice subjected to collagen-induced arthritis (CIA). CIA was induced in mice by an intradermal injection of 100 μl of an emulsion containing 100 μg of bovine type II collagen (CII) and complete Freund's adjuvant (CFA) at the base of the tail. On day 21, a second injection of CII in CFA was administered. Mice developed erosive hind paw arthritis when immunized with CII in CFA. Macroscopic clinical evidence of CIA first appeared as periarticular erythema and edema in the hind paws. The incidence of CIA was 100% by day 28 in the CII-challenged mice and the severity of CIA progressed over a 35-day period with resorption of bone. The histopathology of CIA included erosion of the cartilage at the joint. Treatment with oleuropein aglycone starting at the onset of arthritis (day 25) ameliorated the clinical signs at days 26 to 35 and improved histological status in the joint and paw. The degree of oxidative and nitrosative damage was also significantly reduced in oleuropein aglycone-treated mice. Plasma levels of the proinflammatory cytokines were also significantly reduced by oleuropein aglycone. In addition, we have confirmed the beneficial effects of oleuropein aglycone on an experimental model of CIA in a therapeutic regimen of post-treatment, with treatment started at day 28, demonstrating that oleuropein aglycone exerts an anti-inflammatory effect during chronic inflammation and ameliorates the tissue damage associated with CIA.  相似文献   

6.
We explored the possibility that pulsed antigen-presenting cells (APC) provide a model vector system for site-specific delivery of immunosuppressive proteins during collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. Thus, mice were treated with either B cells or macrophages engineered to secrete IL-4 and loaded (or not) with type II collagen (CII). Systemic injection of an IL-4-producing B cell hybridoma resulted in a reduction of arthritis severity which was further improved when APC were incubated with CII before their transfer. Unmanipulated B cells loaded with CII also exerted a potent suppressive effect. Likely, clinical amelioration was observed in mice given at priming syngeneic bone marrow-derived macrophages producing IL-4 and pulsed with CII in comparison to the other groups. When the same dose of cells was transferred at disease onset, a moderate beneficial effect was observed. Whatever the APC inoculated, the beneficial effect did not rely upon an IL-4-driven shift towards Th2 phenotype. Systemic administration of fluorescent dye labeled macrophages to arthritic mice has shown that some of these cells rapidly migrate to joints. Moreover, IL-4 transfected macrophages retained their potent capacity to present CII peptides to T cells. These findings validate the use of CII peptide-loaded engineered APC as therapeutic vector cells in CIA and allow consideration of this strategy for the administration of various anti-inflammatory proteins.  相似文献   

7.
Recent evidence indicates that chronic autoimmune disease can result from breakdown of regulation and subsequent activation of self-reactive T cells. In many murine autoimmune disease systems and in the Lewis rat, antigen-specific T cells utilizing the T cell receptor (TCR) Vβ8.2 gene segment play a major role. In the myelin basic protein–induced experimental autoimmune encephalomyelitis (EAE) model in H-2u mice, we had shown that T cells recognizing a peptide determinant within the framework 3 region of the Vβ8.2 chain have a critical role in influencing the course of the disease. Here, we report experiments in another disease system, collagen II (CII)–induced arthritis (CIA) in DBA/1LacJ (H-2q) mice, indicating a remarkably parallel control circuit to that found for EAE. A critical role is played by CII-specific Vβ8.2bearing T cells in the CIA system, which we have confirmed. Animals treated with the superantigen SEB before CII administration are significantly protected from CIA. Next, we tested the ability of peptides encompassing the entire Vβ8.2 chain to induce proliferative responses. Only TCR peptide B5 (amino acids 76–101), a regulatory peptide in EAE, induced proliferation. B5 was then used to vaccinate DBA/1LacJ mice and was shown to reduce greatly the severity and incidence of CIA as measured by joint inflammation or histology. Furthermore, similar protection was found when B5 was administered after CII immunization. It was shown that there is physiological induction of a proliferative response to B5 during CIA and that the determinant within B5 is produced from a single chain TCR construct containing the entire Vβ8.2 chain. Finally, the regulation of CIA is discussed in the context of other experimental autoimmune diseases, especially EAE, with emphasis on what appear to be strikingly common mechanisms.  相似文献   

8.
CD69 is induced after activation of leukocytes at inflammatory sites, but its physiological role during inflammation remains unknown. We explored the role of CD69 in autoimmune reactivity by analyzing a model of collagen-induced arthritis (CIA) in WT and CD69-deficient mice. CD69-/- mice showed higher incidence and severity of CIA, with exacerbated T and B cell immune responses to type II collagen. Levels of TGF-beta1 and TGF-beta2, which act as protective agents in CIA, were reduced in CD69-/- mice inflammatory foci, correlating with the increase in the proinflammatory cytokines IL-1beta and RANTES. Local injection of blocking anti-TGF-beta antibodies increased CIA severity and proinflammatory cytokine mRNA levels in CD69+/+ but not in CD69-/- mice. Moreover, in vitro engagement of CD69 induced total and active TGF-beta1 production in Concanavalin A-activated splenocyte subsets, mouse and human synovial leukocytes, and Jurkat stable transfectants of human CD69 but not in the parental CD69 negative cell line. Our results show that CD69 is a negative modulator of autoimmune reactivity and inflammation through the synthesis of TGF-beta, a cytokine that in turn downregulates the production of various proinflammatory mediators.  相似文献   

9.
Kim JM  Ho SH  Hahn W  Jeong JG  Park EJ  Lee HJ  Yu SS  Lee CS  Lee YW  Kim S 《Gene therapy》2003,10(15):1216-1224
Tumor necrosis factor (TNF) is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis, and antagonism of TNF may reduce the activity of the disease. Among a number of techniques for gene transfer in vivo, the direct injection of plasmid DNA into muscle is simple, inexpensive, and safe. In this study, we attempted to treat collagen-induced arthritis (CIA) with anti-TNF gene therapy by transferring the plasmid encoding soluble p75 TNF receptor linked to the Fc portion of human IgG1 (sTNFR:Fc) using in vivo electroporation. DBA/1 mice were immunized with bovine type II collagen and boosted with the same antigen. At 2 days after boosting, the plasmid vector containing cDNA for the sTNFR:Fc was injected into one selected site in the gastrocnemius muscle followed by electroporation. Serum levels of sTNFR:Fc reached 2.3 ng/ml on day 5 when gene expression reached its peak. Macroscopic analysis of paws for redness, swelling and deformities showed that the onset of moderate-to-severe CIA in mice treated with sTNFR:Fc was prevented on a significant level compared with the control mice (P<0.05). The beneficial effect of sTNFR:Fc DNA transfer lasted for at least 18 days following treatment. In addition, both the synovitis and the erosion of cartilage in the knee joints were dramatically reduced in mice treated with sTNFR:Fc (P<0.05). The expression of IL-1beta and IL-12 in the paw was also decreased by sTNFR:Fc treatment (P<0.01) while there was little change in the levels of IL-17 and vWF. These data showed that sTNFR:Fc expression plasmid was effective in the prevention of CIA, and in vivo electroporation-mediated gene transfer may provide a new approach to cytokine therapy in autoimmune arthritis.  相似文献   

10.
It has been postulated that TNF has a pivotal role in a cytokine cascade that results in joint inflammation and destruction in rheumatoid arthritis (RA). To evaluate this, we examined the response of TNF-deficient (Tnf(-/-)) mice in two models of RA. Collagen-induced arthritis (CIA) was induced by injection of chick type II collagen (CII) in CFA. Tnf(-/-) mice had some reduction in the clinical parameters of CIA and, on histology, significantly more normal joints. However, severe disease was evident in 54% of arthritic Tnf(-/-) joints. Tnf(-/-) mice had impaired Ig class switching, but preserved T cell proliferative responses to CII and enhanced IFN-gamma production. Interestingly, CII-immunized Tnf(-/-) mice developed lymphadenopathy and splenomegaly associated with increased memory CD4(+) T cells and activated lymph node B cells. Acute inflammatory arthritis was also reduced in Tnf(-/-) mice, although again some mice exhibited severe disease. We conclude that TNF is important but not essential for inflammatory arthritis; in each model, severe arthritis could proceed even in the complete absence of TNF. These results call into doubt the concept that TNF is obligatory for chronic autoimmune and acute inflammatory arthritis and provide a rationale for further studies into TNF-independent cytokine pathways in arthritis.  相似文献   

11.
SWR/J transgenic (tg) mice were generated expressing the TCR beta chain derived from an anticollagen type II (CII) arthritogenic T cell clone. The SWR/J strain was selected because it is resistant to collagen-induced arthritis (CIA) and lacks the V beta gene segment used by the T cell clone. Expression of the tg beta chain on all thymocytes and peripheral lymph node T cells led to a more efficient anti-CII immune response, but did not confer CIA susceptibility to SWR/J mice. Nevertheless, this tg beta chain enhanced predisposition to CIA as (DBA/1 x SWR) F1 beta tg mice were more susceptible than normal F1 littermates. Our results demonstrate that the expression of the tg beta chain contributes to CIA susceptibility, but by itself it is not sufficient to overcome CIA resistance in the SWR/J strain.  相似文献   

12.
Demonstration that IkappaB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-kappaB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthritis. In the present study, we demonstrate that a novel, potent (IC(50) = 17.9 nM), and selective inhibitor of human IKK-2, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), inhibits lipopolysaccharide-induced human monocyte production of TNF-alpha, IL-6, and IL-8 with an IC(50) = 170 to 320 nM. Prophylactic administration of TPCA-1 at 3, 10, or 20 mg/kg, i.p., b.i.d., resulted in a dose-dependent reduction in the severity of murine collagen-induced arthritis (CIA). The significantly reduced disease severity and delay of disease onset resulting from administration of TPCA-1 at 10 mg/kg, i.p., b.i.d. were comparable to the effects of the antirheumatic drug, etanercept, when administered prophylactically at 4 mg/kg, i.p., every other day. Nuclear localization of p65, as well as levels of IL-1beta, IL-6, TNF-alpha, and interferon-gamma, were significantly reduced in the paw tissue of TPCA-1- and etanercept-treated mice. In addition, administration of TPCA-1 in vivo resulted in significantly decreased collagen-induced T cell proliferation ex vivo. Therapeutic administration of TPCA-1 at 20 mg/kg, but not at 3 or 10 mg/kg, i.p., b.i.d., significantly reduced the severity of CIA, as did etanercept administration at 12.5 mg/kg, i.p., every other day. These results suggest that reduction of proinflammatory mediators and inhibition of antigen-induced T cell proliferation are mechanisms underlying the attenuation of CIA by the IKK-2 inhibitor, TPCA-1.  相似文献   

13.
To investigate the respective roles of Th1 and Th2 cells in the pathogenesis of lupus-like autoimmune disease, we have analyzed the spontaneous and antigen-induced productions of IgG1 vs IgG2a and IgG3 subclasses in relation to the mRNA expression of INF-gamma (Th1 cytokine promoting IgG2a and IgG3 production), IL-4 (Th2 cytokine promoting IgG1 production), and IL-10 (Th2 cytokine) in CD4+ T cells from lupus-prone MRL mice. For this purpose, two paired sets of MRL mice were chosen for the comparison of these parameters: (a) MRL-lpr/lpr (lpr for lymphoproliferation) and its recently described substrain with a prolonged survival, termed MRL-lpr/lpr.ll (ll for long lived) and (b) MRL male mice bearing the Yaa (Y-linked autoimmune acceleration) gene (MRL.Yaa) with an accelerated disease and their male counterparts lacking the Yaa gene. We demonstrate herein that the accelerated development of lupus-like autoimmune disease in MRL-lpr/lpr and MRL.Yaa mice, as compared with MRL-lpr/lpr.ll and MRL-+/+ mice, respectively, was correlated with an enhanced expression of IFN-gamma vs IL-4 and IL-10 mRNA in CD4+ T cells, which paralleled with an increase of spontaneous and foreign T cell-dependent antigen-induced productions of IgG2a and IgG3 vs IgG1 antibodies. These data suggest that an imbalance towards Th1 predominance may play a significant role in the acceleration of lupus-like autoimmune disease in MRL mice.  相似文献   

14.
Autoantibody formation is essential for the development of certain autoimmune diseases like rheumatoid arthritis (RA). Anti-type II collagen (CII) antibodies are found in RA patients; they interact with cartilage in vivo and are often highly pathogenic in the mouse. Autoreactivity to CII is directed to multiple epitopes and conserved between mice and humans. We have previously mapped the antibody response to CII in a heterogeneous stock cohort of mice, with a strong association with the IgH locus. We positioned the genetic polymorphisms and determined the structural requirements controlling antibody recognition of one of the major CII epitopes. Polymorphisms at positions S31R and W33T of the associated variable heavy chain (VH) allele were identified and confirmed by gene sequencing. The Fab fragment binding the J1 epitope was crystallized, and site-directed mutagenesis confirmed the importance of those two variants for antigen recognition. Back mutation to germline sequence provided evidence for a preexisting recognition of the J1 epitope. These data demonstrate a genetic association of epitope-specific antibody responses with specific VH alleles, and it highlights the importance of germline-encoded antibodies in the pathogenesis of antibody-mediated autoimmune diseases.The way pathogenic autoantibodies escape immune tolerance is a key feature for the understanding of autoimmune diseases. The production of autoantibodies such as rheumatoid factors or anti-citrullinated protein antibodies constitutes a hallmark in the diagnosis of rheumatoid arthritis (RA; Aletaha et al., 2010). Type II collagen (CII) is the main protein constituent of articular and hyaline cartilage, and autoantibodies to CII develop around the clinical onset of arthritis (Fujii et al., 1992; Mullazehi et al., 2007). Immunization of mice with CII induces an inflammatory polyarthritis (collagen-induced arthritis [CIA]), mimicking major features of human RA (Brand et al., 2007). The B cell response to CII plays an important role in the development of the disease (Svensson et al., 1998; Luross and Williams, 2001). The passive transfer of arthritis to naive mice by anti-CII reactive serum (Stuart and Dixon, 1983; Holmdahl et al., 1990) or specific anti-CII mAb (Holmdahl et al., 1986; Nandakumar et al., 2003) demonstrates the pathogenicity of such antibodies in mediating inflammation of the joints. Among the mAbs recognizing CII structures, those binding to the epitopes C1, U1, and J1 have been shown to be arthritogenic (Bajtner et al., 2005), whereas the CII-F4 antibody recognizing the F4 epitope is protective (Burkhardt et al., 2002). The mAb M2139 specifically recognizes the J1 epitope (Karlsson et al., 1995) and is the most arthritogenic anti-CII mAb in the mouse, eliciting disease upon single transfer (Nandakumar and Holmdahl, 2005). Autoreactivity to CII is evolutionary conserved between mice and humans. Reactive B cells to the same CII epitopes as those described in CIA have been identified in humans (Burkhardt et al., 2002), thus strengthening the role of this animal model to study the production and reactivity of autoantibodies toward CII.In this study, we define the genetic association of autoantibody production during arthritis development. The structural and molecular interactions observed in the M2139Fab–J1 immune complex demonstrate the importance of germline-encoded sequences for peptide recognition. These data indicate that epitope-specific antibody responses recognized by germline-encoded structures are of significant relevance for the development of autoantibody-mediated autoimmune diseases.  相似文献   

15.
Immunomodulation of autoimmune inflammatory diseases like rheumatoid arthritis can be achieved by anti-inflammatory T2 cytokines such as interleukin (IL)-4 administered by gene therapy. In this study we investigated the efficiency of adeno-associated viruses (AAV) vectors in collagen-induced arthritis (CIA). After injection of AAV-LacZ in the tarsus area of mice, the expression of the transgene was localized in the deep muscles cells near the bone. LacZ expression was found in liver, heart and lung after i.m. injection of AAV-LacZ, showing a spread of the vector over the body. Anti-AAV neutralizing antibodies were detected in the serum after i.m. injection of AAV-LacZ, but they did not alter the transgene expression after re-administration of AAV-LacZ. Long-term IL-4 expression persisted 129 days after intra-muscular injection of 3.7 x 10(10) or 11.2 x 10(10) AAV-IL-4 p.p. (average 7.7 or 17.5 pg IL-4/mg proteins, respectively). More importantly, the treatment of CIA with AAV-IL-4 vector in mice produced a therapeutic benefit, since we show a diminished prevalence of the disease, a significant reduction in paw swelling, attenuated histological synovitis and a 10 days delayed onset of arthritis. This is the first evidence that AAV vector-mediated gene therapy using a T2 cytokine is efficient in an animal model of rheumatoid arthritis.  相似文献   

16.
Dendritic cells (DCs) are specialized antigen-presenting cells that migrate from the periphery to lymphoid tissues, where they activate and regulate T cells. Genetic modification of DCs to express immunoregulatory molecules would provide a new immunotherapeutic strategy for autoimmune and other diseases. We have engineered bone marrow-derived DCs that express IL-4 and tested the ability of these cells to control murine collagen-induced arthritis (CIA), a model for rheumatoid arthritis in which Th1 cells play a critical role. IL-4-transduced DCs inhibited Th1 responses to collagen type II in vitro. A single injection of IL-4-transduced DCs reduced the incidence and severity of CIA and suppressed established Th1 responses and associated humoral responses, despite only transient persistence of injected DCs in the spleen. In contrast, control DCs and IL-4-transduced T cells or fibroblastic cells failed to alter the course of the disease. The functional effects correlated well with the differential efficiency of DC migration from various sites of injection to lymphoid organs, especially the spleen. The ability of splenic T cells to produce IL-4 in response to anti-CD3 was enhanced after the administration of IL-4-transduced DCS: These results support the feasibility of using genetically modified DCs for the treatment of autoimmune disease.  相似文献   

17.
The chimeric cell surface receptor scC2Fv/CD8/zeta was constructed to engineer primary mouse T lymphocytes with antibody-type specificity to type II collagen (CII). Such cells could be used as gene carriers in the anti-inflammatory gene therapy of an autoimmune arthritis. This receptor includes the single chain Fv domain (scFv) of the anti-CII monoclonal antibody (mAb) C2, hinge region of CD8alpha and the transmembrane and cytoplasmic domains of TCRzeta. The scC2Fv/CD8/zeta gene was transduced into T cell hybridomas and primary mouse lymphocytes using retrovirus-mediated gene transfer. The chimeric receptor scC2Fv/CD8/zeta forms covalently bound homodimers, as demonstrated in T cell hybridomas and packaging fibroblasts. It does not associate with endogenous signalling subunits of the TCR complex. When scC2Fv/CD8/zeta-expressing clones of T cell hybridomas MD.45 and HCQ6 were stimulated with CII they produced IL-2. The level of their IL-2 response correlated with the expression level of the chimeric receptor on the cell surface. Splenocytes isolated from DBA/1 mice were stimulated with Con A in vitro to facilitate retrovirus-mediated transfer of the scC2Fv/CD8/zeta gene. As a result of transduction, approximately 4% of the Con A-activated splenocytes expressed the chimeric receptor scC2Fv/CD8/zeta on the cell surface. These cells proliferated in response to stimulation with CII.  相似文献   

18.
Type II collagen-induced arthritis (CIA) is an experimentally inducible autoimmune disorder that is, just like several forms of human arthritis, influenced by a genetic background. Immunization of young rhesus monkeys (Macaca mulatta) with type II collagen (CII) induced CIA in about 70% of the animals. One major histocompatibility complex (MHC) class I allele was present only in young animals resistant to CIA and absent in arthritic animals. This strong association suggests that the MHC class I allele itself, or a closely linked gene, determines resistance to CIA. The mechanism controlling the resistance to CIA becomes less efficient in aged animals since older rhesus monkeys, which were positive for the resistance marker, developed a mild form of arthritis. At the cellular level it is demonstrated that resistance to CIA is reflected by a low responsiveness of T cells to CII. This association between a specified MHC class I allele and resistance to an autoimmune disease points at the importance of the MHC class I region in the regulation of the immune response to an autoantigen.  相似文献   

19.
alpha-Galactosylceramide (alpha-GalCer) is a glycolipid that stimulates natural killer T cells to produce both T helper (Th) 1 and Th2 cytokines. This property enables alpha-GalCer to ameliorate a wide variety of infectious, neoplastic, and autoimmune diseases; however, its effectiveness against any one disease is limited by the opposing activities of the induced Th1 and Th2 cytokines. Here, we report that a synthetic C-glycoside analogue of alpha-GalCer, alpha-C-galactosylceramide (alpha-C-GalCer), acts as natural killer T cell ligand in vivo, and stimulates an enhanced Th1-type response in mice. In two disease models requiring Th1-type responses for control, namely malaria and melanoma metastases, alpha-C-GalCer exhibited a 1,000-fold more potent antimalaria activity and a 100-fold more potent antimetastatic activity than alpha-GalCer. Moreover, alpha-C-GalCer consistently stimulated prolonged production of the Th1 cytokines interferon-gamma and interleukin (IL)-12, and decreased production of the Th2 cytokine IL-4 compared with alpha-GalCer. Finally, alpha-C-GalCer's enhanced therapeutic activity required the presence of IL-12, which was needed to stimulate natural killer cells for optimal interferon-gamma production, but did not affect IL-4. Overall, our results suggest that alpha-C-GalCer may one day be an excellent therapeutic option for diseases resolved by Th1-type responses.  相似文献   

20.
Autoantigen-specific T cells have tissue-specific homing properties, suggesting that these cells may be ideal vehicles for the local delivery of immunoregulatory molecules. We tested this hypothesis by using type II collagen-specific (CII-specific) CD4(+) T hybridomas or primary CD4(+) T cells after gene transfer, as vehicles to deliver an immunoregulatory protein for the treatment of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). CII-specific T cells or hybridomas were transduced using retroviral vectors to constitutively express the IL-12 antagonist, IL-12 p40. Transfer of engineered CD4(+) T cells after immunization significantly inhibited the development of CIA, while cells transduced with vector control had no effect. The beneficial effect on CIA of IL-12 p40-transduced T cells required TCR specificity against CII, since transfer of T cells specific for another antigen producing equivalent amounts of IL-12 p40 had no effect. In vivo cell detection using bioluminescent labels and RT-PCR showed that transferred CII-reactive T-cell hybridomas accumulated in inflamed joints in mice with CIA. These results indicate that the local delivery of IL-12 p40 by T cells inhibited CIA by suppressing autoimmune responses at the site of inflammation. Modifying antigen-specific T cells by retroviral transduction for local expression of immunoregulatory proteins thus offers a promising strategy for treating RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号